CHARACTERIZATION OF EPRINOMECTIN N-DEACETYLASE IN RATS

ZHAOPIE ZENG AND NICHOLAS W. ANDREW

Merck Research Laboratories, Merck & Co., Inc., Three Bridges, New Jersey

(Received April 16, 1998; accepted October 12, 1998)

This paper is available online at http://www.dmd.org

ABSTRACT:

The enzyme system responsible for the N-deacetylation of epri-
nomectin in rats was characterized. Tissue and subcellular studies
showed that the hydrolysis activity was localized mainly in liver
microsomes. Apparent K_m and V_{max} values calculated from
Lineweaver–Burk plots were 53 μM and 0.81 nmol/mg/min for male
rats and 70 μM and 4.99 nmol/mg/min for female rats, respectively.

Pretreatment of male rats with dexamethasone, phenobarbital,
and pregnenolone 16α-carbonitrile increased the activity by more
than 3-fold. Paraoxon and bis-4-nitrophenylphosphate strongly in-
hibited the deacetylase activity at concentrations as low as 1 μM.

The hydrolysis activity also was inhibited by SKF525, but less
effectively. Eserine strongly inhibited the activity at 1 x 10$^{-4}$ M.

HgCl$_2$ decreased the activity to about 40% at a concentration of
1 x 10$^{-4}$ M. FeCl$_3$, CaCl$_2$, MgCl$_2$, and EDTA had little effect on the
hydrolysis of epri
nomectin, whereas NaF slightly increased the
activity to 118%. Thus, the inhibition study suggested that epi-
nomectin deacetylase resembled an “B” type carboxylesterase/am-
dases. The hydrolysis activity of epri
nomectin and isocarboxazid, a
specific substrate of RL2 [Hosokawa, M, Maki T and Satoh T (1987)
Mol Pharmacol 31:579–584], by liver microsomes from rats treated
with various cytochrome P-450 inducers correlated well ($r = 0.92$).

Also, elution profiles of esterase by gel filtration and ion exchange
chromatography demonstrated that the active protein(s) for epi
nomectin and isocarboxazid hydrolysis coeluted. Thus, RL2 or an
enzyme system similar to RL2 is responsible for the N-deacetyl-
a
tion of epri
nomectin.

Eprinomectin (4'-epi
cetamino-4'-deoxyavermectin B$_1$), a member of a new class of avermectins, the aminovermectin, has been approved in some countries for the control of parasites in beef and dairy cattle (Cvetovich et al., 1994; Shoop et al., 1996). Eprinomectin is a derivative of avermectin B$_1$ with a chemically modified terminal oleandrose moiety (Fig. 1). Eprinomectin consists of a mixture of two homologous compounds with a major component, 4'-epi
cetamino-4'-deoxyavermectin B$_1$a (AAB$_{1a}$) (90% of the mixture), and a minor component, AAB$_{1b}$ (<10% of the mixture), differing by a single methylene group.

In a previous paper (Zeng et al., 1996), we described the distribution, excretion, and metabolism of epri
nomectin in the Sprague-
Dawley VAF rats after oral administration. Overall, the majority of the dose was excreted unmetabolized in the feces. However, N-deacetylation of epri
nomectin, the primary route of metabolism, was sex-dependent, i.e., the drug was metabolized more extensively in female rats than in male rats. The sex difference in N-deacetylation was also demonstrated in vitro. In this study, characteristics of the enzyme system responsible for the N-deacetylation of epri
nomectin were examined.

Materials and Methods

Materials. [5-3H]AAB$_{1a}$ (20.74 mCi/mg and ≥98.3% pure) was synthesized by the Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories. Unlabeled epri
nomectin (AAB$_{1a}$/AAB$_{1b}$; 92/0.8/0.97.5% pure) and aminoavermectin (4'-epi
cetamino-4'-deoxyavermectin B$_1$; components AAB$_{1a}$/AAB$_{1b}$; 93.3/8.7/95.6% pure) were obtained from the Chemical Data Department, Merck Research Laboratories. Substrates for incubations were prepared by mixing [5-3H]AAB$_{1a}$ with unlabeled epri
nomectin; thus, only the AAB$_{1a}$ component was radiolabeled. Isovermectin was obtained from the Chemical Data Department, Merck Research Laboratories. All sol-
vents used were of high-performance liquid chromatography (HPLC) grade or equivalent. Scintillation fluids Monophase and Insta-Gel XF were obtained from Packard (Downers Grove, IL). Other chemicals were purchased from Aldrich (Milwaukee, WI). Liver microsomes from chemically treated rats and control microsomes were purchased from XenoTech LLC (Kansas City, KS).

Tissue Preparation and N-Deacetylation of Eprinomectin by Selective Tissues. Male or female Sprague-Dawley rats (2 months old) were euthanized using CO$_2$. Pooled livers, kidneys, spleens, small intestine, brains, muscle, lungs, or hearts were washed with ice-cold 50 mM Tris buffer containing 1.15% KCl (pH 7.5) and then homogenized in a cooled blender with 4 volumes of the same buffer. Liver cytosol was prepared by centrifuging the liver homogenate at 10,000 g for 20 min and centrifuging the resulting supernatant at 105,000 g for 60 min. Plasma was obtained by centrifuging whole blood.

[3H]Eprinomectin (10 μM) was incubated with 400 μl of tissue homogenates, liver cytosol, whole blood, and plasma from male or female rats for 4 h at 37°C. The reactions were stopped by adding 400 μl of unlabeled epri
nomectin in methanol. The incubation mixtures were centrifuged and the supernatants were analyzed by HPLC.

Liver Microsomal Incubation with Eprinomectin. Microsomal prepara-
tion from untreated rats has been described elsewhere (Zeng et al., 1996). The microsomal samples were diluted with either 0.1 M Tris buffer or 0.1 M potassium phosphate (pH 8) to 0.5 mg/ml protein. After a 45-min incubation with the substrate (25 μM) at 37°C, the reactions were stopped by mixing with an equal volume of methanol solution containing a mixture of unlabeled.
eprinomectin and aminooacetavermectin. The incubation mixtures were centrifuged and the supernatants were analyzed by HPLC. Incubations with and without an NADPH-generating system (10 mM glucose 6-phosphate, 1 mM NADP, and 4 units glucose 6-phosphate dehydrogenase) were compared.

Kinetic studies were carried out at eprinomectin concentrations ranging from 8 to 100 μM. Rate of N-deacetylation of eprinomectin was measured by formation of aminooacetavermectin (Zeng et al., 1996). For inhibition studies with chemical inhibitors, female liver microsomes were used because they showed higher activity in the N-deacetylation of eprinomectin. Microsomes were preincubated with inhibitors at 37°C for 10 min before initiating the reaction by the addition of eprinomectin.

The microsomal activity on N-deacetylation of eprinomectin was examined as a function of pH in increments of 0.5 pH units using acetate buffer (50 mM) for pH range 4.0 to 6.5, Tris buffer (50 mM) for pH range 7.0 to 9.0, phosphate buffer (100 mM) for pH range 6.0 to 9.0, and carbonate buffer (100 mM) for pH range 4.0 to 6.5. The hydrolysis of isocarboxazid was determined by scintillation spectrometry.

After incubation, metabolite profiles were determined by reverse-phase HPLC analysis. Chromatography was performed on a Zorbax ODS 4.6-mm × 250-mm column using a Shimadzu dual-pump gradient system with a mobile phase of CH₃CN/CH₃OH/H₂O (v/v) containing 5 mM ammonium acetate (System I: 46.2/30.8/23 for 35 min, 46.2–45 min, 46.2/30.8/23 to 60/40/0 in 5 min, 60/40/0 for 5 min, 60/40/0 to 46.2/30.8/23 in 10 min; System II: 51.6/34.4/14 for 19 min, 51.6/34.4/14 to 60/40/0 in 2 min, 60/40/0 for 6 min, 60/40/0 to 51.6/34.4/14 in 3 min). The flow rate was 1.0 ml/min, and the eluate was monitored at 245 nm using a flow-through UV detector. One-minute fractions of the column eluate were collected into miniscintillation vials and mixed with scintillation cocktail. The radioactivity in these samples was determined by scintillation spectrometry.

Determination of Hydrolysis Rate of p-Nitrophenylacetate (PNPA), Butanilicaine, Isocarboxazid, and Palmitoyl-CoA by Liver Microsomes. For hydrolysis of PNPA (1 mM, 25°C), butanilicaine (1 mM, 37°C), and palmitoyl-CoA (50 μM, 37°C) from incubation with liver microsomes for 1, 45, and 30 min, respectively, the hydrolysis products were measured directly using a spectrophotometer at wavelengths of 400, 285, and 412 nm, respectively (Kirsch, 1966; Berge, 1979; Heymann et al., 1981). The protein concentrations of the liver microsomes used were 25, 50, and 150 μg/ml in 0.1 M phosphate buffer (pH 7.4), respectively. The hydrolysis of isocarboxazid was assayed in 0.1 M phosphate buffer (pH 7.4) by colorimetric determination of the released benzylhydrazine according to the method of Satoh and Moroi (1973).

Partial Purification of Esterase from Liver Microsomes. The procedure of Hosokawa et al. (1987) was followed with some modification. Liver microsomes from rats treated with phenobarbital (PB) were diluted to 2.5 mg/ml with 100 mM Tris-HCl buffer (pH 8.0). After addition of 1% saponin, the solution was stirred at 4°C for 60 min followed by ammonium sulfate fractionation. The 40 to 70% precipitate was suspended in 0.1 mM Tris-HCl buffer and desalted using a Centriprep 30 filtration system (MWCO 30,000; Amicon, Beverly, MA). The solution was subjected to gel filtration on a Superdex 200HR 10/30 column using 10 mM Tris-HCl buffer (pH 8.0) containing 100 mM NaCl, and the fractions were checked for hydrolysis activity with PNPA and eprinomectin.

Active fractions were pooled and desalted using a Centriprep 30 filtration system and chromatographed on a Mono Q anion exchange column (Pharmacia Biotech, Piscataway, NJ). The column was pre-equilibrated with 10 mM Tris-HCl buffer (pH 8.0) and eluted with a linear NaCl gradient in the buffer (0–250 mM NaCl for 45 min). Fractions were collected and analyzed for activity with PNPA, isocarboxazid, and eprinomectin.

Results

N-Deacetylation of Eprinomectin by Selected Tissues. One objective of this study was to determine which tissue, or tissues, was responsible for the N-deacetylation of eprinomectin. After incubation of eprinomectin in liver, kidney, spleen, small intestine, brain, muscle, lung and heart homogenates, and whole blood, the metabolic activity was found only in liver homogenate. In the previous study (Zeng et al., 1996), the enzyme activity was found mainly in liver microsomes, with very low activity in cytosol. At that time, we suspected the cytosol was contaminated with microsomes. In this study, we confirmed that cytosol did not show any N-deacetylation activities. This result led to a conclusion that the metabolism of eprinomectin was localized in liver microsomes.

Effect of pH on N-Deacetylation of Eprinomectin. Incubations of eprinomectin with rat liver microsomes were performed at a pH ranging from 4 to 10 with 0.5 pH unit intervals. The optimal pH was from 8 to 10. However, significant chemical hydrolysis of eprinomectin occurred at above pH 9. Thus, the experiment was routinely carried out at pH 8.

Kinetics of N-Deacetylation of Eprinomectin and Effect of NADPH. The rate of eprinomectin N-deacetylation was higher in female rats than in male rats (Table 1). This was also true in PB-treated rats. The apparent Kₘ values of these four different microsomes were similar. Because the rate of metabolism was higher in female rats, most metabolism studies were carried out with liver microsomes from female rats. The extent of N-deacetylation was the
Acetylcholinesterase inhibitor, slightly increased the activity. \(\text{HgCl}_2 \) had little effect.

Effect of Selective Inhibitors on \(N \)-Deacytlation of Eprinomectin. Table 2 shows the effect of different concentrations of various esterase inhibitors on the \(N \)-deacytlation of eprinomectin. \(\text{Paraoxon} \) and bis-4-nitrophenylphosphate (BPNP) strongly inhibited the hydrolysis activity at concentrations as low as 1 \(\mu \text{M} \). The \(N \)-deacytlation activity was also inhibited by SKF525, but less effectively. Eserine, a cholinesterase inhibitor, did not inhibit the hydrolysis of eprinomectin at a concentration of 1 \(\times 10^{-3} \text{ M} \), but nearly completely inhibited the activity at concentrations of 1 \(\times 10^{-2} \text{ M} \) and 1 \(\times 10^{-1} \text{ M} \). NaF, an acetylcholinesterase inhibitor, slightly increased the activity. \(\text{HgCl}_2 \) decreased the activity to about 40% at both concentrations of 1 \(\times 10^{-3} \text{ M} \) and 1 \(\times 10^{-4} \text{ M} \), but had no effect at lower concentrations. \(\text{FeCl}_3, \text{CaCl}_2, \text{MgCl}_2, \) and EDTA had little effect on the hydrolysis of eprinomectin.

\(N \)-Deacytlation of Eprinomectin by Microsomes from Rats Treated with Selective Inducers. The \(N \)-deacytlation of eprinomectin was increased substantially by 300 to 600\% in the liver microsomes from rats treated with pregnenolone-16\alpha-carbonitrile (PCN), dexamethasone (Dex), and PB; all are CYP3A inducers (Fig. 2). The hydrolysis activity was also increased by Aroclor 1254, isoniazid, clofibrac acid, and perfluorodecanoic acid, but to a lesser extent. 3-Methylcholanthrene (3MC), streptozotocin, and \(\beta \)-naphthoflavone had little effect.

Correlation between Rate of \(N \)-Deacytlation of Eprinomectin and Other Known Esterase Substrates by Liver Microsomes from Untreated and Chemically Treated Rats. The rate of \(N \)-deacytlation of eprinomectin by microsomes from untreated and various chemically treated rats was compared with the rates of hydrolysis of PNPA, butanilicaine, palmitoyl-CoA, and isocarboxazid by the same microsomes. The hydrolysis of eprinomectin correlated well with that of isocarboxazid \((r = 0.92, \text{Fig. 3}) \). On the other hand, no correlation was observed between \(N \)-deacytlation of eprinomectin and the metabolism of PNPA, butanilicaine, or palmitoyl-CoA (data not shown).

Chromatographic Separation of Esterases for Hydrolysis of PNPA, Isocarboxazid, and Eprinomectin. Two active enzyme fractions were resolved by gel filtration. Both fractions showed hydrolysis activity for PNPA, but only the low-molecular-weight fraction had activity for isocarboxazid and eprinomectin. From the ion exchange column with the low-molecular-weight fraction, two fractions eluted by 90 mM and 175 mM NaCl contained PNPA hydrolysis activity, whereas only 175 mM NaCl eluate showed isocarboxazid and eprinomectin hydrolyse activities (Fig. 4).

Discussion

Esterases are enzymes capable of catalyzing the hydrolysis of a wide range of esters, amides, and thioesters (Heymann, 1980; Satoh, 1987). Thus, they play important roles in the metabolism of various drugs and chemicals. Esterases have been identified in various mammalian tissues including blood, liver, kidney, small intestines, testis, brains, central nervous system, and lung (Satoh, 1987). In our study, \(N \)-deacytlation of eprinomectin was detected only in liver microsomes.

Esterase activity including deacytlation could be mediated by cytochrome P-450 (Guengerich, 1987, 1988; Anderson et al., 1995). However, independence of \(N \)-deacytlation in eprinomectin by liver microsomes ruled out the involvement of cytochrome P-450. Aldridge (1953) classified esterases into three groups based on their interaction with organophosphates. “A” esterases hydrolyze organophosphates, “B” esterases are inhibited by them and include carboxylesterases and cholinesterases, and “C” esterases do not interact with organophosphates. Complete inhibition of eprinomectin \(N \)-deacytlation by paraoxon indicates that the enzyme system belongs to the B esterase class. The independence of Ca\(^{++}\) and Mg\(^{++}\) as cofactors, and insensitivity to EDTA and low concentrations of \(\text{HgCl}_2 \), suggest further their resemblance to a B esterase (Heymann, 1980; Walker and Mackness, 1983). Eserine, an inhibitor of cholinesterase (Simeon et al., 1988), inhibited the enzyme activity only at high concentrations, whereas NaF (Cimasoni, 1966), an inhibitor of acetylcholinesterase, increased the activity slightly. BPNP, which inhibits carboxylesterase at low concentrations but not cholinesterase (Simeon et al., 1988), strongly inhibited the hydrolysis of eprinomectin at concentrations as low as 1 \(\times 10^{-4} \text{ M} \). Thus, a liver microsomal carboxylesterase is likely to be involved in the \(N \)-deacytlation of eprinomectin.

Multiple forms of carboxylesterase in rat liver microsomes have been purified and characterized by several groups (Mentlein et al., 1980; Robbi and Reaufay, 1983; Hosokawa et al., 1987; Morgan et al., 1994). Although each group has developed its own nomenclature for the isoforms, many enzymes purified by different groups seem to overlap with each other according to their enzymatic properties (Mentlein et al., 1987; Morgan et al., 1994). Hosokawa et al. (1987) isolated three isozymes of carboxylesterases from liver microsomes: RL1, RL2, and RH1. The amounts of RL1 and RH1 either are not different between sexes or are higher in male rats. Eprinomectin hydrolyse activity, however, was higher in female rats. Furthermore, RL1 and RH1 were suppressed by Dex treatment (Hosokawa et al., 1993), whereas the hydrolysis of eprinomectin was increased markedly by treatment with Dex and PB (Fig. 2). Thus, RL1 and RH1 are not likely to be responsible for the hydrolysis of eprinomectin. RL2, on the other hand, was increased by both Dex and PB. In addition, the amount of RL2 also was greater in female rats than in male rats. Moreover, by comparing the hydrolysis activity by liver microsomes from rats treated with various P-450 inducers, eprinomectin did not correlate with palmitoyl-CoA, a specific substrate of RL1, or butanil-
FIG. 2. Effect of induction on the rates of hydrolysis of eprinomectin and other esterase substrates by microsomes from rats treated with: 1, PNPA; 2, butanilicaine; 3, palmitoyl-CoA; 4, isocarboxazid; and 5, eprinomectin.

The data represent the percentage of hydrolysis activity in untreated male liver microsomes. Each bar represents an average of duplicates or triplicates except for palmitoyl-CoA, for which a single point was used.
using a spectrophotometer. Whereas activities toward PNPA and isocarboxazid were based on UV absorbencies toward eprinomectin was calculated by the percentage of total radioactivity. In their study, RL1 and RL2 were eluted by 30 mM and 150 mM NaCl from ion exchange chromatography, respectively. Similarly, we had two active fractions with PNPA hydrolase activities from ion exchange chromatography, and only the fraction with a higher concentration of NaCl showed isocarboxazid (RL2) and eprinomectin hydrolase activity. In other words, isocarboxazid hydrolase and eprinomectin hydrolase coeluted from both gel filtration and ion exchange chromatography. Furthermore, SDS-polyacrylamide gel electrophoresis analysis of the isolated active peak fraction (30–32 min, Fig. 4) showed a band with molecular weight of 66,000 (data not shown), which is similar to RL2 (~61,000). With the exception of a high-molecular-weight species, the 66-kDa protein is the predominant species observed. Thus, it appears that the enzyme system responsible for the hydrolysis of eprinomectin is either RL2 or very similar to RL2 purified by Hosokawa et al. To confirm this finding, further purification and characterization of the enzyme system are needed.

Acknowledgments. We express our sincere appreciation to Drs. Anthony Lu and Bruce Halley for invaluable comments, to Xiangli Yang for technical assistance, and to Dr. Allen Jones, Mrs. Yolanda Jakubowski, and Mr. Herbert Jenkins for supplying [3H]AAB₁.

References

Fig. 3. Correlation of eprinomectin deacetylation and isocarboxazid hydrolysis by liver microsomes prepared from rats pretreated with different inducers. Each point represents an average of duplicates for isocarboxazid and triplicates for eprinomectin. The line was drawn using linear regression analysis (r = 0.92).

Fig. 4. Anion exchange chromatography of rat liver microsomal esterases for hydrolysis of PNPA, isocarboxazid, and eprinomectin. Column fractions were assayed for esterase activities. The hydrolysis activity toward eprinomectin was calculated by the percentage of total radioactivity, whereas activities toward PNPA and isocarboxazid were based on UV absorbencies using a spectrophotometer. Nicotinic acid, a specific substrate of RH1, but correlated well with isocarboxazid, a substrate of RL2.

Esterases from liver microsomes were separated partially using a procedure similar to that of Hosokawa et al. (1987). Hosokawa et al. separated RH1 from RL1 and RL2 by gel filtration because RH1 was eluted as a trimer in the high-molecular-weight fraction. All these enzymes have hydrolysis activities toward PNPA. We also found that two fractions contained PNPA hydrolase activity, but only the low-molecular-weight fraction showed hydrolase activity toward eprinomectin. In their study, RL1 and RL2 were eluted by 30 mM and 150 mM NaCl from ion exchange chromatography, respectively. Similarly, we had two active fractions with PNPA hydrolase activities from ion exchange chromatography, and only the fraction with a higher concentration of NaCl showed isocarboxazid (RL2) and eprinomectin hydrolase activity. In other words, isocarboxazid hydrolase and eprinomectin hydrolase coeluted from both gel filtration and ion exchange chromatography. Furthermore, SDS-polyacrylamide gel electrophoresis analysis of the isolated active peak fraction (30–32 min, Fig. 4) showed a band with molecular weight of 66,000 (data not shown), which is similar to RL2 (~61,000). With the exception of a high-molecular-weight species, the 66-kDa protein is the predominant species observed. Thus, it appears that the enzyme system responsible for the hydrolysis of eprinomectin is either RL2 or very similar to RL2 purified by Hosokawa et al. To confirm this finding, further purification and characterization of the enzyme system are needed.