COMPARISON OF HUMAN AND RAT METABOLISM OF MOLINATE IN LIVER MICROSONES AND SLICES

WILLIAM T. JEWELL AND MARION G. MILLER

Miller Laboratory, Department of Environmental Toxicology, University of California, Davis, California

(Received July 16, 1998; accepted March 25, 1999)

This paper is available online at http://www.dmd.org

ABSTRACT:

Molinate undergoes oxidative metabolism forming either ring-hydroxylated metabolites or molinate sulfoxide. Our previous studies strongly implicated the sulfoxidation pathway in molinate-induced testicular toxicity. The present study compares the metabolic capability of rat and human liver microsomes and slices to form either nontoxic ring-hydroxylated metabolites of molinate or the toxic metabolites derived from the sulfoxidation of molinate. K_m and V_{max} values indicate that sulfoxidation would be the preferred high-dose pathway whereas hydroxylation would predominate at low dose levels in both species. Examination of phase II metabolism of molinate in liver slices reveals greater detoxification of molinate sulfoxide by glutathione conjugation in humans with rats forming less conjugate. Oxidative metabolism of molinate in both rats and humans appears to be mediated by cytochrome P-450 and not flavin monoxygenases as indicated by the use of metabolic inhibitors. Overall, the metabolism of molinate would be via the nontoxic hydroxylation pathway in both species at low doses whereas at high doses, where sulfoxidation would predominate, the human is more capable than the rat to detoxify via glutathione conjugation.

Molinate (Ordram, Zeneca Ag Products, Richmond, CA) is a thiocarbamate herbicide which has been reported previously to cause testicular toxicity after metabolic activation via sulfoxidation (Jewell et al., 1998). Molinate sulfoxide is a more potent testicular toxicant than molinate, suggesting either that the sulfoxide itself or the sulfone metabolite of the sulfoxide is responsible for toxicity (Jewell et al., 1998). Additionally, it is known that the sulfoxide and sulfone metabolites of molinate bind to and inhibit a carboxylesterase, hydrolase A, in both the testes and liver (Jewell and Miller, 1998). Hydrolase A has been shown to possess the ability to hydrolyze cholesterol oleate (Kaphalia et al., 1997), and cholesterol is required for the first step in testosterone biosynthesis. Therefore, it has been proposed that after metabolic activation molinate may induce toxicity via inhibition of the hydrolysis of cholesterol esters with a subsequent decrease in the availability of cholesterol for testosterone biosynthesis (Jewell and Miller, 1998; Ellis et al., 1998).

In vivo studies in rats have indicated that the major urinary metabolites of molinate are derived from oxidative metabolism via either ring hydroxylation or sulfoxidation (Fig. 1; DeBaun et al., 1978). A large proportion of the dose was detected as mercapturic acid, which would have resulted from glutathione conjugation of either molinate sulfoxide or sulfone. Because the sulfone is unstable, it can undergo hydrolysis to liberate the hexamethylenimine moiety (Casida et al., 1974). Ring-hydroxylated metabolites of molinate are excreted unchanged or undergo phase II conjugation and are excreted as glucuronide conjugates (DeBaun et al., 1978).

Epidemiological studies of workers exposed to molinate did not show any adverse effect on male reproductive capability and thus it was proposed that humans could be less susceptible to molinate toxicity (Cochran et al., 1997). One possible explanation for a species difference in susceptibility to toxicity could be differences in metabolism between the rat and human. Humans may be able to detoxify molinate by utilizing the hydroxylation pathway whereas the rodent could preferentially bioactivate molinate via sulfoxidation. In support of this hypothesis, a human study involving one individual and conducted at very low dose levels found that the mercapturic acid metabolites represented only 1 to 2% of the administered dose and the balance was excreted as hydroxymolinate metabolites (Krieger et al., 1992).

The present study has determined K_m and V_{max} relationships for the formation of nontoxic ring-hydroxylated and toxic sulfoxide metabolites in rat and human liver microsomes and slices. The data indicated that at high doses sulfoxidation would be the preferred pathway but at low doses, ring hydroxylation would predominate. Moreover, as compared to the rat, the human liver slices were also able to substantially detoxify the sulfoxide metabolite via glutathione conjugation.

Materials and Methods

Animals. Male Sprague-Dawley rats (90 days old) weighing 350 to 400 g were purchased from Charles River (Hollister, CA). The animals were housed two per cage in temperature (22 ± 1°C) and humidity (50 ± 10%)-controlled rooms under a 12-h light/dark cycle. Animals were acclimated to housing conditions for at least 1 week before use.

Chemicals. Molinate (>99% purity) was supplied by Chem Service (West Chester, PA). Metabolite standards for molinate were generously provided by Zeneca Ag Products (Richmond, CA). Cytochrome P-450 reductase antibody was purchased from Gentest Corporation (Boston, MA). Except where indicated, all other chemicals were acquired from Sigma Chemical Company (St. Louis, MO).
Liver Slice Incubations.

Liver slices were prepared using a Krumdieck Tissue Slicer (Alabama Research and Development Corp., Munford, AL). Rat liver slice studies were carried out at the University of California (Davis, CA). Human liver slices were prepared and incubated at SRI International (Menlo Park, CA) from three donors through the SRI tissue bank donor program. Human liver slices were prepared and incubated at SRI International (Menlo Park, CA). Rat liver slices were prepared and incubated as described previously (Miller et al., 1992). Glass vials were used instead of plastic Petri dishes as molinate binds avidly to plastic. Slices were preincubated in a oxygenated environment (95% O₂, 5% CO₂) in 3 ml of Krebs-Henselheit buffer, pH 7.4, for 1 h before slicing. Slices were homogenized in 4× volume of isolation buffer, then centrifuged (10,000 g, 20 min, 4°C). The pellet was discarded and the supernatant was then centrifuged (105,000 g, 60 min, 4°C). The microsomal pellet was washed by resuspension in fresh buffer and centrifuged again (105,000 g, 60 min, 4°C). Microsomes were resuspended in 2× volume of 0.12 M Tris, pH 7.4, and stored frozen in 1-ml aliquots at −80°C. Human liver microsomes were prepared similarly. They were generously provided by SRI International (Menlo Park, CA).

Microsomal Incubations. Microsomal incubations were carried out at conditions that had been determined previously to give linear metabolism of molinate. Specifically, protein concentration was 3 mg/ml and NADPH concentration was 2 mM. Microsome aliquots were thawed in room temperature water, diluted to 200 μl in 0.12 M Tris, pH 7.4, and preincubated at 37°C for 2 min before addition of substrate (0.25–4 mM). Incubations were carried out for 10 min for kinetic studies and for 1 to 30 min for time course studies. The reactions were terminated by the addition of an equal volume of acetonitrile and the levels of metabolites in the supernatant were determined by HPLC analysis as described below. All incubations were carried out at 37°C.

Liver Slice Incubations.

Liver slices were prepared using a Krumdieck Tissue Slicer (Alabama Research and Development Corp., Munford, AL). Rat liver slice studies were carried out at the University of California (Davis, CA). Human liver slices were prepared and incubated at SRI International (Menlo Park, CA) from three donors through the SRI tissue bank donor program. Tissue cores were taken mechanically with a drill press and corer and trimmed of excess tissue before slicing. Tissues were kept in ice-cold Krebs-Henselheit buffer, pH 7.4, before slicing. Slices were homogenized in 4× volume of isolation buffer, then centrifuged (105,000 g, 60 min, 4°C). The pelIn human and rat liver microsomes >95% of all metabolites detected were either molinate sulfone or hydroxymolinate. Infrequently, a small peak coeluted with the retention time of the sulfone standard and in some samples was set at \(p < .05 \) unless indicated.

Fig. 1. Proposed pathway for the metabolism of molinate in rat and human.
human microsomes, a small amount of a late eluting metabolite was detected at high substrate concentrations.

Lineweaver-Burke plots clearly demonstrate the difference between the K_m and V_{max} values for molinate sulfoxide and hydroxymolinate formation in rat and human liver microsomes (Fig. 2, A and B). The K_m and V_{max} kinetic constants for hydroxymolinate and molinate sulfoxide production are derived from the x- and y-intercepts of these graphs and are summarized in Table 1. Values obtained for the sulfoxidation V_{max} were significantly different ($p < .05$) between rat (1426 pmol/min/mg) and human (815 pmol/min/mg) samples. However, the maximal rate of hydroxymolinate production (30–60 pmol/min/mg) was much less than the maximal rate for molinate sulfoxide formation (700–1500 pmol/min/mg) for both species. Species differences in the V_{max} for the hydroxylation of molinate approached statistical significance ($p < .11$), suggesting that the human would have an approximately 1.5-fold greater capacity than the rat to detoxify molinate. The six human samples used in this study were obtained from individuals of differing age, smoking status, drug history, and cause of death, which could account for the variability of the human results.

Comparison of the K_m values indicated that hydroxylation was a higher affinity pathway than sulfoxidation as shown by lower K_m.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>V_{max} (pmol/min/mg)</th>
<th>K_m (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rat</td>
<td>Human</td>
</tr>
<tr>
<td>Sulfoxidation</td>
<td>1426 ± 139*</td>
<td>815 ± 140*</td>
</tr>
<tr>
<td>Hydroxylation</td>
<td>35.4 ± 9.65†</td>
<td>58.6 ± 17.8˚</td>
</tr>
</tbody>
</table>

*,$** p < .05, † p < .1; n = 3 for rat microsomes and n = 6 for human microsomes.
values for both rats and humans. The K_m values for the lower affinity sulfoxidation pathway was not significantly different between species. Overall, molinate hydroxylation was a high-affinity but low-capacity metabolic pathway whereas sulfoxidation was a lower affinity pathway with substantially higher capacity.

Rat and Human Liver Slice Metabolism. Slice viability was assessed using ATP levels and lactate dehydrogenase leakage as indicators of cellular health (data not shown). Viability was maintained for longer than 6 h and was comparable to other slice incubation systems (Chapman et al., 1990; Miller et al., 1992). Metabolism was previously determined to be linear over this time course and there was no significant loss of molinate due to volatilization or binding to the incubation apparatus (data not shown).

Metabolism of molinate in rat and human liver slices was comparatively similar to the findings from the microsomal samples as indicated by the K_m and V_{max} values in Table 2. Because the glutathione conjugate is derived from the sulfoxidation pathway, kinetic constants were calculated for the sum of free sulfoxide and the glutathione conjugate to indicate total sulfoxidation metabolism.

Similar to the microsomal preparation, in liver slices, the V_{max} for hydroxylation was much lower than for sulfoxidation. A V_{max} value of 42.2 pmol/min/mg was noted for the human, a value approximately 5-fold greater than the rat V_{max} value of 8.33 pmol/min/mg. Although the values were not significantly different as was seen for the microsomal constants, the trends were similar. The K_m values for hydroxylation in both species were also not dissimilar from each other (303–587 μM) as had been seen in the microsomal samples, albeit at lower concentrations. The amount of hydroxymolinate released after glucuronidation was very low (<1%), indicating that glucuronidation was not a major metabolic pathway.

For the formation of molinate sulfoxide, the V_{max} rates were not significantly different as in the microsomes, although the rat slices had a higher value than the humans (590 pmol/min/mg compared with 360 pmol/min/mg). The K_m for sulfoxidation was again substantially higher than the K_m for hydroxylation in both species ($p < .05$). Human slices had less free sulfoxide present than the rat slices. However, this could be accounted for by the 3-fold greater capacity of the humans to form the nontoxic glutathione conjugate (Fig. 3).

P-450/FMO Contribution to Metabolism. The amount of molinate metabolized over a 20-min time period in human and rat liver microsomes is shown in Fig. 4. Inhibition of heat-labile FMO by preheating the sample resulted in no change in the amount metabolized as compared with the control in both human and rat liver microsomes. When carbon monoxide was used to inhibit cytochrome P-450 metabolism, only 20% of the molinate was metabolized over the time course of the incubation in both samples. Furthermore, preincubation of rat microsomes with cytochrome P-450 reductase antibodies resulted in virtually no metabolite formation (data not shown).

Discussion

The present study has compared the in vitro capacity of human and rat liver samples to bioactivate and detoxify molinate with the goal of determining the likelihood of molinate adversely affecting human male reproductive capabilities. The formation of molinate sulfoxide and sulfone is a bioactivation step, and there is evidence that either or both of these metabolites generated via sulfoxidation are responsible for molinate’s male reproductive effects whereas the ring hydroxylation of molinate is believed to be a detoxification pathway (Jewell et al., 1998; Ellis et al., 1998).

Liver microsome metabolism experiments showed differences in the metabolic capabilities of human and rats to metabolize molinate. In liver microsomes, K_m values for sulfoxidation of molinate were relatively high but similar in rats and humans, indicating comparable substrate affinities. The high K_m values indicate that at low dose levels, similar small amounts of sulfoxide would be formed in both species. At higher dose levels, the significantly higher V_{max} for the rat would indicate that this species could bioactivate more molinate via sulfoxidation.

The microsomal K_m value for hydroxylation were also similar in both species. The hydroxylation K_m values of 138 μM in the human were relatively comparable but were lower than the K_m values for sulfoxidation in both species (270–400 μM), indicating a higher substrate affinity for this pathway. Thus at low dose levels, ring hydroxylation of molinate would be the predominant metabolic pathway. Overall, ring hydroxylation of molinate was a high-affinity but low-capacity pathway for the metabolism of molinate when compared with the toxic sulfoxidation pathway.

Because molinate is a male reproductive toxicant, only male liver microsomal samples were analyzed. In contrast, in the human liver slice experiments, two male samples and one female sample were analyzed due to the difficulties in procuring fresh liver samples but no significant differences were seen in the molinate metabolism between male and female liver slices. Environmental factors were more important than gender differences in the wide range of human metabolic values obtained.

Liver slice metabolism was included in this study so that the contribution of phase II metabolism toward detoxification of molinate metabolites could be considered. The overall finding from the liver slice experiments confirmed the initial findings in microsomes, namely, that sulfoxidation is a low-affinity but high-capacity pathway whereas molinate hydroxylation represents a higher affinity but lower capacity pathway. Compared with liver microsomes, the slices exhibited a lower rate of metabolism. This difference in metabolism between slices and microsomes has been reported in many other studies using a variety of different substrates (Worboys et al., 1995, 1997; Sidelmann et al., 1996). The lower rate of metabolism in slices as compared with microsomes could be due to the concentrated and soluble nature of enzymes in the microsomal fraction on a per protein milligram basis.

The amount of hydroxymolinate glucuronide conjugate formed in the liver slice system was not significant and was not different between the two species. However, a much higher amount of glutathione conjugate was formed in the human samples than the rat samples. Therefore, the human would be more likely to detoxify the molinate metabolite (sulfoxide or sulfone) that was bioactivated via sulfoxidation.

Liver metabolism of molinate appears to be mediated primarily by cytochrome P-450 in both the rat and human. Using a variety of general P-450 and FMO inhibitors in microsomal incubations, both rat and human incubations had similar inhibition profiles, indicating that
there are similar metabolizing enzyme systems for molinate in both species. Cytochrome P-450 mediated oxidation of the thiol group of molinate was surprising as FMO has been reported to be capable of oxidizing soft electrophilic atoms like sulfur (Duescher et al., 1994) and could be expected to contribute to the sulfoxidation of molinate. However, the complete inhibition of metabolism after preincubation with P-450 reductase antibodies further indicates the involvement of this enzyme system in molinate metabolism.

Overall, these differences in metabolism could explain why the rodent animal model may be more susceptible to molinate’s male reproductive effects whereas the human has been proposed to be resistant to molinate’s effects. An initial difference in the human metabolism of molinate was noted in a single study (Krieger et al., 1992) and this study has confirmed these findings. Low dose exposures such as in the human administration study reported by Krieger et al. (1992), or those that may occur in an occupational setting, would result in the detoxification of molinate by the formation and excretion of hydroxymolinate and its metabolites. Higher dose exposures, such as those that occur in toxicological studies, would result in the formation of molinate sulfoxide and lead to testicular toxicity. The rat would also appear more susceptible to the male reproductive effects of molinate due to its lower overall hydroxymolinate formation, greater sulfoxidation capacity, and lesser ability to form the glutathione conjugate. Thus a rat exposed to molinate at large doses, as in many of the regulatory studies (Ellis et al., 1998), or in our previous work (Jewell et al., 1998), would be expected to produce more sulfoxide.

Figure 3. Velocity versus substrate bar graphs for formation of molinate sulfoxide (□) and the glutathione conjugate (■) in rat (a) and human (b) liver slices. Values are mean, n = 3.

Figure 4. Molinate metabolism in rat (a) and human (b) liver microsomes. Treatments were control (■), P-450-inhibited (●), and FMO-inhibited (○). Values are mean ± S.E., n = 3.
and show testicular effects. The rat may be more susceptible than the human to molinate’s male reproductive effects and is perhaps not a good animal model for molinate’s potential effects after environmental exposures. However, it may be an excellent model for understanding mechanisms underlying testicular toxicity.

In summary, the metabolism of molinate in both rat and human samples utilizes both the hydroxylation and sulfoxidation pathways and appears to be mediated by P-450. Based on K_m and V_{max} values, low doses of molinate would be metabolized primarily by hydroxylation whereas at higher doses sulfoxidation would be the primary pathway in both species. In addition, the human liver possesses a greater capacity to detoxify molinate sulfoxide via glutathione conjugation. Thus a human exposed to low levels of molinate would be more likely than the rat to detoxify and excrete any sulfoxide intermediate as a glutathione conjugate.

Acknowledgments. We thank Dr. Carol Green and the Comparative Metabolism Laboratory at SRI International for their generous contributions of time and resources.

References

