Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • About Us
    • About DMD
    • Feedback
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • About Us
    • About DMD
    • Feedback
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice

Lei Li, Xiaochen Bao, Qing-Yu Zhang, Masahiko Negishi and Xinxin Ding
Drug Metabolism and Disposition August 2017, 45 (8) 977-981; DOI: https://doi.org/10.1124/dmd.117.076406
Lei Li
College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaochen Bao
College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qing-Yu Zhang
College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahiko Negishi
College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinxin Ding
College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs-null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs-null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice.

Footnotes

    • Received April 19, 2017.
    • Accepted May 23, 2017.
  • This work was supported in part by the National Institutes of Health National Cancer Institute [Grant CA092596], National Institute of Environmental Health Sciences [Grant ES020867], National Institute of General Medical Sciences [Grant GM082978], and in part by the Intramural Research Program of the National Institutes of Health [National Institute of Environmental Health Sciences].

  • Parts of this work were previously presented as a poster at the following workshop: Li L, Bao X, Zhang QY, Negishi M, Ding X (2015) Role of CYP2B in phenobarbital-induced hepatocyte proliferation in mice. 54th Annual Meeting of the Society of Toxicology; 22–26 Mar 2015; San Diego, CA.

  • https://doi.org/10.1124/dmd.117.076406.

  • U.S. Government work not protected by U.S. copyright
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 45 (8)
Drug Metabolism and Disposition
Vol. 45, Issue 8
1 Aug 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
Citation Tools
Rapid CommunicationShort Communication

CYP2B and PB-Induced Hepatocyte Proliferation

Lei Li, Xiaochen Bao, Qing-Yu Zhang, Masahiko Negishi and Xinxin Ding
Drug Metabolism and Disposition August 1, 2017, 45 (8) 977-981; DOI: https://doi.org/10.1124/dmd.117.076406

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

CYP2B and PB-Induced Hepatocyte Proliferation

Lei Li, Xiaochen Bao, Qing-Yu Zhang, Masahiko Negishi and Xinxin Ding
Drug Metabolism and Disposition August 1, 2017, 45 (8) 977-981; DOI: https://doi.org/10.1124/dmd.117.076406
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Sulfotransferase 4A1 (SULT4A1) increases its expression in mouse neurons as they mature
  • Mrp3 Transports Clopidogrel Acyl Glucuronide
  • SULT4A1 Mutant Mouse Models
Show more Short Communications

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2018 by the American Society for Pharmacology and Experimental Therapeutics