IN VIVO METABOLISM AND DISPOSITION OF THE NEPHROTOXICANT N-(3,5-DICHLOROPHENYL)SUCCINIMIDE IN FISCHER 344 RATS

ROBERT J. GRIFFIN AND PETER J. HARVISON
Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy and Science

(Received December 31, 1997; accepted May 18, 1998)

This paper is available online at http://www.dmd.org

ABSTRACT:
N-(3,5-Dichlorophenyl)succinimide (NDPS) was originally developed as an agricultural fungicide. Previous work indicated that NDPS-induced renal damage in rats is metabolism-dependent and that hydroxylated metabolites might be involved in the nephrotoxic response. In this study, the disposition and nephrotoxicity of [14C]NDPS at two time points (3 and 24 hr) and three doses (0.2, 0.4, and 0.6 mmol/kg) were examined in male Fischer 344 rats. At 3 hr, only approximately 6.0% of the administered dose (0.6 mmol/kg) had been excreted. Elimination was nearly complete by 24 hr, except at the highest dose. Urinary elimination far exceeded fecal elimination at all doses. The urinary metabolites were identified as N-(3,5-dichlorophenyl)succinimide, N-(3,5-dichlorophenyl)-2-hydroxy succinamic acid, and N-(3,5-dichlorophenyl)malonamic acid. N-(3,5-Dichlorophenyl)-3-hydroxy succinamic acid had not been previously detected in vivo. The same metabolites were also detected in the feces, blood, liver, and kidneys of rats. In addition, two novel in vivo NDPS metabolites were detected in liver and kidney homogenates. These metabolites were tentatively identified as N-(3,5-dichlorophenyl)-2-hydroxysuccinimide and N-(3,5-dichloro-4-hydroxyphenyl)succinamic acid. Dose-dependent increases in blood urea nitrogen levels, diuresis, proteinuria, glucosuria, and covalent protein adducts correlated with increases in oxidative metabolism. Rapid NDPS metabolism could help explain the early onset of nephrotoxicity. These studies provide additional evidence for the importance of oxidative metabolism in NDPS-induced kidney damage.

NDPS (fig. 1) was initially developed as an agricultural fungicide (Fujinami et al., 1972). In spite of promising activity, subsequent testing revealed that NDPS was a nephrotoxicant in rats after either acute or chronic administration (Sugihara et al., 1975; Rankin, 1982; Barrett et al., 1983). After acute exposure, NDPS produces renal proximal tubular necrosis that is characterized by increased BUN levels, elevated kidney weights, diuresis, proteinuria, glucosuria, and decreased uptake of organic ions by renal cortical slices (Rankin, 1982). The onset of toxicity is rapid, and renal functional changes can be observed within 3 hr after administration of NDPS (Rankin et al., 1984). Although concerns regarding its toxicity have precluded the use of NDPS as an agricultural chemical, it was proposed as a useful model nephrotoxicant (Sugihara et al., 1975). Therefore, a careful study of its in vivo disposition could contribute to our understanding of chemically induced nephrotoxicity.

The mechanism of NDPS-mediated nephrotoxicity remains unknown; however, hepatic biotransformation is required to produce kidney damage (Rankin et al., 1986, 1987, 1988; Nyarko and Harvison, 1995). After oral dosing, NDPS (0.4 mmol/kg) was converted to multiple urinary metabolites in rats (Ohkawa et al., 1974). Less than 1% of the excreted radioactivity was present in urine as the parent compound. Five metabolites were separated by TLC, but approximately 20% of the total urinary radioactivity remained at the origin of the TLC plates. Using GC/MS, three of the resolved urinary metabolites were identified as NDPSA, DMA, and 2-NDHSA. The remaining two urinary metabolites, comprising approximately 34% of the resolved radioactivity, could not be fully characterized. Blood, tissues, and feces were not evaluated for the presence of NDPS metabolites. Thus, the in vivo metabolic profile of NDPS has not been fully elucidated. Furthermore, nothing is known about NDPS metabolism at early time points or with different doses.

The studies described in this report were therefore designed to reevaluate NDPS metabolism in vivo. [14C]NDPS was administered to male Fischer 344 rats at three different doses, i.e., 0.2 mmol/kg (nontoxic dose), 0.4 mmol/kg (threshold toxic dose), and 0.6 mmol/kg (toxic dose). The metabolic profile in urine, feces, blood, and several organ homogenates was determined by HPLC. Nephrotoxicity was assessed by measuring BUN levels, urine volume, and urine contents. Covalent binding of NDPS-derived radiolabel to liver and kidney proteins was also measured. NDPS was rapidly metabolized, which could help explain the early onset of nephrotoxicity. Furthermore, we found that kidney damage was correlated with a shift toward increased oxidative metabolism at higher doses of NDPS.

Materials and Methods

Materials and Animals. NDPS, [14C]NDPS (specific activity, 0.65 mCi/ mmol; radiochemical purity, 99%), and NDPS metabolites were synthesized and purified as previously described (Fujinami et al., 1972; Shih and Rankin, 1974; Shih and Rankin, 1975; Rankin, 1975; Nyarko et al., 1997). After oral dosing, NDPS (0.4 mmol/kg) was converted to multiple urinary metabolites in rats (Ohkawa et al., 1974). Less than 1% of the excreted radioactivity was present in urine as the parent compound. Five metabolites were separated by TLC, but approximately 20% of the total urinary radioactivity remained at the origin of the TLC plates. Using GC/MS, three of the resolved urinary metabolites were identified as NDPSA, DMA, and 2-NDHSA. The remaining two urinary metabolites, comprising approximately 34% of the resolved radioactivity, could not be fully characterized. Blood, tissues, and feces were not evaluated for the presence of NDPS metabolites. Thus, the in vivo metabolic profile of NDPS has not been fully elucidated. Furthermore, nothing is known about NDPS metabolism at early time points or with different doses.

The studies described in this report were therefore designed to reevaluate NDPS metabolism in vivo. [14C]NDPS was administered to male Fischer 344 rats at three different doses, i.e., 0.2 mmol/kg (nontoxic dose), 0.4 mmol/kg (threshold toxic dose), and 0.6 mmol/kg (toxic dose). The metabolic profile in urine, feces, blood, and several organ homogenates was determined by HPLC. Nephrotoxicity was assessed by measuring BUN levels, urine volume, and urine contents. Covalent binding of NDPS-derived radiolabel to liver and kidney proteins was also measured. NDPS was rapidly metabolized, which could help explain the early onset of nephrotoxicity. Furthermore, we found that kidney damage was correlated with a shift toward increased oxidative metabolism at higher doses of NDPS.

Equipment. HPLC analyses were conducted using a Beckman system with a model 421 controller, two model 114M pumps, and a model 165 variable-wavelength detector set at 254 nm. The detector sensitivity was set at 0.1 absorbance units full scale. Chromatograms were printed on a Hewlett Packard model HP 3396A integrator. Fractions were collected with an ISCO Retriever III fraction collector. \(^1\)H NMR analyses were conducted with a General Electric (Fremont, CA) GN-500 NMR spectrometer. Chemical shifts are reported in ppm downfield from tetramethylsilane.

Animal Treatments. Male Fischer 344 rats were randomly assigned to treatment groups (three or four rats/group). The rats were administered \(^{14}\)C]NDPS (approximately 10 \(\mu\)Ci, ip, in corn oil) at 0.2, 0.4, or 0.6 mmol/kg. Control animals received corn oil only (3 ml/kg). After administration of NDPS, the rats were immediately placed in plastic metabolism cages. The animals were kept in the cages for 3 hr (0.6 mmol/kg only) or for 24 hr (0.2, 0.4, and 0.6 mmol/kg), during which time they were fasted but were allowed free access to water. During this period, urine and feces were collected. A final blood sample was collected by cardiac puncture under methoxyflurane anesthesia, and the animals were then sacrificed by cervical dislocation while still anesthetized. To determine tissue distribution and metabolite content, aliquots of the tissue homogenates were precipitated with 3 volumes of ice-cold acetonitrile and centrifuged at 2000 rpm for 20 min. The supernatant was then removed and stored in the freezer until HPLC analysis. Before and after protein precipitation, 25.0 \(\mu\)l of each sample was counted to determine the recovery of radioactivity (90% in blood, 100% in urine, and 80–100% in the tissues). Samples with low activity were concentrated under a flow of \(N_2\) at room temperature before analysis. Aliquots of the liver and kidney homogenates (24-hr time point only) were frozen for subsequent determination of covalent binding to proteins (see below).

HPLC Analysis. All samples (see above) were analyzed by the HPLC assay described previously (Griffin et al., 1996). The mobile phase (flow rate, 1.7 ml/min) consisted of a gradient between acetonitrile containing 3% tetrahydrofuran as a modifier.
significant was used for all statistical tests. If significance was obtained in the analysis of variance, differences among the individual groups contributed approximately 75% of the total radioactivity in blood.

Nephrotoxicity Studies. Nephrotoxicity in the rats was assessed 24 hr after dosing. A blood sample was obtained by cardiac puncture, under methoxyflurane anesthesia, immediately before sacrifice. BUN values were assessed spectrophotometrically (kit 640-A; Sigma). The total volume of urine excreted over 24 hr was measured. Urinary protein content was measured by the method of Pesce and Strande (1973). The concentration of glucose in the urine was measured using a commercially available kit (kit 510-A; Sigma).

Protein Binding. After thawing, 2.0-ml aliquots of the 24-hr liver and kidney homogenates (see above) were added to 6.0 ml of cold acetonitrile, the resulting suspension was centrifuged at 2000 rpm for 20 min, and the supernatant was discarded. Protein binding was determined using a variation of the method used by Newton et al. (1983a). Briefly, the pellet was thoroughly broken up, washed in a series of solvents, and repelleted after each wash. In order, the solvents were 80% aqueous methanol (three washes), 0.4 M trichloroacetic acid, 3:1 ethanol/ethyl ether (two washes), and 80% aqueous methanol (two washes). The series of solvent washes and centrifugations was repeated until the activity of 1.0 ml of the supernatant was twice the background level (i.e. <60 dpm). The pellet was then digested in 250 μl of 1.0 N NaOH, and a 150-μl aliquot of the solution was counted. Protein concentrations were measured by the method of Lowry et al. (1951).

Metabolite Isolation and Identification. To isolate and identify the urinary metabolites, a single male Fischer 344 rat was dosed with NDPS (0.8 mmol/kg) and placed in a metabolism cage, and urine was collected for 48 hr. This dosage and time point were chosen to maximize recovery of the metabolites. The urine sample was centrifuged for 15 min at 500 rpm, diluted with methanol (1:1, v/v), vortex-mixed, and recentrifuged. Methanol was removed using a SpeedVac apparatus (Savant Instruments, Farmingdale, NY), and the remaining liquid was passed through a C18 Sep-Pak cartridge (Waters). NDPS metabolites were separated on a Rainin Microsorb C18 column, using a mobile phase (flow rate, 1.2 ml/min) consisting of water containing 1% trifluoroacetic acid (solvent A) and acetonitrile (solvent B). The following linear gradient program was used: starting conditions, 90% solvent A/10% solvent B; 0–15 min, 25% solvent A/75% solvent B; 15–17 min, 0% solvent A/100% solvent B; 17–20 min, 90% solvent A/10% solvent B. Peaks were collected, and the mobile phase was removed using the SpeedVac concentrator. 1H NMR (500 MHz) analyses were performed with a General Electric (Fremont, CA) GN-500 spectrometer, in acetone-d6.

Statistics. The data were analyzed by the Student t test, one-way analysis of variance, or the corresponding nonparametric tests. If significance was obtained in the analysis of variance, differences among the individual groups were determined by using the Student-Newman-Keuls test. A 5% level of significance was used for all statistical tests.

Results

Three known NDPS metabolites (NDPSA, 2-NDHSA, and DMA) and a previously unreported in vivo metabolite (3-NDHSA) were present in the 3-hr urine sample from a rat that had received 0.6 mmol/kg [14C]NDPS (fig. 2). NDPS was not detected in urine. At this early time point, the total recovered urinary activity was 5.7 ± 1.8% of the administered dose. Collectively, the nephrotoxic metabolites 2-NDHSA and 3-NDHSA (Rankin et al., 1988, 1989) accounted for a significantly greater amount (58.7 ± 0.8%) of the urinary radioactivity than did NDPSA (34.9 ± 1.1%) (fig. 3). A small amount of radioactivity (approximately 4%) (fig. 3, Unk) eluted in the solvent front (2–6 min) and did not correspond to any distinct peaks on the UV chromatograms. To hydrolyze possible glucuronide conjugates, the urine samples were treated overnight with β-glucuronidase. However, there were no significant differences in the HPLC chromatograms (results not shown) or profiles of urinary metabolites before and after β-glucuronidase treatment (fig. 3).

Male Fischer 344 rats were administered [14C]NDPS (approximately 10 μCi, 0.6 mmol/kg, ip in corn oil). Urine was collected for 3 hr and analyzed for the presence of metabolites by HPLC, as described in Materials and Methods. Separation was achieved with a Beckman C18 column, using a gradient of acetonitrile and water. Peaks were detected by UV absorbance at 254 nm. The column effluent was collected at 1-min intervals, and metabolites were quantitated by liquid scillation counting. The absorbance scale was 0.1 absorbance units full scale.

Male Fischer 344 rats were administered [14C]NDPS as described in Materials and Methods. Unk, an unknown metabolite that eluted in the solvent front (2–6 min). ■, control urine; □, urine incubated with β-glucuronidase overnight at 37°C. Results are expressed as ± SE (N = 4).

![Typical HPLC chromatogram of rat urine after administration of [14C]NDPS.](image)

![Urinary metabolic profile of [14C]NDPS.](image)
Male Fischer 344 rats were administered $^{[14]C}$NDPS (approximately 10 μCi, 0.6 mmol/kg, ip in corn oil) and were sacrificed 3 hr later. The tissues were removed and homogenized. Radioactivity in aliquots of the homogenized tissues was determined by liquid scintillation counting. Values represent means ± SE (N = 3 or 4 rats).

Values that are significantly different (p < 0.05) from the corresponding results obtained at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results in the liver.

Values that are significantly different (p < 0.05) from the corresponding results in the liver.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.
difference in binding between liver and kidney at any of the doses (fig. 5). Protein binding was dose-related in both tissues, with binding at the highest dose being significantly elevated, compared with that at the lowest dose.

1H NMR (500 MHz) spectra for the synthetic standards and known urinary metabolites were very similar (results not shown). Peak assignments for synthetic 3-NDHSA were as follows (values represent chemical shifts, in ppm downfield from tetramethylsilane): 2.8 (dd, 2H, CH$_2$), 4.58 (m, 1H, CH), 7.1 (s, 1H, Ar-H$_4$), and 7.9 (s, 2H, Ar-H$_2$,6). The following peaks were identified in the NMR spectrum of 3-NDHSA isolated from rat urine: 4.55 (m, 1H, CH), 7.1 (s, 1H, Ar-H$_4$), and 7.7 (s, 2H, Ar-H$_2$,6). The methylene resonance in the isolated 3-NDHSA sample was obscured by a residual water peak. Compared with controls and the two lower doses of NDPS, BUN levels were significantly elevated 24 hr after administration of 0.6 mmol/kg NDPS (table 4). Urine protein contents were also increased in a dose-dependent manner. NDPS (0.6 mmol/kg) produced marked diuresis in the rats. Kidney weights were significantly elevated at the highest dose of NDPS (table 4). Urine protein contents were also increased 24 hr after administration of 0.6 mmol/kg NDPS (table 4). Urine protein contents were also increased in a dose-dependent manner. NDPS (0.6 mmol/kg) produced marked diuresis in the rats. Kidney weights were significantly elevated at the highest dose of NDPS (table 4). Urine protein contents were also increased 24 hr after administration of 0.6 mmol/kg NDPS (table 4). Urine protein contents were also increased in a dose-dependent manner. NDPS (0.6 mmol/kg) produced marked diuresis in the rats. Kidney weights were significantly elevated at the highest dose of NDPS (table 4).

Discussion

NDPS was previously shown to be extensively metabolized when administered orally to rats; however, a substantial proportion (approximately 34%) of the urinary metabolites could not be identified (Ohkawa et al., 1974). Because NDPS must undergo initial cytochrome P450-mediated biotransformation in the succinimide ring to exhibit nephrotoxicity (Rankin et al., 1986, 1987, 1988; Nyarko et al., 1997), it is important to more fully characterize the metabolic fate of this compound in vivo. Furthermore, kidney damage can be observed within 3 hr after dosing (Rankin et al., 1984), although nothing is known about the metabolism of NDPS at early time points. In addition, NDPS nephrotoxicity exhibits a steep dose-response relationship (Rankin et al., 1985), whereas in vivo biotransformation of this compound has been evaluated only at a single dose (0.4 mmol/kg) (Ohkawa et al., 1974). Therefore, the purpose of the experiments described in this report was to evaluate NDPS metabolism at an early time point and at several different doses.

Although only a small fraction (approximately 6%) of the dose was excreted 3 hr after administration of a nephrotoxic dose of [14C]NDPS (0.6 mmol/kg), we were able to detect several metabolites in rat urine (fig. 2). In addition to the known in vivo metabolites NDPSA, 2-NDHSA, and DMA (Ohkawa et al., 1974), we found 3-NDHSA (a structural isomer of 2-NDHSA) (fig. 1) in the urine samples. Together, these four metabolites accounted for approximately 96% of the urinary radioactivity. 3-NDHSA was previously detected only in vitro (Nyarko and Harvison, 1995; Griffin et al., 1996; Nyarko et al., 1997); but it was probably one of the metabolites that was not fully characterized by Ohkawa et al. (1974). Assignment of this metabolite as 3-NDHSA was confirmed by NMR. The remaining radioactivity (approximately 4%) eluted from the HPLC column in the solvent front and was not clearly visible as a peak in the UV chromatograms. We are uncertain regarding the composition of this peak, although it may contain polar metabolites such as succinic acid or malic acid (Ohkawa et al., 1974; Nyarko and Harvison, 1995; Griffin et al., 1996). Overall, these results are important because they confirm that nephrotoxic metabolites, such as 2-NDHSA and 3-NDHSA (Rankin et al., 1988, 1989), can be generated from NDPS at an early time point, when toxicity initially occurs (Rankin et al., 1984). Thus, rapid NDPS biotransformation correlates with the early onset of renal damage.

Treatment of urine samples with β-glucuronidase had no effect on the urinary metabolic profile of NDPS (fig. 3), which suggests that glucuronide conjugates are not produced from this compound. These results are consistent with those of Ohkawa et al. (1974) and our previous in vitro experiments (Nyarko and Harvison, 1995). However, we cannot exclude the possibility that labile glucuronide conjugates may be produced from NDPS or one of its metabolites. For example, acyl glucuronides, which could be formed from any of the acidic NDPS metabolites, are prone to degradation and isomerization (Faed, 1984; Spahn-Langguth and Benet, 1992). Furthermore, Rankin et al. (1995, 1996, 1997) obtained indirect evidence that glucuronide or sulfate conjugates of NDHS or 2-NDHSA may contribute to the
nephrotoxic effects of NDPS. The formation of putative conjugative metabolites from NDPS and their potential roles in the toxicity of this compound require further study.

NDPS-derived radioactivity levels were highest in the kidneys and liver, which suggests that these organs may be important sites for distribution and metabolism at 3 hr (table 1). Furthermore, distribution into the kidneys (in nanomoles per gram) was greater than that into the other organs. This implies that the kidneys are able to accumulate NDPS or its metabolites, which could be an important factor in the selective nephrotoxicity of this compound. The results also suggest that the nephrotoxic species are very potent, because only a small percentage (approximately 1.5%) of the total NDPS dose could be accounted for in the kidneys at this time point.

We were able to detect metabolites in both liver and kidney homogenates 3 hr after NDPS dosing (table 2). Because metabolites were found in plasma and there was no evidence for NDPS biotransformation in vitro in renal preparations (Henesey and Harvison, 1995; Griffin et al., 1996), we believe that the metabolites were generated in the liver and were transported to the kidneys through the circulation. In addition to NDPS, 2-NDHSA, 3-NDHSA, and DMA, we were able to detect small amounts of NDHS and NDHPSA in the hepatic homogenates. These two metabolites were previously detected only when NDPS was incubated with isolated rat hepatocytes (Nyarko and Harvison, 1995; Nyarko et al., 1997). Formation of 2-NDHSA and 3-NDHSA from NDPS could occur by two different routes (fig. 1), i.e., hydroxylation of the succinimide ring to NDHS, followed by hydrolysis (route A), or hydrolysis of the succinimide ring to NDPSA, followed by hydrolyzation (route B). Although we cannot exclude the participation of route B, the detection of NDHS in the liver homogenates indicates that route A definitely contributes to NDPS metabolism. Because NDHS is rapidly hydrolyzed to 2-NDHSA and 3-NDHSA (Shih and Rankin, 1989; Nyarko and Harvison, 1995; Griffin et al., 1996), our inability to detect NDHS in plasma, kidney homogenates, and urine is not surprising. The presence of NDHPSA in the renal homogenates, but not the urine, could indicate that this metabolite is accumulated in the kidneys. However, this may not be toxicologically relevant, because NDHPSA did not produce any adverse renal effects when administered to rats (Harvison et al., 1992).

We could account for only 14% of the administered NDPS at the 3-hr time point. One possible explanation for this finding is that NDPS was not yet completely absorbed from the peritoneal cavity. It is also conceivable that NDPS underwent distribution into other sites in the body that were not examined. Nevertheless, these results indicate that sufficient absorption, metabolism, and distribution occurred within 3 hr to explain the rapid onset of NDPS-induced nephrotoxicity (Rankin et al., 1984).

NDPS metabolism was also evaluated at a later time point (24 hr), when nephrotoxicity is fully established (Rankin et al., 1984). In these experiments, NDPS was administered at three different doses, i.e., 0.2 mmol/kg (nontoxic dose), 0.4 mmol/kg (threshold toxic dose), and 0.6 mmol/kg (toxic dose). The induction of nephrotoxicity in the rats was confirmed by marked diuresis, as well as elevations in BUN levels, urine protein contents, and kidney weights (table 4). Similar changes in kidney function were previously reported for NDPS (Rankin, 1982; Rankin et al., 1984, 1985; Kellner-Weibel et al., 1995; Nyarko et al., 1997). The recovery of administered radioactivity in the urine was significantly lower at 0.6 mmol/kg NDPS than at the two lower doses (table 3). Comparable results were reported for acetaminophen (Newton et al., 1983b; Tarloff et al., 1989) and are probably indicative of renal failure. The 24-hr urinary metabolic profile was similar to that obtained in the 3-hr study (figs. 3 and 4), and we were able to account for 85–90% of the urinary radioactivity as NDPSA, 2-NDHSA, 3-NDHSA, and DMA at all three doses. However, at a dose of 0.6 mmol/kg there appeared to be more oxidative metabolism (i.e., 2-NDHSA production) than hydrolytic metabolism (i.e., NDPSA production). These findings are important because 2-NDHSA is more toxic than NDPS (Rankin et al., 1988), whereas NDPSA is less toxic (Yang et al., 1985). Therefore, a shift toward increased formation of a nephrotoxic metabolite such as 2-NDHSA with increasing dose could account for the dose-response relationship reported by Rankin et al. (1985) and may indicate that route A (fig. 1) predominates over route B at higher doses. We could account for approximately 70% of the radioactivity at 0.6 mmol/kg NDPS (table 3). The remainder may be sequestered in tissues (e.g., fat) that were not examined.

Covalent binding to proteins can indicate that a reactive, potentially toxic metabolite was generated in tissues (Pumford and Halmes, 1997). In fact, selective covalent binding to renal proteins was previously reported for the potent nephrotoxicant para-aminophenol (Crowe et al., 1979). We found that NDPS-derived covalent binding increased with dose in both the liver and kidney; however, binding levels were not significantly different between the two tissues at any dose. In addition, binding paralleled the total tissue burden of radioactivity. This lack of organ selectivity may indicate that covalent binding does not contribute to NDPS-induced cytotoxicity in the kidney. However, it is possible that the critical molecular targets for covalent binding in the two organs are different (Cohen et al., 1997). A reassessment of covalent binding of NDPS to specific subcellular targets (e.g., mitochondria), rather than total protein binding, may be worthwhile.

In conclusion, we have demonstrated that NDPS metabolism occurs rapidly and may contribute to the early onset of nephrotoxicity that is observed with this compound. In addition, the extent of oxidative metabolism appears to be correlated with dose and increasing nephrotoxicity. These experiments have provided additional information on the correlation between NDPS-induced kidney damage and the in vivo biotransformation of this compound.

TABLE 4

<table>
<thead>
<tr>
<th>Dose</th>
<th>BUN</th>
<th>Urine Protein</th>
<th>Urine Volume</th>
<th>Combined Kidney Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>18.4</td>
<td>67.4</td>
<td>6.8</td>
<td>0.72 ± 0.02</td>
</tr>
<tr>
<td>0.2</td>
<td>20.2</td>
<td>151.8</td>
<td>9.8</td>
<td>0.72 ± 0.02</td>
</tr>
<tr>
<td>0.4</td>
<td>25.3</td>
<td>229.5</td>
<td>10.9</td>
<td>0.75 ± 0.03</td>
</tr>
<tr>
<td>0.6</td>
<td>94.6</td>
<td>425.4</td>
<td>22.4</td>
<td>0.82 ± 0.02</td>
</tr>
</tbody>
</table>

Male Fischer 344 rats were administered [14C]NDPS (approximately 10 μCi, ip in corn oil) at three different doses (0.2, 0.4, and 0.6 mmol/kg). Control animals (0.0 mmol/kg) received corn oil (3 ml/kg) only. BUN levels, urine protein contents, urine volumes, and kidney weights were determined 24 hr after the administration of NDPS. Values represent means ± SE (N = 4 rats).

* Values that are significantly different (p < 0.05) from the corresponding results in the control animals.

a Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.2 mmol/kg.

b Values that are significantly different (p < 0.05) from the corresponding results at a dose of 0.4 mmol/kg.
References

