INTRACORONARY AND INTRAVENOUS ADMINISTRATION OF BASIC FIBROBLAST GROWTH FACTOR: MYOCARDIAL AND TISSUE DISTRIBUTION

ROGER J. LAHAM, MEHRDAD REZAEE, MARK POST, FRANK W. SELLKE, RENE A. BRAECKMAN, DAVID HUNG, AND MICHAEL SIMONS

Angiogenesis Research Center (R.J.L., F.W.S., M.P., M.S.), and Interventional Cardiology Section (R.J.L., M.R.), Department of Medicine, Harvard Medical School, and Beth Israel Deaconess Medical, Boston, Massachusetts; and the Cardiovascular Research Division (R.A.B., D.H.), Chiron Corporation, Emeryville, California

(Received November 25, 1998; accepted March 25, 1999)

This paper is available online at http://www.dmd.org

ABSTRACT:

Therapeutic angiogenesis using various heparin-binding growth factors is a promising treatment for ischemic heart disease. Single dose intracoronary (IC) or i.v. delivery are most practical for clinical use. This study was designed to investigate the myocardial and tissue deposition of basic fibroblast growth factor (bFGF) after IC and i.v. administration in normal and chronically ischemic animals. Twenty-four Yorkshire pigs were used (12 normal and 12 ischemic animals) with IC and i.v. administration of 125I-bFGF (25 μCi) combined with cold bFGF (30 μg) and heparin (3 mg). Tissue and myocardial distribution was determined at 1 and 24 h by measuring 125I-bFGF specific activity and by organ and light level autoradiography. The liver accounted for the majority of 125I-bFGF activity at 1 h (37.6 ± 17.1% for IC and 42.1 ± 17.7% for i.v. delivery), with a reduction to 2.8 ± 1.5% for IC and 1.5 ± 0.9% for i.v. delivery by 24 h. Total cardiac specific activity at 1 h was 0.88 ± 0.89% for IC and 0.26 ± 0.08% for i.v. administration (p = .12) and decreased to 0.05 ± 0.04% (p = .05, versus 1 h) and 0.04 ± 0.01% (p < .001, versus 1 h) at 24 h, respectively. IC but not i.v. delivery resulted in higher deposition in ischemic than normal myocardium. IC delivery resulted in enhanced bFGF deposition only in myocardial territories subtended by the infused artery. Intravenous delivery compares favorably with IC delivery with a 3- to 4-fold reduction in myocardial deposition at 1 h and with similar solid organ deposition. The less invasive nature of I.V. delivery, its potential for repeat administration, and its applicability to a larger population may offset its resultant reduced myocardial deposition. Efficacy studies are ongoing.

Occlusion of coronary arteries is often associated with development of collateral circulation in patients with atherosclerosis. Although the existence of collateral circulation in such patients is associated with improved clinical outcomes, the net effect is rarely adequate to compensate fully for the flow lost to occlusion of native epicardial coronary arteries (Charney and Cohen, 1993; Di Carli et al., 1994; Stone et al., 1995). A number of growth factors have been associated with myocardial and peripheral limb ischemia, particularly basic fibroblast growth factor (bFGF), acidic fibroblast growth factor, and vascular endothelial growth factor (VEGF; Slavin, 1995; Fujita et al., 1996; Li et al., 1996; Schaper, 1996; Shinohara et al., 1996; Hasdai et al., 1997; Laham and Simons, 1999), which have been shown to induce functionally significant angiogenesis in animal models of myocardial and limb ischemia (Banai et al., 1994a; Asahara et al., 1995; Muhlhauser et al., 1995; Pearlman et al., 1995; Harada et al., 1996; Iukiyama, 1996; Lazarou et al., 1996; Selloke et al., 1996, 1998). These promising preclinical results have rapidly lead to the study of these growth factors in patients with chronic myocardial ischemia using intracoronary (IC), i.v., and local delivery (Henry et al., 1998; Laham et al., 1998, 1999).

The pharmacokinetics and tissue distribution of these growth factors administered by various techniques, however, have not been defined. Although an i.v. delivery strategy is very appealing in terms of technical safety, ease of administration, and lack of need for cardiac catheterization, it is unclear whether i.v. delivered growth factors achieve therapeutic myocardial concentrations without untoward systemic effects. In addition, IC infusions may not result in more significant myocardial deposition and retention with the added invasiveness of the delivery technique. The relevance of this tissue distribution becomes apparent when one considers the potential systemic toxicity of these agents in terms of hemodynamic effects, recirculation, and organ deposition, with the potential to induce pathologic angiogenesis and tumorigenesis (Aiello et al., 1994; Samoto et al., 1995; Favard et al., 1996; Yoshiji et al., 1996; Boulton et al., 1997; Paques et al., 1997).

Therefore, additional investigations are required to characterize the delivery of these growth factors. Such studies would help to ascertain the actual amounts of growth factors delivered to the ischemic myocardium, provide information regarding the persistence of and stability of these growth factors, and compare characteristics of different...
delivery techniques. This study was designed to investigate the myocardial and tissue deposition and retention of bFGF after IC and i.v. administration in normal and chronically ischemic animals.

Materials and Methods

Tissue distribution studies were carried out in 24 Yorkshire pigs (12 normal animals and 12 chronically ischemic animals; Fig. 1). Yorkshire pigs of either sex weighing 15 to 18 kg were anesthetized with i.m. ketamine (10 mg/kg) and halothane inhalation anesthesia. By sterile technique, a right popliteal cut down was performed and a 4 French arterial catheter was inserted for blood sampling and pressure monitoring. Left thoracotomy was performed through the 4th intercostal space during mechanical ventilation. The pericardium was opened and an ameroid constrictor of 2.5 mm internal diameter (matched to the diameter of the artery) was placed around the proximal left circumflex coronary artery (LCX; Harada et al., 1994; 1996; Lazarou et al., 1995). The pericardium was closed using 6/0 Prolene and the chest was closed. A single dose of i.v. cefazolin (70 mg/kg) was given and i.m. narcotic analgesics were administered as needed. Animals were then allowed to recover for 3 weeks (time sufficient for ameroid closure) before radiolabeled growth factor delivery. The treatment of animals was done according to National Institutes of Health guidelines and the protocol was approved by the Institutional Animal Care and Utilization Committee of the Beth Israel Deaconess Medical Center.

Ischemic animals (three weeks after ameroid placement) and normal non-instrumented animals were anesthetized with i.m. ketamine (10 mg/kg) and halothane inhalation anesthesia. By sterile technique, an i.v. line was inserted into the ear vein and a right femoral cut down was performed to introduce an 8Fr arterial sheath. Coronary angiography was then performed in multiple views using a 7 French JR4 diagnostic catheter (Cordis Laboratories, Inc., Miami, FL) to confirm LCX occlusion in ischemic animals and to assess the coronary anatomy. 125I-Bolton Hunter-labeled bFGF (125I-bFGF; 25 μCi; New England Nuclear) with a specific activity of 110 μCi/μg (4050 kBq/μg) was combined with 30 μg of cold bFGF and 3 mg of heparin (similar to the dose used in animal studies and in the recent phase I IC and i.v. human study) and was used for IC (six normal and six ischemic animals) and i.v. (six normal and six ischemic animals) delivery. For IC delivery, 125I-bFGF was infused in the left main coronary artery over 10 min. For i.v. delivery, 125I-bFGF was infused through the ear vein i.v. line over 10 min. Animals were then sacrificed (n = 12) and 24 h (n = 12) after 125I-bFGF administration.

Duplicate plasma, urine (spot samples), and tissue samples from the liver, lung, kidney, and quadriceps muscle were obtained. Tissues were washed three times in saline to avoid contribution of radioactivity in blood. The heart, liver, lungs, and kidneys were weighed to determine total organ weight. Duplicate samples were also obtained from the right ventricle and from the proximal portion of the left anterior descending coronary arteries (LADs) and right coronary arteries (RCAs). A 1-cm mid left ventricular transverse slice was sectioned and cut into eight segments; each segment was divided into epicardial, mid-myocardial, and endocardial portions. 125I-bFGF activity was determined in a gamma counter (LKB Instruments, Inc., Gaithersburg, MD). Background was subtracted and the amount of 125I-bFGF deposited within a specific sample was calculated as a percentage of the total activity administered. Total solid organ deposition was calculated by multiplying the specific activity per gram of tissue by the weight of the organ. Trichloroacetic acid precipitation was performed to determine specific activity, which averaged 86.3 ± 24.4%. A 2-mm transverse left ventricular section was obtained for organ level autoradiography and exposed in a phosphorimager for 24 h. In addition, tissue samples were obtained from the LAD and the subtended myocardium, formalin-fixed, paraffin-embedded, and 10 μm sections were mounted on a slide, coated by a photographic emulsion for 72 h, developed, and examined using light level microscopy.

Data are expressed as mean ± S.D. Continuous variables were compared by unpaired Student’s t test, whereas categorical variables were compared by χ² analysis. All reported p values were two-tailed; p ≤ .05 was considered statistically significant.

Results

A total of 24 animals was used for the study. Figure 1 details the study protocol. Twelve animals underwent ameroid placement on the LCX, and 3 weeks later, after confirming LCX occlusion angiographically, received 125I-bFGF. IC 125I-bFGF was administered to six normal and six ischemic animals, whereas i.v. 125I-bFGF was given to six normal and six ischemic animals. Tissue deposition was measured at 1 and 24 h in three animals of each group. The use of these two time points was determined by the need to study more sustained myocardial deposition and retention of 125I-bFGF.

Extracardiac Deposition. Biodistribution of the i.v. and IC radio-labeled bFGF was determined at 1 and 24 h after administration and was pooled for ischemic and nonischemic animals (Figs. 2 and 3). There were no significant differences between ischemic and nonischemic animals at each time point and the data was therefore pooled. At 1 h, the liver accounted for 37.6 ± 17.1% of the total administered activity for IC and 42.1 ± 17.7% for i.v. delivery (p = .6), with a reduction to 2.8 ± 1.5% for IC and 1.5 ± 0.9% for i.v. delivery by 24 h (p = .09). Total specific activity (1 h) in the kidneys was 2.3 ± 1.3% for IC and 2.5 ± 1.0% for i.v. delivery (p = .8). By 24 h, total kidney specific activity decreased to 0.1 ± 0.05% for IC and 0.2 ± 0.09 for i.v. delivery (p = .1). Finally, for IC and i.v. delivery, total lung specific activity was 2.7 ± .41 and 3.8 ± 2.6% at 1 h (p = .6) and 0.2 ± 0.2 and 0.4 ± 0.08% at 24 h (p = .05), respectively. Figure 3 details specific activity per milliliter for plasma, red cell sediment,
Results are shown for IC delivery at 1 (black column) and 24 h (white column) and for i.v. delivery at 1 (gray column) and 24 h (checker column). Note that plasma, urine, and RBC sediment uptake is similar for IC and i.v. delivery at both time points, indicating significant recirculation after IC delivery.

and urine. Specific activity for urine was 0.01 ± 0.01% for IC and 0.005 ± 0.01% for i.v. administration at 1 h and increased to 0.02 ± 0.01% for IC and 0.03 ± 0.05% at 24 h for i.v. delivery, however, that increase was not statistically significant.

Cardiac Deposition. Total cardiac specific activity is shown in Fig. 4. Total specific activity (1 h) was 0.88 ± 0.89% for IC and 0.26 ± 0.08% for i.v. administration (p = .12) and decreased to 0.05 ± 0.04% (p = .05, compared with 1 h values) and 0.04 ± 0.01% (p < .001, compared with 1 h values) at 24 h, respectively. Left ventricular deposition is illustrated in Figs. 5, 6, and 7, and are reported for normal and ischemic animals. There were no differences between epicardial and endocardial deposition for both IC delivery; the results were pooled for further analysis. For IC delivery, LAD territory activity per gram of tissue (1 h) was 0.01 ± 0.007% and 0.008 ± 0.008% for normal and ischemic animals, and at 24 h dropped to 0.0005 ± 0.0009% (20-fold reduction) in nonischemic animals and 0.0008 ± 0.0005% (10-fold reduction) in ischemic animals. For i.v. delivery, 1-h LAD territory activity per gram of tissue was 0.003 ± 0.001% (3-fold reduction, p = .2, compared with IC) and 0.002 ± 0.0009% (4-fold reduction, p = .3, compared with IC) for normal and ischemic animals, and at 24 h dropped to 0.0004 ± 0.0001% (7.5-fold reduction) in nonischemic animals and 0.0004 ± 0.0004% (5-fold reduction) in ischemic animals, respectively. For 1-h LCX myocardial deposition, IC and i.v. deliveries resulted in a specific activity per gram of tissue of 0.008 ± 0.0004% and 0.003 ± 0.001% (2.6-fold reduction, p = .09) in normal animals and 0.01 ± 0.007% and 0.003 ± 0.001% (3.3-fold reduction, p = .2) in ischemic animals, respectively. At 24 h, LCX deposition for IC and i.v. delivery dropped to 0.0006 ± 0.0008% and 0.0005 ± 0.0002% in normal animals and 0.0006 ± 0.0006% and 0.0004 ± 0.0004% in ischemic animals, respectively. For all groups, RCA myocardial distribution was similar to LAD and LCX distribution for i.v. administration. However, for IC delivery, RCA myocardial deposition was significantly lower than LAD or LCX myocardial deposition, because the radiolabel was infused in the left main coronary artery. Finally, for IC delivery, LCX/LAD territory activity was 79 and 154% for nonischemic and ischemic animals at 1 h and 116% and 75% for nonischemic and ischemic animals at 24 h, respectively. Intravenous administration resulted in an LCX/LAD activity of 97 and 100% for nonischemic and ischemic animals at 1 h and 123% and 98% for nonischemic and ischemic animals at 24 h, respectively.

Myocardial autoradiography (Figs. 6 and 7) confirmed myocardial deposition for both IC and i.v. delivery with three times enhanced deposition for IC delivery compared with i.v. delivery at 1 h with near equalization of tissue deposition at 24 h (measured using densitometric analysis). In addition, IC delivery resulted in increased deposition in LAD and LCX deposition compared with RCA (noninfused territory) deposition, whereas i.v. delivery resulted in a more uniform distribution in the three myocardial territories by qualitative analysis. Light level autoradiography (Fig. 8) after 72-h exposure showed LAD endothelial deposition for IC delivery after 1 h. Evaluation of other arteries for IC delivery at 24 h and for all coronary arteries at all time
points failed to show 125I-bFGF deposition even after 96 h of exposure.

Discussion

The availability of various heparin-binding growth factors, particularly bFGF and VEGF, the demonstration of their in vitro and in vivo angiogenic potential, and the identification of their role in physiologic and pathologic angiogenesis (Ladoux and Frelin, 1993; Aiello et al., 1994; Banai et al., 1994b; Gabra et al., 1994; Fujita et al., 1996; Li et al., 1996; Boulton et al., 1997; Hasdai et al., 1997) have propelled their study in human ischemic heart disease and peripheral vascular disease (Isner et al., 1996; Henry et al., 1998; Laham et al., 1998; Laham and Simons, 1999). Given the typically long time course of new collateral vessel development, most preclinical attempts to stimulate myocardial angiogenesis have used methods of prolonging growth factor delivery including gene therapy, continuous infusions, repeated injections, or sustained release polymers (Banai et al., 1994a; Harada et al., 1994, 1996; Asahara et al., 1995; Pearlman et al., 1995; Yang et al., 1996; Laham and Simons, 1999). However, some of these options such as repeated intracardiac injections or infusions are either unfeasible or impractical in patients with ischemic heart disease, making single dose administration, if effective, a potentially superior strategy in these patients. This lead to the investigation of these agents delivered via the IC or i.v. route (Battler et al., 1993; Lopez et al., 1998), methods more applicable to patients. However, IC and i.v. administrations are associated with significant systemic recirculation. This becomes relevant when one considers the potential systemic toxicity of these agents in terms of hemodynamic effects, recirculation, and organ deposition, with the potential to induce pathologic angiogenesis and tumorigenesis (Aiello et al., 1994; Samoto et al., 1995; Favard et al., 1996; Yoshiji et al., 1996; Boulton et al., 1997; Paques et al., 1997). In fact, the IC delivery of VEGF resulted in hypotension, which was the dose-limiting toxicity. Finally, i.v. delivery with its ease of use, noninvasive characteristics, and potential for repeated administration make this strategy, if safe and effective, an ideal delivery technique for these mitogenic growth factors.

Biodistribution studies are warranted to ascertain the actual amounts of growth factors delivered to the ischemic myocardium, provide information regarding the persistence and stability of these growth factors, and compare characteristics of IC and i.v. delivery. The current study was designed to investigate the myocardial and tissue deposition and retention of bFGF after IC and i.v. administration in normal and chronically ischemic animals.

Both IC and i.v. delivery strategies resulted in the majority of radiolabel being deposited in the liver. Surprisingly, liver deposition was similar for both techniques, indicating significant recirculation for IC delivery. In addition, these results confirm the previous observation that the liver is the major organ of elimination with circulating bFGF binding to α-2-macroglobulin, which in turn is internalized by receptors on Kupffer cells (Whalen et al., 1989; LaMarre et al., 1991). This result was duplicated for renal and lung deposition. It is important to point out that bFGF was infused in the ear vein (above the diaphragm). However, this simulates i.v. delivery in patients where the port of entry would probably be an upper extremity vein bypassing
the liver first pass mechanism. Therefore, IC delivery does not result in less systemic deposition, probably due to high recirculation.

One-hour total and regional myocardial deposition was 3- to 4-fold higher for IC compared with i.v. delivery, and deposition dropped by 5- to 20-fold at 24 h. IC delivery resulted in higher deposition in ischemic myocardium, possibly related to the increased expression of fibroblast growth factor receptors associated with myocardial ischemia. This was not seen in i.v. delivery, possibly related to the initial concentrations delivered to the ischemic myocardium. Thus IC delivery, by providing higher initial concentrations in the coronary circulation, may result in higher deposition in ischemic areas. These comparisons, although consistent, did not reach statistical significance due to the small number of animals studied.

Of note, IC delivery resulted in enhanced bFGF deposition compared with i.v. delivery only in myocardial territories subtended by the infused artery. Therefore, for IC delivery to provide an advantage over i.v. delivery, infusion should be carried out in all coronary arteries and bypass grafts if present. Whether infusing a larger dose of bFGF would result in similar myocardial deposition to IC delivery (a more invasive approach) was not investigated. For IC delivery, bFGF was identified on the endothelial cells of the infused arteries, where it might exert its effect. In addition, this study raises an important question of whether more local or sustained delivery is necessary for bFGF effect, particularly with the relatively low cardiac deposition for both delivery modalities. The study was not designed to test efficacy, however, an endpoint to be determined in human clinical studies currently underway.

Although it has been demonstrated that perivascular delivery results in significantly lower systemic levels and solid organ deposition than i.v. delivery (Edelman et al., 1993), this is the first study that systematically examined the myocardial deposition of i.v. and IC bFGF delivery in both normal and ischemic animals, the latter duplicating methods currently studied in human angiogenesis trials. This study underscores above all the potential need for “true” local delivery if IC and i.v. administration results in clinically significant systemic toxicities. Our results are comparable to the results obtained by Lazarous et al. (1997) in a smaller number of animals where i.v. delivery resulted in a 10-fold reduction in 15-min myocardial deposition.

This study has several limitations including the small sample size (to limit radioactive disposal and personnel exposure). In addition, the time point studied may miss earlier events, particularly that circulating bFGF half-life may be much shorter than 1 h (Edelman et al., 1993; Lazarous et al., 1997). Whether bFGF deposition in the first few minutes after administration are crucial for its sustained effects is unknown.

CONCLUSION

This study details the myocardial and tissue deposition and retention of bFGF after IC and i.v. administration in normal and chronically ischemic animals. Intravenous delivery compares favorably with IC delivery with a 3- to 4-fold reduction in myocardial deposition and similar solid organ deposition. The less invasive nature of the former delivery technique, the potential for repeat administration, and its applicability to a larger population may offset its resultant reduced myocardial deposition. It is crucial, however, to determine whether i.v. delivery results in therapeutic myocardial levels, a question that can only be answered by studying its ability to induce functional angiogenesis in animals.

Acknowledgments. We thank Denise Saleem, Melissa Miller, Jian Li, and David Cohen.

References

