IDENTIFICATION OF CYP1A5 AS THE CYP1A ENZYME MAINLY RESPONSIBLE FOR UROPORPHYRIN OXIDATION INDUCED BY AH RECEPTOR LIGANDS IN CHICKEN LIVER AND KIDNEY

PETER R. SINCLAIR, NADIA GORMAN, HEIDI S. WALTON, JACQUELINE F. SINCLAIR, CHARIS A. LEE, AND ARLEEN B. RIFKIND

VA Medical Center; Departments of Biochemistry and Pharmacology/Toxicology, Dartmouth Medical School (P.R.S., N.G., H.S.W., J.F.S) and Departments of Pharmacology and Medicine, Cornell University Medical College (C.A.L., A.B.R.)

(Received August 16, 1996; accepted Mach 27, 1997)

ABSTRACT:

Uroporphyrinogen is an intermediate of the heme biosynthetic pathway. The oxidation of uroporphyrinogen to uroporphyrin (UROX) has been demonstrated to be catalyzed by mammalian CYP1A2. This reaction has an important role in uroporphyria caused by halogenated aromatic compounds. Two CYP enzymes induced by Ah receptor ligands were purified recently from chick embryo liver. One, designated CYP1A5, was preferentially active in arachidonic acid epoxygenation and the other, designated CYP1A4, in 7-ethoxycoumarin deethylase (EROD) and aryl hydrocarbon hydroxylase (AHH), reactions mainly catalyzed by CYP1A1 in rodents. The amino acid sequences of both CYP1A5 and CYP1A4 are more similar to CYP1A1 than to 1A2, and neither can be classified as an ortholog of mammalian CYP1A1 or 1A2. Here we report that reconstituted purified CYP1A5 was eight times more active than CYP1A4 in catalyzing UROX. The stimulation of UROX by 3,4,3',4'-tetrachlorobiphenyl that has been observed in microsomes was also observed with the reconstituted enzymes. Similar dose response relationships were found for induction of UROX and EROD in both chick embryo liver microsomes and in cultured chick hepatocytes, indicating coinduction of CYP1A5 and CYP1A4. UROX was induced by the Ah receptor ligand, 3-methylcholanthrene, in chicken kidney as well as liver. The findings reported here and other evidence that CYP1A4 and CYP1A5 tend to exhibit 1A1 and 1A2-like enzyme activities, respectively, indicate that the division of some enzyme activities among CYP1A enzymes applies to different vertebrate classes.

Ah receptor ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), planar polychlorinated biphenyls (PCBs) and 3-methylcholanthrene induce enzymes in the CYP1A subfamily, CYP1A1 and CYP1A2, in rodents and other mammals (1). These enzymes exhibit catalytic differences. For example, 7-ethoxycoumarin deethylase (EROD) activity, which is commonly used as an index of CYP1A1 activity in rat liver because it has been found to be catalyzed principally by CYP1A1 with only about 20% of the activity being catalyzed by CYP1A2 (2). CYP1A2 is preferentially active in different activities, including the 2-hydroxylation of estradiol (3).

Recently, the oxidation of uroporphyrinogen to uroporphyrin (UROX) has been shown to be preferentially catalyzed by rat and mouse CYP1A2 rather than CYP1A1 (2, 4). Uroporphyrinogen, an intermediate in heme biosynthesis, is normally converted to coproporphyrinogen by the enzyme, uroporphyrinogen decarboxylase (5). The oxidation of uroporphyrinogen prevents its conversion to coproporphyrinogen and results in accumulation of uroporphyrin. UROX activity is increased by inducers of the CYP1A subfamily in rodents and is considered to be an essential participant in the massive accumulation of hepatic uroporphyrinogen (URO) caused by these compounds (2, 5). Ah receptor ligands induce UROX in chick embryo hepatocytes, indicating coinduction of CYP1A5 and CYP1A4. UROX was induced by the Ah receptor ligand, 3-methylcholanthrene, in chicken kidney as well as liver. The findings reported here and other evidence that CYP1A4 and CYP1A5 tend to exhibit 1A1 and 1A2-like enzyme activities, respectively, indicate that the division of some enzyme activities among CYP1A enzymes applies to different vertebrate classes.

1 Abbreviations used are: TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; CYP, cytochrome P450; EROD, ethoxycoumarin deethylase; UROX, uroporphyrinogen oxidation; TCB, 3,4,3',4'-tetrachlorobiphenyl; CYP1A5 and CYP1A4, CYP1A enzymes isolated from TCDD-treated chick embryos previously known as TCDDa and TCDDaHH, respectively (11); AHH, aryl hydrocarbon hydroxylase; AA, arachidonic acid.

This study was funded by Grants ES03606 (A.B.R.) and ES06203 (P.R.S.) from the National Institutes of Health and by research funds from the Department of Veterans Affairs.

This work was presented as a poster at the Xth International Symposium on Microsomes and Drug Oxidations, Toronto, Canada, July, 1994.

Send reprint requests to: P. Sinclair, VA Medical Center (151), White River Junction, VT 05009-0001. E-mail: psinc@Dartmouth.edu.
the effect of TCB in stimulating reconstituted UROX activity. We also investigated the dose-response relationships for the induction of UROX and EROD in chick embryo liver microsomes and cultured hepatocytes and compared the induction of UROX and EROD in chick embryo liver and kidney.

Materials and Methods

Materials. Sources of chemicals were as follows: 3-methylcholanthrene, ketoconazole and dilaurylphosphatidylcholine, Sigma Chemical (St Louis, MO); 3,4,3′,4′-tetrachlorobiphenyl (TCB) and 3,4,5,3′,4′,5′-hexachlorobiphenyl, Ultrascientific (North Kingston, RI); dimethyl sulfoxide, Fluka (Hauppauge, NY); uroporphyrin, Porphyrin Products (Logan, UT). The CYP enzymes, CYP1A5 and CYP1A4, were purified from the livers of TCDD-treated embryos as described previously (9, 11). Rat liver NADPH-cytochrome P450 reductase used for the reconstitution studies was purified as described (9). Recombinant rat liver NADPH-cytochrome P450 reductase used for microsome supplementation was a gift from Drs. C. Fisher and R. Estabrook, University of Texas Southwestern Medical Center, Dallas, TX.

Chick Embryo Hepatocyte Cultures. Cultures were prepared as described previously (14). Microsomes were prepared by centrifuging sonicates of the cells at 10,000g for 10 min, and then the supernatant was centrifuged at 100,000g for 60 min. The pellet was resuspended in 0.25 M sucrose/0.05 M HEPES/1 mM EDTA, pH 7.4 and stored at −60°C. There was no loss of activity for up to 6 months.

Treatment of Animals. Twelve-day-old chickens were treated by intraperitoneal injection with 3-methylcholanthrene (50 mg/kg) in corn oil (20 mg/ml). After 48 hr, chickens were killed by decapitation and liver and kidney microsomes were prepared by differential centrifugation as described (4). Sixteen-day-old chick embryos were treated with increasing doses of TCB in 0.012 ml acetone pipetted through a hole in the shell onto the air sac or were treated with 3-methylcholanthrene (0.5 mg/egg) in dimethyl sulfoxide (0.1 ml) injected into the embryo. After 48 hr, liver microsomes were prepared and stored as previously described (4). Each set of data presented reflect experiments performed at least twice.

Uroporphyrinogen Oxidation (UROX) by Microsomes or Purified P450s. UROX activity was monitored by appearance of uroporphyrin fluorescence at room temperature in a Perkin-Elmer 650–10S spectrophotofluorimeter (excitation wavelength, 400 nm; emission wavelength, 618 nm) with excitation and emission slit widths at 3.5 nm and 20 nm, respectively (2). Uroporphyrin I was used as a standard. The assay mixture contained 0.21 ml of assay buffer (0.25 M sucrose/0.05 M HEPES/1 mM EDTA, pH 7.4), 0.032 ml of a microsomal suspension or reconstitution complex containing 32 pmoles of cytochrome P450, 0.005 ml of a NADPH-generating system (125 mg of sodium isocitrate, 40 mg of nicotinamide, 35 mg of NADPH, 70 mg of MgCl₂, 0.6 H₂O, and 0.2 ml of isocitrate dehydrogenase (10 units) dissolved in 0.75 ml of assay buffer) and TCB at 7–14 μM, in a total volume of 0.25 ml. The reconstitution complex contained in addition to the purified CYP1A5 or CYP1A4, L-dilaurylphosphatidylcholine at 4–16 μmol/ml and NADPH P450-reductase as described (11). The ratio of P450 to reductase was 1:1.5. Rat liver NADPH-cytochrome P450 reductase was used as a standard. The data for reconstituted EROD presented in fig. 2 were determined previously (11) using the same purified P450 preparations used in the present study.

Other Assays. Uroporphyrin in cultured cells was measured spectrofluorometrically (16). Protein concentrations were determined by the method of Lowry et al. (16), using bovine serum albumin as a standard. Cytochrome P450 concentrations were determined by the method of Omura and Sato (17).

Results

Stimulation of UROX Activity in Chick Embryo Liver Microsomes. Fig. 1 shows that treatment of chick embryos with the Ah receptor ligand, 3-methylcholanthrene, increased liver microsomal UROX activity 3-fold as compared with the untreated controls. Inclusion of TCB in the reaction mixtures had no effect on the UROX activity of the control microsomes but stimulated UROX by 8-fold in microsomes from 3-methylcholanthrene-treated chick embryos. The degree of UROX induction and the effects of TCB are similar to results previously reported (2, 6, 7). The mechanism of the enhancement of induced UROX by TCB is not understood (18).

UROX Activity of Purified Chick CYP1A5 and CYP1A4. Fig. 2 compares the ability of the two purified chick enzymes to carry out UROX activity in reconstitution assays. CYP1A5 was eight times more active than CYP1A4 in catalyzing UROX activity. In contrast, the EROD activity of the same preparation of CYP1A5 was less than 5% of the activity of CYP1A4 (11).

Table 1 shows that CYP1A5 was eight times more active than CYP1A4 in catalyzing UROX activity in the presence of TCB and six times more active in the absence of TCB. The addition of TCB increased UROX catalyzed by reconstituted CYP1A5 by 3-fold and by CYP1A4 by 2.6-fold, indicating that the activation of UROX by TCB in microsomes could be a direct effect on the enzyme. Furthermore, the preferential activity of CYP1A5 in UROX activity seemed to be independent of the activation of that reaction by TCB. Ketoconazole, a nonspecific CYP inhibitor, decreased CYP1A5-catalyzed UROX activity by 94% and CYP1A4-catalyzed UROX activity by 89%, supporting the involvement of a cytochrome P450 rather than the reductase in each reaction. Consistent with these findings, UROX activity in the reconstituted system in the absence of added P450 was less than 5% of that in the presence of P450 (data not shown).

Dose Responses for Induction of UROX and EROD in Chick Embryo Liver and Cultured Chick Hepatocytes. Treatment of chick embryos in ovo with TCB produced almost identical dose-dependent increases in hepatic microsomal UROX and EROD (r² = 0.98) (fig. 3A). In other experiments using 3-methylcholanthrene as an inducer, nearly superimposable dose response relationships for UROX and EROD were also found (data not shown).
The dose-response relationships for induction by 3,4,5,3'-9',4',9'-hexachlorobiphenyl, another Ah receptor ligand, in cultures of chick embryo hepatocytes were also examined. Parallel dose-response relationships were found for UROX and EROD induction (Fig. 3B) in the cultured cells, just as in chick embryo liver microsomes. In other experiments using 3-methylcholanthrene or TCB as an inducer, nearly superimposable dose response relationships for UROX and EROD were also found (data not shown).

Effect of Added NADPH Cytochrome P450 Reductase on Microsomal UROX Activity. It was shown previously that in sonicates of cultured hepatocytes the addition of NADPH cytochrome P450 reductase increased CYP1A5 mediated arachidonic acid metabolism 11-fold, but EROD activity only by 20% (19) and that the addition of extra reductase to microsomes increased tamoxifen hydroxylation about 3-fold (12). To exclude the possibility that the results of the dose-response experiments were being affected by limitations in reductase, we examined the effects of added reductase on UROX and EROD activities in liver microsomes of 3-methylcholanthrene-treated chick embryos. Only small effects, an increase of 40% in UROX and a decrease of 20% in EROD, were observed, indicating that UROX activity, unlike some other CYP1A5-mediated activities, was not much affected by extra reductase. In addition, the limitations in reductase activity did not affect the dose-response results.

Induction of UROX and EROD in Chicken Liver and Kidney. Previous studies showed that CYP1A5 and CYP1A4 were both increased in liver and kidney by Ah receptor ligands. The capacity of 3-methylcholanthrene to induce UROX activity in kidney of 12-day old chickens was also examined. Table 2 shows that treatment of chickens with 3-methylcholanthrene increased UROX and EROD in kidney as well as in liver. The activities and the degree of increase were lower in kidney than liver, as previously observed for CYP1A5.

TABLE 1

<table>
<thead>
<tr>
<th>Purified P450</th>
<th>Uroporphyrinogen Oxidation<sup>a</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No addition</td>
<td>TCB<sup>b</sup></td>
</tr>
<tr>
<td>CYP1A5</td>
<td>64</td>
<td>205</td>
</tr>
<tr>
<td>CYP1A4</td>
<td>10</td>
<td>26</td>
</tr>
</tbody>
</table>

^a Uroporphyrinogen oxidation was assayed in duplicate as described in Methods (range of values <10%).

^b TCB concentration was 14 µM and ketoconazole 50 µM.

The dose-response relationships for induction by 3,4,5,3'-4',5'-hexachlorobiphenyl, another Ah receptor ligand, in cultures of chick embryo hepatocytes were also examined. Parallel dose-response relationships were found for UROX and EROD induction (Fig. 3B) in the cultured cells, just as in chick embryo liver microsomes. In other experiments using 3-methylcholanthrene or TCB as an inducer, nearly superimposable dose response relationships for UROX and EROD were also found (data not shown).

Effect of Added NADPH Cytochrome P450 Reductase on Microsomal UROX Activity. It was shown previously that in sonicates of cultured hepatocytes the addition of NADPH cytochrome P450 reductase increased CYP1A5 mediated arachidonic acid metabolism 11-fold, but EROD activity only by 20% (19) and that the addition of extra reductase to microsomes increased tamoxifen hydroxylation about 3-fold (12). To exclude the possibility that the results of the dose-response experiments were being affected by limitations in reductase, we examined the effects of added reductase on UROX and EROD activities in liver microsomes of 3-methylcholanthrene-treated chick embryos. Only small effects, an increase of 40% in UROX and a decrease of 20% in EROD, were observed, indicating that UROX activity, unlike some other CYP1A5-mediated activities, was not much affected by extra reductase. In addition, the limitations in reductase activity did not affect the dose-response results.

Induction of UROX and EROD in Chicken Liver and Kidney. Previous studies showed that CYP1A5 and CYP1A4 were both increased in liver and kidney by Ah receptor ligands. The capacity of 3-methylcholanthrene to induce UROX activity in kidney of 12-day old chickens was also examined. Table 2 shows that treatment of chickens with 3-methylcholanthrene increased UROX and EROD in kidney as well as in liver. The activities and the degree of increase were lower in kidney than liver, as previously observed for CYP1A5.

FIG. 2. Reconstitution of uroporphyrinogen oxidation (UROX) (A) and 7-ethoxyresorufin O-deethylase (EROD) (B) catalyzed by purified chicken CYP1A5 and CYP1A4.

Details of the assays for reconstituted purified CYP enzymes are described in Materials and Methods. For UROX, the reaction mixture contained 7 µM TCB. The values for reconstituted EROD were determined previously (11) using the same purified P450 preparations used in the present study. Values are means and ranges for duplicate determinations.

Fig. 3. Dose responses for effects of planar halogenated biphenyls on induction of UROX and EROD in livers of 15-day-old chick embryos (A) and in hepatocyte cultures (B) prepared from 15-day-old chick embryos.

A. Chick embryo liver microsomes: Increasing doses of 3,4,3'-4'-tetrachlorobiphenyl (TCB) were administered in 0.012 ml acetone on the air sac of each embryo. After 18 hr, liver microsomes were prepared. Each point represents the mean of duplicate assays of pools of 5–6 livers with the range indicated by a vertical bar. Where no bar is indicated the range fell within the symbol. (○) UROX; (△) EROD.

B. Chick hepatocyte cultures: Cultures were prepared in 10-cm dishes as described in Methods. Cultures were treated on the second day of the culture with increasing concentrations of 3,4,5,3'-4',5'-hexachlorobiphenyl (HCB) for 18 hr. Cells from three dishes were pooled for each HCB concentration. The 100,000 g membrane fractions were prepared and assayed for UROX and EROD activities as described in Materials and Methods. UROX activity in untreated cells was 4.6 pmol URO/min/mg protein and this value has been subtracted from the values obtained for the treated cells. (○) UROX; (△) EROD.
and CYP1A4 in chick embryo kidney (11). The ratio of induced EROD:UROX was 21:1 in liver and 8:1 in kidney, indicating that the relative proportions of CYP1A4 and CYP1A5 differ in liver and kidney and that there was relatively more CYP1A5 in kidney than in liver. The low EROD activity in kidney was not a result of limiting reductase since cytochrome c reductase activities of liver and kidney microsomes were comparable (0.14 and 0.11 nmol cytochrome c per micromole P450). Nor was it a result of a lower affinity for the substrate since the Km’s for ethoxyresorufin of liver and kidney microsomes were about the same (0.29 and 0.21 μM, respectively.)

Discussion

Although TCDD induces two CYP1A enzymes in avian as well as in mammalian liver, the amino acid sequences of the chick enzymes do not permit either form to be classified as a 1A1 or a 1A2 ortholog (13). Nevertheless, CYP1A4 seems to exhibit more CYP1A1-like activities based on its selectivity for EROD and AHH while the other form, CYP1A5, seems to behave in some, but not all respects, more like CYP1A2 (11). Thus CYP1A5 shares an immunologic epitope with rat CYP1A2 but not 1A1 (11) and is more active in estradiol 2-hydroxylation than CYP1A43. Here we show that purified CYP1A5 shares another characteristic with CYP1A2 in that it preferentially exhibits the CYP1A2-selective activity, UROX. Notably, the relative UROX activities exhibited by purified CYP1A5 and CYP1A4 shown here, 8:1, were the same as found for mouse CYP1A2 and 1A1 (4). Considering that CYP1A5 and CYP1A4 are present in approximately equal amounts in microsomes from TCDD-treated chick embryos (11), our findings lead to the conclusion that CYP1A5 is the main CYP enzyme responsible for the induced UROX expressed in chick embryo liver microsomes.

CYP1A5 does not appear to be a CYP1A2-like ortholog. Its amino acid sequence is more like CYP1A1 than 1A2 (13), and there are some respects in which CYP1A5 does not behave like CYP1A2. CYP1A5 is isolated in a low spin iron state2 (9) and is insensitive to induction by isosafrole4 (11).

The finding that UROX and EROD were co-induced in the studies with both chick embryo microsomes and cultured cells (fig. 3) further distinguishes the avian CYP1A enzymes from mammalian CYP1A1 and 1A2. The mammalian enzymes exhibit different dose responses to various Ah receptor ligands in vivo (20–22). The coincident dose responses for EROD and UROX found here are in agreement with the findings for TCDD-induction of EROD and AA epoxygenation in liver of chick embryos (11) and suggest that the regulation of the two TCDD-induced chicken CYP1A enzymes differs in some respects from the regulation of mammalian CYP1A1 and 1A2.

Similarly, the finding of induced UROX activity in kidney from 3-methylcholanthrene-induced chickens is not characteristic of mammalian CYP1A2. CYP1A2 is scarcely expressed in rat kidney (2). The expression in chicken kidney of induced UROX is consistent with the observations that CYP1A3-mediated arachidonic acid epoxygenation is expressed in chick embryo kidney as well as liver (11). The expression of CYP1A5 in kidney and the evidence for relative differences in the amounts of CYP1A5 and CYP1A4 in liver and kidney provide further evidence supporting differences in the regulation of mammalian CYP1A1 and 1A2 and avian CYP1A4 and CYP1A5.

Both CYP1A5 and CYP1A4 were shown previously to be expressed and catalytically active in cultured chick embryo hepatocytes using arachidonic acid metabolism for CYP1A5 and EROD activity for CYP1A4 (19). The present results confirm the presence of both TCDD-induced enzymes in primary chick hepatocyte cultures, using EROD as an index of CYP1A4 and UROX as an index of CYP1A5. The results indicate that uroporphyrin accumulation in these cultures after treatment with Ah receptor ligands (15) was due to the ability of CYP1A5 to catalyze UROX and not to a single form of 3-methylcholanthrene-induced P450 which catalyzed both EROD and UROX, as was thought previously (2). The fact that chick embryo liver cultures express both avian CYP1A enzymes underscores the utility of the chick embryo culture system to study reactions involving both forms of P450 as well as the regulation of both forms. In contrast, primary rat hepatocytes, unlike chick embryo hepatocytes, do not accumulate uroporphyrin when treated with CYP1A inducers (7) because in the rat cultures CYP1A2 protein is not expressed (23). Mouse hepatocyte cultures accumulate uroporphyrin, but only after several days of exposure to CYP1A inducers, coincident with increases in CYP1A2 (24, 25). TCB-induced accumulation is also found in a fish hepatoma line (26), indicating that those cells express a P450 form other than CYP1A2.

In summary, chicken CYP1A5 preferentially catalyzes UROX, an activity which has been previously shown to be a CYP1A2 activity in mammals. Thus, even though there are structural differences among mammalian and avian CYP1A enzymes, there is some conservation of the division of catalytic activities across different vertebrate classes. The challenge is to understand the basis for the division of function among CYP1A enzymes, and in particular, the selective relegation of UROX activity, an apparently toxic response, to one of two CYP1A enzymes.

The authors wish to thank Judith Jacobs for critical comments.

References

Table 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tissue</th>
<th>Cytochrome P450</th>
<th>UROX</th>
<th>EROD</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Liver</td>
<td>0.16 ± 0</td>
<td>4 ± 0.3</td>
<td>20 ± 0</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>0.15 ± 0</td>
<td><1.5</td>
<td>0</td>
</tr>
<tr>
<td>3-MC</td>
<td>Liver</td>
<td>0.69 ± 0.03</td>
<td>192 ± 8</td>
<td>4080 ± 100</td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>0.22 ± 0</td>
<td>25 ± 2</td>
<td>195 ± 15</td>
</tr>
</tbody>
</table>

* 12-day-old chickens were treated with 3-methylcholanthrene (MC) and microsomes prepared as described in Methods. Uroporphyrinogen oxidation was determined in the presence of 7 μM TCB. Values represent means and ranges of duplicate determinations.

12. D. Kupper, C. Mani, C. A. Lee, and A. B. Rifkind: Induction of tamoxifen-4-hydroxylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), β-naphthoflavone (βNF), and phenobarbital (PB) in avian liver: identification of P450TCDDα as catalyst of 4-hydroxylation induced by TCDD and βNF. *Cancer Res.* **54**, 3140–3144 (1994).

