Skip to main content

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • About Us
    • About DMD
    • Feedback
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • About Us
    • About DMD
    • Feedback
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

The JAK1/2 Inhibitor Ruxolitinib Reverses Interleukin-6-Mediated Suppression of Drug-Detoxifying Proteins in Cultured Human Hepatocytes

Marie Febvre-James, Arnaud Bruyère, Marc Le Vée and Olivier Fardel
Drug Metabolism and Disposition February 2018, 46 (2) 131-140; DOI: https://doi.org/10.1124/dmd.117.078048
Marie Febvre-James
Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, Rennes, France (M.F.-J., A.B., M.L.V., O.F.) and Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France (O.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arnaud Bruyère
Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, Rennes, France (M.F.-J., A.B., M.L.V., O.F.) and Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France (O.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Le Vée
Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, Rennes, France (M.F.-J., A.B., M.L.V., O.F.) and Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France (O.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Olivier Fardel
Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, Rennes, France (M.F.-J., A.B., M.L.V., O.F.) and Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France (O.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The inflammatory cytokine interleukin (IL)-6, which basically activates the Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) signaling pathway, is well known to repress expression of hepatic cytochromes P-450 (P450s) and transporters. Therapeutic proteins, like monoclonal antibodies targeting IL-6 or its receptor, have consequently been demonstrated to restore full hepatic detoxification capacity, which results in inflammatory disease-related drug-drug interactions (idDDIs). In the present study, we investigated whether ruxolitinib, a small drug acting as a JAK1/2 inhibitor and currently used in the treatment of myeloproliferative neoplasms, may also counteract the repressing effects of IL-6 toward hepatic detoxifying systems. Ruxolitinib was found to fully inhibit IL-6-mediated repression of P450 (CYP1A2, CYP2B6, and CYP3A4) and transporter (NTCP, OATP1B1, and OCT1) mRNA levels in primary human hepatocytes and differentiated hepatoma HepaRG cells. Such effects were dose-dependent, with ruxolitinib EC50 values around 1.0–1.2 μM and thus close to ruxolitinib plasma levels that can be reached in patients. Moreover, they were associated with concomitant restoration of P450 and drug transporter activities in IL-6-exposed HepaRG cells. By contrast, ruxolitinib failed to suppress the repression of drug-detoxifying protein mRNA levels caused by IL-1β. The JAK inhibitor and anti–rheumatoid arthritis compound tofacitinib was additionally found to reverse IL-6-mediated suppression of P450 and transporter mRNA expressions. Taken together, our results demonstrated that small drugs acting as JAK inhibitors, like ruxolitinib, counteract IL-6-mediated repression of drug-metabolizing enzymes and drug transporters in cultured human hepatocytes. These JAK inhibitors may consequently be hypothesized to restore hepatic detoxification capacity for patients suffering from inflammatory diseases, which may in turn cause idDDIs.

Footnotes

    • Received August 11, 2017.
    • Accepted November 17, 2017.
  • This work was supported by Cancéropole Grand Ouest (Project HII-GO) and the Ligue contre le Cancer (Comité d’Ille et Vilaine et Comité de Vendée).

  • https://doi.org/10.1124/dmd.117.078048.

  • ↵Embedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

  • Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 46 (2)
Drug Metabolism and Disposition
Vol. 46, Issue 2
1 Feb 2018
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The JAK1/2 Inhibitor Ruxolitinib Reverses Interleukin-6-Mediated Suppression of Drug-Detoxifying Proteins in Cultured Human Hepatocytes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
Citation Tools
Research ArticleArticle

Regulation of P450 and Transporter Expression by Ruxolitinib

Marie Febvre-James, Arnaud Bruyère, Marc Le Vée and Olivier Fardel
Drug Metabolism and Disposition February 1, 2018, 46 (2) 131-140; DOI: https://doi.org/10.1124/dmd.117.078048

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Regulation of P450 and Transporter Expression by Ruxolitinib

Marie Febvre-James, Arnaud Bruyère, Marc Le Vée and Olivier Fardel
Drug Metabolism and Disposition February 1, 2018, 46 (2) 131-140; DOI: https://doi.org/10.1124/dmd.117.078048
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolism of a 5HT6 antagonist, 2-methyl-1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-benzo[d]imidazole (SAM-760): impact of sulfonamide metabolism on diminution of a ketoconazole mediated clinical drug-drug interaction
  • Abundance of Phase I and II Drug Metabolizing Enzymes in Alcoholic and Hepatitis C Cirrhotic Livers: A Quantitative Targeted Proteomics Study
  • Structure-activity relationships of the main bioactive constituents of Euodia ruticarpa on aryl hydrocarbon receptor activation and bile acid homeostasis
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2018 by the American Society for Pharmacology and Experimental Therapeutics