Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Combined Three-Dimensional Quantitative Structure-Activity Relationship Analysis of Cytochrome P450 2B6 Substrates and Protein Homology Modeling

Qinmi Wang and James R. Halpert
Drug Metabolism and Disposition January 2002, 30 (1) 86-95; DOI: https://doi.org/10.1124/dmd.30.1.86
Qinmi Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James R. Halpert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Understanding the basis of the substrate specificity of cytochrome P450 2B6 (CYP2B6) is important for determining the role of this enzyme in drug metabolism and for predicting new substrates. Pharmacophores were generated for 16 structurally diverse CYP2B6 substrates with Catalyst after overlapping the reaction sites. Two pharmacophores were determined for the CYP2B6 binding site. Both include two hydrophobes and one hydrogen bond acceptor. The three-dimensional structure of CYP2B6 was then modeled based on the crystal structure of CYP2C5. Benzyloxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin, the two lowestKm substrates in the training set, were then docked in the active site of CYP2B6. The pharmacophores were combined with the CYP2B6 model by comparing the docking results and the mapping of the two substrates with the pharmacophores. The results indicated that the active site of CYP2B6 complements the pharmacophores. The pharmacophores and the CYP2B6 model were used in conjunction to predict the Km values of substrates in a test set of five compounds and yielded satisfactory predictions for benzphetamine, cinnarizine, bupropion, and verapamil but not lidocaine. The CYP2B6 model, the pharmacophores, and the combination of the model with these pharmacophores provide insight into the interactions of CYP2B6 with substrates. The pharmacophores may be used as queries to search a database to predict new substrates for CYP2B6 when the reaction site is known (N- orO-dealkylation). For C-hydroxylation, the CYP2B6 model is helpful in evaluating the possible reaction sites in order for the pharmacophores to predict correspondingKm values.

Footnotes

  • Supported by AstraZeneca and National Institutes of Health Grant ES03619 (J.R.H.) and Center Grant ES06676.

  • Abbreviations used are::
    P450
    cytochrome P450
    3D-QSAR
    three-dimensional quantitative structure-activity relationship
    MM
    molecular mechanics
    7-EFC
    7-ethoxy-4-trifluoromethylcoumarin
    HBA
    hydrogen bond acceptor
    • Received July 24, 2001.
    • Accepted October 4, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 30 (1)
Drug Metabolism and Disposition
Vol. 30, Issue 1
1 Jan 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Combined Three-Dimensional Quantitative Structure-Activity Relationship Analysis of Cytochrome P450 2B6 Substrates and Protein Homology Modeling
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
Citation Tools
Research ArticleArticle

Combined Three-Dimensional Quantitative Structure-Activity Relationship Analysis of Cytochrome P450 2B6 Substrates and Protein Homology Modeling

Qinmi Wang and James R. Halpert
Drug Metabolism and Disposition January 1, 2002, 30 (1) 86-95; DOI: https://doi.org/10.1124/dmd.30.1.86

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Combined Three-Dimensional Quantitative Structure-Activity Relationship Analysis of Cytochrome P450 2B6 Substrates and Protein Homology Modeling

Qinmi Wang and James R. Halpert
Drug Metabolism and Disposition January 1, 2002, 30 (1) 86-95; DOI: https://doi.org/10.1124/dmd.30.1.86
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1 and xCT transporters in blood-arachnoid barrier of pig, and polarized localizations at CSF- and blood-facing plasma membranes
  • Pharmacokinetics of Organic Cation Transporter 1 (OCT1) Substrates in Oct1/2 Knockout Mice and Species Difference in Hepatic OCT1-mediated Uptake
  • Human Cytochrome P450 1A1 Adapts Active Site for Atypical Nonplanar Substrate
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics