Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

INTERSPECIES DIFFERENCES IN PHARMACOKINETICS AND METABOLISM OF S-3-(4-ACETYLAMINO-PHENOXY)-2-HYDROXY-2-METHYL-N-(4-NITRO-3-TRIFLUOROMETHYLPHENYL)-PROPIONAMIDE: THE ROLE OF N-ACETYLTRANSFERASE

Wenqing Gao, Jeffrey S. Johnston, Duane D. Miller and James T. Dalton
Drug Metabolism and Disposition February 2006, 34 (2) 254-260; DOI: https://doi.org/10.1124/dmd.105.007120
Wenqing Gao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey S. Johnston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Duane D. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James T. Dalton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

N-Acetyltransferase (NAT) is one of the major phase II enzymes involved in drug metabolism. Both species differences and polymorphism are observed in NAT expression. During the preclinical development of a novel selective androgen receptor modulator, S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide (S4), we also observed species differences in S4 metabolism due to the interaction between the deacetylation metabolite M1 and NAT, which converted M1 back to S4 both in vitro and in vivo. During incubation with human liver cytosol or rat liver S9 fraction in the presence of acetyl-CoA, more than 50% of M1 (2 μM) was converted back to S4, but this conversion was not observed in the incubation with dog liver S9 fraction or human liver microsome. In vivo pharmacokinetic experiments showed that M1 could be rapidly converted back to S4 in rats, but a similar conversion was not observed in dogs. When S4 was administered, the formation of M1 was only observed in dogs due to the absence of NAT expression. Simultaneous fitting of the concentration-time profiles of both S4 and M1 showed that more than 50% of S4 was deacetylated to M1 in dogs after i.v. administration of S4, whereas more than 80% of M1 was converted to S4 in rats after i.v. administration of M1. Considering the polymorphism in NAT expression, the interaction between M1 and NAT may raise concerns for drug-drug interactions during clinical applications of S4. The observed species differences suggested that interspecies scaling might not be applicable for predicting the metabolism and disposition of S4 in humans.

Footnotes

  • These studies were supported by grants from GTx Inc. (Memphis, TN) and the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK59800) to J.T.D. and D.D.M. J.T.D. and D.D.M. are employees of GTx, Inc.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.007120.

  • ABBREVIATIONS: NAT, N-acetyltransferase; S4, S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide; S1, S-3-(4-fluoro-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide; CM-II-87, 2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-butyramide; SARM, selective androgen receptor modulator; PK, pharmacokinetic; HPLC, high performance liquid chromatography; HLM, human liver microsome; P450, cytochrome P450.

    • Received August 30, 2005.
    • Accepted October 26, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (2)
Drug Metabolism and Disposition
Vol. 34, Issue 2
1 Feb 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
INTERSPECIES DIFFERENCES IN PHARMACOKINETICS AND METABOLISM OF S-3-(4-ACETYLAMINO-PHENOXY)-2-HYDROXY-2-METHYL-N-(4-NITRO-3-TRIFLUOROMETHYLPHENYL)-PROPIONAMIDE: THE ROLE OF N-ACETYLTRANSFERASE
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
Citation Tools
Research ArticleArticle

INTERSPECIES DIFFERENCES IN PHARMACOKINETICS AND METABOLISM OF S-3-(4-ACETYLAMINO-PHENOXY)-2-HYDROXY-2-METHYL-N-(4-NITRO-3-TRIFLUOROMETHYLPHENYL)-PROPIONAMIDE: THE ROLE OF N-ACETYLTRANSFERASE

Wenqing Gao, Jeffrey S. Johnston, Duane D. Miller and James T. Dalton
Drug Metabolism and Disposition February 1, 2006, 34 (2) 254-260; DOI: https://doi.org/10.1124/dmd.105.007120

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

INTERSPECIES DIFFERENCES IN PHARMACOKINETICS AND METABOLISM OF S-3-(4-ACETYLAMINO-PHENOXY)-2-HYDROXY-2-METHYL-N-(4-NITRO-3-TRIFLUOROMETHYLPHENYL)-PROPIONAMIDE: THE ROLE OF N-ACETYLTRANSFERASE

Wenqing Gao, Jeffrey S. Johnston, Duane D. Miller and James T. Dalton
Drug Metabolism and Disposition February 1, 2006, 34 (2) 254-260; DOI: https://doi.org/10.1124/dmd.105.007120
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1 and xCT transporters in blood-arachnoid barrier of pig, and polarized localizations at CSF- and blood-facing plasma membranes
  • Pharmacokinetics of Organic Cation Transporter 1 (OCT1) Substrates in Oct1/2 Knockout Mice and Species Difference in Hepatic OCT1-mediated Uptake
  • Human Cytochrome P450 1A1 Adapts Active Site for Atypical Nonplanar Substrate
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics