Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Rate-Limiting Steps in Hepatic Drug Clearance: Comparison of Hepatocellular Uptake and Metabolism with Microsomal Metabolism of Saquinavir, Nelfinavir, and Ritonavir

Alison J. Parker and J. Brian Houston
Drug Metabolism and Disposition July 2008, 36 (7) 1375-1384; DOI: https://doi.org/10.1124/dmd.108.020917
Alison J. Parker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brian Houston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The intrinsic metabolic clearance of saquinavir, nelfinavir, and ritonavir was determined over a range of concentrations (0.02–20 μM) in both rat liver microsomes and fresh isolated rat hepatocytes in suspension. Clearance values were found to be concentration dependent for both systems, and at low concentrations, microsomal clearance was much greater (7–14-fold) than in hepatocytes. Kinetic parameters showed substantially lower microsomal Km values (5–42 nM) compared with suspended rat hepatocytes (34–270 nM) but similar scaled Vmax values (2–26 nmol/min/g liver). In the absence of metabolism (achieved by pretreating hepatocytes with a mechanism-based inhibitor of cytochrome P450), saquinavir, nelfinavir, and ritonavir were actively and rapidly taken up into hepatocytes (cell/medium concentration ratios of 306-3352), and intracellular unbound drug concentrations between 5- and 12-fold higher than extracellular unbound concentrations were achieved. Comparison of the rate of uptake into hepatocytes with the rate of metabolism in hepatocytes and microsomes indicates that the former is the rate-limiting step at low concentrations. The rate of metabolism saturates at lower concentrations (100–400-fold) than the rate of uptake; hence, at the high concentrations metabolic rate-limited clearance occurs. In conclusion, the clearance of saquinavir, nelfinavir, and ritonavir is extremely rapid, and it is proposed that in the case of hepatocytes and by inference in vivo, the rate of uptake limits the metabolic clearance of these three drugs.

Footnotes

  • A.J.P. was financially supported by a Biotechnology and Biological Sciences Research Council Collaborative Award in Science and Engineering (CASE) studentship with Roche Products Limited.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.108.020917.

  • ABBREVIATIONS: PI, protease inhibitor; BSA, bovine serum albumin; Kp, tissue-to-medium total drug concentration ratio; fu, fraction(s) of unbound drug; LC, liquid chromatography; M1, 3′methoxy-4′hydroxynelfinavir); CLint, intrinsic clearance; Perm, linear permeability parameter; Kpu, tissue-to-medium unbound drug concentration ratio; M8, nelfinavir hydroxy-t-butamide; GF120918, N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide; OATP, organic anion transporter polypeptide; P-gp, P-glycoprotein.

    • Received February 7, 2008.
    • Accepted April 17, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 36 (7)
Drug Metabolism and Disposition
Vol. 36, Issue 7
1 Jul 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rate-Limiting Steps in Hepatic Drug Clearance: Comparison of Hepatocellular Uptake and Metabolism with Microsomal Metabolism of Saquinavir, Nelfinavir, and Ritonavir
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
Citation Tools
Research ArticleArticle

Rate-Limiting Steps in Hepatic Drug Clearance: Comparison of Hepatocellular Uptake and Metabolism with Microsomal Metabolism of Saquinavir, Nelfinavir, and Ritonavir

Alison J. Parker and J. Brian Houston
Drug Metabolism and Disposition July 1, 2008, 36 (7) 1375-1384; DOI: https://doi.org/10.1124/dmd.108.020917

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Rate-Limiting Steps in Hepatic Drug Clearance: Comparison of Hepatocellular Uptake and Metabolism with Microsomal Metabolism of Saquinavir, Nelfinavir, and Ritonavir

Alison J. Parker and J. Brian Houston
Drug Metabolism and Disposition July 1, 2008, 36 (7) 1375-1384; DOI: https://doi.org/10.1124/dmd.108.020917
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P450 Activities in Paired Liver and Small Intestinal Samples
  • Numerical Analysis of Time-Dependent Inhibition by MDMA
  • NRF2-Independent Regulation of DMEs by Cadmium and ITCs
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics