GLUCURONIDATION OF RETINOIDS BY RAT RECOMBINANT UDP-GLUCURONOSYLTRANSFERASE 1.1 (BILIRUBIN UGT)

ANNA RADOMINSKA, JOANNA M. LITTLE, PAUL A. LEHMAN, VICTOR SAMOKYSZYN, GLADYS R. RIOS, CHRISTOPHER D. KING, MITCHELL D. GREEN, AND THOMAS R. TEPHYL

Division of Gastroenterology, Departments of Medicine (A.R., J.M.L.), Dermatology (P.A.L.), and Toxicology (V.S.), University of Arkansas for Medical Sciences; and Department of Pharmacology (G.R.R., C.D.K., M.D.G., T.R.T.), University of Iowa

(Received January 16, 1997; accepted March 26, 1997)

ABSTRACT:
Rat liver recombinant BR^UGT1.1 was found to have significant activity toward retinoid substrates. UGT1.1 glucuronidation activity was 91 ± 18 pmol/mg × min for atRA and 113 ± 19 pmol/mg × min for 5,6-epoxy-atRA. The apparent Km and Vmax of atRA glucuronide by UGT1.1 were 59.1 ± 5.4 µM and 158 ± 43 pmol/mg × min, respectively. SDS-PAGE and Western blot analysis of UGT1.1-transfected HK293 membrane proteins photolabeled with [11,12-3H]atRA revealed a protein of ~56 kDa that was labeled by [3H]atRA, detected by anti-pNP UGT antibody and not present in membranes from nontransfected HK293 cells. Liver microsomes from Gunn rats, which lack UGT1.1, had significant activity toward atRA (111 ± 28 pmol/mg × min).

The retinoids are physiologically and pharmacologically important substrates for glucuronidation. Physiologically, retinoids are active in maintenance of such functions as vision, reproduction, and differentiation (1), whereas pharmacologically they are used for treatment of acne (2, 3) and are under study for use in cancer chemotherapy and chemoprevention (4–6). Retinoid glucuronides have been identified as products of in vivo retinoid metabolism in several species (7–11), but the precise physiological significance of this mechanism has not yet been established. Its major role may be to reduce toxicity and teratogenicity (12), to produce a bioactive metabolite (13), to facilitate retinoid transport and presentation to target tissues, and/or to modulate retinoid concentrations. Whatever its role, data available on the enzymology of the retinoid conjugation process or identification of the UGT(s) catalyzing the reaction are limited. The carboxyl function of atRA has been shown to be effectively glucuronidated in vitro by rat liver microsomes (14–17), and the in vitro biosynthesis of the β-glucuronide of retinol has also been demonstrated (14), but the specific UGT isoenzymes have yet to be identified. The availability of rat and human recombinant UGTs has allowed the screening of different isoforms for their ability to glucuronidate retinoids. In the present study, we identify recombinant UGT1.1 from rats and humans as one isoform involved in the glucuronidation of atRA and 5,6-epoxy-atRA. Enzymatic assays, photoaffinity labeling, and immunoprecipitation studies reveal that, although the contribution of rat UGT1.1 is significant, other, as yet unidentified, isoforms also catalyze the glucuronidation of these substrates.

This work was supported in part by Grants DK45123 and DK49715 (to A.R.), GM26221 (to T.R.T.), and ES06765 (V.S.) from the National Institutes of Health.

Send reprint requests to: Dr. Anna Radominska, Division of Gastroenterology, University of Arkansas for Medical Science, 4301 West Markham, Slot 567, Little Rock, AR 72205.
Results

Enzymatic Glucuronidation. Three rat and three human recombinant UGTs (rat UGT1.1, 2B1, and 2B12; human UGT1.1, 1.4, and 2B15) were assayed for atRA glucuronide activity. Of the six UGTs, only rat and human UGT1.1 had measurable activity toward atRA. Because activity of the human enzyme was very low (<5 pmol/mg × min), rat UGT1.1 was used to characterize retinoid glucuronidation by this isoenzyme.

Figure 1 is an autoradiogram of a TLC plate from a representative assay of atRA glucuronidation by SD microsomes and membrane fractions from UGT1.1 transfected and untransfected (control) HK293 cells. This figure shows that [3H]atRA glucuronidation was completely separated from unreacted [3H]atRA, the reaction was dependent on the presence of UDP-GlcUA, and control HK293 cells did not glucuronidate atRA. Alamethicin, although a very effective activator of microsomal atRA glucuronidation activity, had no effect on the activity in UGT1.1 membrane fractions.

The substrate specificity of rat UGT1.1 glucuronidation is summarized in table 1. UGT1.1 glucuronidated BR rates comparable with published values (23). Both atRA and 5,6-epoxy-atRA were glucuronidated at similar rates by UGT1.1. Expressed UGT1.1 had no detectable activity toward retinol or the bile acids, lithocholic acid, hydoxycholic acid, ethanic acid, or iso-ethanic acid, all of which can be metabolized to acyl (carboxylic) glucuronides. There was no detectable enzymatic glucuronidation activity toward any of the substrates in nontransfected HK293 cells. Kinetic analysis gave an apparent K_M of 59 ± 5.4 μM and an apparent V_{max} of 158 ± 43 pmol/mg × min for atRA glucuronidation by rat UGT1.1.

Rates of glucuronidation of BR, atRA, and 5,6-epoxy-atRA by liver microsomes from the Gunn rat, a mutant of the Wistar strain of rat deficient in UGT1.1, are compared in table 2 with rates from control Wistar and SD RLM. In contrast to both Wistar and SD RLMs, there was no evidence of BR glucuronidation by either intact or detergent-treated Gunn RLMs. On the other hand, untreated Gunn RLMs had measurable (35 pmol/mg × min) atRA glucuronidation activity that was significantly increased after activation with alamethicin (111 pmol/mg × min; table 2). Glucuronidation of 5,6-epoxy-atRA by Gunn RLMs was undetectable in the absence of alamethicin, and glucuronidation rates were still quite low and variable after activation by alamethicin (table 2). The activated activity in Gunn RLMs toward atRA was less than one-fourth and toward 5,6-epoxy-atRA was less than one-tenth of the rates seen in control Wistar RLMs.

As described by Jansen (27). Labeled metabolites were localized by color and autoradiography as previously described.

Photoaffinity Labeling. Photolabeling with [11,12-3H]atRA was done using the method of Bernstein et al. (28), modified as follows. [3H]atRA (30–50 μM in ethanol) was added (final concentration of 1.5–2 μM; 2.0 μCi) to rat liver microsomal or UGT1.1 membrane protein (100 μg) in 100 mM HEPES (pH 7.0) containing 5 mM MgCl₂ and 60 μg alamethicin/mg protein in a total volume of 25 μl. The reaction was incubated on ice for 10 min, followed by irradiation with a hand-held long-wave UV lamp (366 nm, UVP-21; Ultraviolet Products, Inc., San Gabriel, CA) for 15 min on ice. All experiments involving RA were conducted under yellow light. Reactions were stopped with 10% trichloroacetic acid (150 μl) and processed for SDS-PAGE on 10% gels as previously described (29). Gels were treated with Autofluor autoradiography enhancer (National Diagnostics, Atlanta, GA) according to the manufacturer’s directions before drying. Labeled protein bands were detected by densitometry with a BioRad Imaging Densitometer. For Western blot analysis (30), proteins were electroblotted from gels to nitrocellulose that was then probed with a rat anti-pNP-UGT antibody.

![Image](https://www.aspetjournals.org/doi/10.1093/dmd/315.5.890)

Figure 1. Glucuronidation of [3H]atRA by RLMs and membrane fractions from HK293 cells expressing rat UGT1.1 and untransfected (control) HK293 cells.

The autoradiogram shown is of a TLC plate from a representative enzymatic assay. (Lanes 1–4) SD RLMs. (Lanes 5–8) UGT1.1 membranes. (Lanes 9–12) Control membranes. Samples are as follows—controls without UDP-GlcUA: lanes 1, 5, and 9; unactivated samples: lanes 2, 6, and 10; and samples activated with 60 and 120 μg alamethicin/mg protein: lanes 3 and 4, 7 and 8, and 11 and 12.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Enzymatic Activity (pmol/mg × min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>210 ± 6</td>
</tr>
<tr>
<td>atRA</td>
<td>91 ± 18</td>
</tr>
<tr>
<td>5,6-Epoxo-atRA</td>
<td>113 ± 19</td>
</tr>
<tr>
<td>Retinol</td>
<td>ND*</td>
</tr>
<tr>
<td>Lithocholic acid</td>
<td>ND</td>
</tr>
<tr>
<td>(3α-hydroxy-5β-cholanoic acid)</td>
<td>ND</td>
</tr>
<tr>
<td>Hydoxycholic acid</td>
<td>ND</td>
</tr>
<tr>
<td>(3α,6α-dihydroxy-5β-cholanoic acid)</td>
<td>ND</td>
</tr>
<tr>
<td>Ethanic acid</td>
<td>ND</td>
</tr>
<tr>
<td>(3α-hydroxy-5β-androstan-17β-carboxylic acid)</td>
<td>ND</td>
</tr>
<tr>
<td>Iso-ethanic acid</td>
<td>ND</td>
</tr>
<tr>
<td>(5β-hydroxy-5β-androstan-17β-carboxylic acid)</td>
<td>ND</td>
</tr>
</tbody>
</table>

* ND, not detectable.
into microsomal or membrane proteins was significantly UV-dependent (compare lanes 1 and 2, and lanes 4 and 5) and unaffected by pretreatment of the proteins with alamethicin (compare lanes 2, 5, and 6).

Immunoblot Analysis. Figure 2B is a Western blot of SDS-PAGE-separated protein from samples identical to those in fig. 2A. Probing with an anti-pNP UGT antibody revealed an immunoreactive protein of ~56 kDa in membrane proteins from cells expressing UGT1.1 (fig. 2B, lanes 4–6) and in RLMs (fig. 2B, lanes 1–3), but not in control HK293 cells (fig. 2B, lanes 7–9). The immunoreactive UGT proteins corresponded with the 56 kDa [3H]atRA-labeled proteins in UGT1.1 membranes (fig. 2A, lanes 5 and 6) and in RLMs (fig. 2A, lanes 2 and 3).

Discussion

This study is a systematic effort to identify UGT isoforms active in retinoid glucuronidation and reports that the recombinant rat liver BR-specific UGT, UGT1.1, catalyzes the biosynthesis of acyl glucurononides of atRA and 5,6-epoxy-atRA. Progress in recombinant DNA technology has led to expression of cloned UGT isoenzymes in various tissue culture cell lines, providing the opportunity to study the substrate specificity of isoenzymes in the absence of other interfering UGT activities. Human and rat BR-specific UGT1.1 have been cloned and expressed, and their activity toward BR has been defined (23, 31, 32). The identification of UGT1.1 as one isoform involved in the glucuronidation of retinoids came from screening a series of available recombinant UGTs. Previous work has shown that several rat liver UGTs from the 2B (steroid) family (UGT2B1, 2B2, 2B3, and 2B6), expressed in COS 7 cells, did not accept RA as a substrate (33). In this study, we found that rat liver 2B1 and 2B12 and human liver 2B15, expressed in HK293 cells, did not demonstrate retinoid glucuronidating activity (data not shown). However, screening of isoforms from the phenol/BR family 1 revealed that both rat and human UGT1.1 are involved in the glucuronidation of retinoids. Recombinant UGT1A4, previously designated as the minor BR isoform, was not active. We selected the rat recombinant UGT1.1 for detailed characterization of retinoid glucuronidation. The glucuronidation of BR, compared with the two RA substrates, indicated that the retinoids are glucuronidated at approximately one-half of the activity found toward BR. Bile acids, endogenous UGT substrates with a carboxylic acid group, were not glucuronidated by UGT1.1, nor was retinol. Kinetic analysis of retinoid glucuronidation catalyzed by UGT1.1 showed that the K_m value observed for atRA ($\approx 50 \mu M$) is in the same range as that of BR. TLC analysis of the products of enzymatic glucuronidation (fig. 1) indicated that one major polar metabolite of atRA was produced that cochromatographed with the product of microsomal glucuronidation.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Enzymatic Activity (pmol/mg × min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Westar RLMs</td>
</tr>
<tr>
<td>BR<sup>a</sup></td>
<td>2600</td>
</tr>
<tr>
<td>atRA<sup>b</sup></td>
<td>524</td>
</tr>
<tr>
<td>5,6-epoxy-atRA<sup>b</sup></td>
<td>958</td>
</tr>
</tbody>
</table>

^a Protein activated with 0.05% Brij 58.
^b Protein activated with 60 μg alamethicin/mg protein.

Autoradiogram from SDS-PAGE separation of proteins photolabeled with [3H]atRA. (A) Western blot analysis of the same proteins using anti-pNP-UGT IgG. In both (A) and (B), lanes 1, 4, and 7 are controls without UV irradiation; lanes 2, 5, and 8 are samples with UV irradiation, but without alamethicin; and lanes 3, 6, and 9 are samples with UV irradiation and 60 μg alamethicin/mg protein. Arrows indicate position of 56 kDa protein.
of arA previously identified by HPLC as a carboxyl-linked glucuroni-

dation by rat liver microsomes and cDNA-expressed UDP-

ferase activity by alamethicin.

retinoic acid: activation of rat liver microsomal UDP-glucuronosyltran-

References

7. P. E. Dunagin, E. H. Meadows, Jr., and J. A. Olson: Retinol beta-glucuronic:

9. C. A. Frolik, B. N. Swanson, L. L. Dart, and M. B. Sporn: Metabolism of 13-cis-retinoic acid: identification of 13-cis-retinoyl- and 13-cis-4-oxo-

17. J. M. Little, P. A. Lehan, S. Nowell, V. Samokyszyn, and A. Radominska: Glucuronidation of all-trans-retinoic acid and 5,6-epoxy-all-trans-retinoic acid: activation of rat liver microsomal UDP-glucuronosyltran-

19. J. M. Little, J. S. Pyrek, and R. Lester: Hepatic metabolism of 3α-hy-

23. B. L. Coffman, M. D. Green, C. D. King, and T. R. Tephly: Cloning and stable expression of a cDNA encoding a rat liver UDP-glucuronosyltransferase (UDP-glucuronosyltransferase 1.1) that catalyzes the glucuroni-

26. K. P. M. Heirwegh, M. Van de Vijver, and J. Feyver: Assay and properties of digitonin-activated bilirubin uridine diphosphate glucuronosyltrans-

27. P. L. M. Jansen: The enzyme-catalyzed formation of bilirubin diglu-
curonide by a solubilized preparation from cat liver microsomes. Biochin.

31. S. B. Senafii, D. J. Clarke, and B. Burchell: Investigation of the substrate specificity of a cloned expressed human bilirubin UDP-glucuronosyltran-

32. C. D. King, M. D. Green, G. R. Rios, B. L. Coffman, J. S. Owens, W. P. Bishop, and T. R. Tephly: The glucuronidation of exogenous com-
pounds by stably expressed rat and human UDP-glucuronosyltrans-

33. A. Radominska, J. M. Lilien, B. Lester, and P. J. Mackenzie: Bile acid glucuronidation by rat liver microsomes and cDNA-expressed UDP-