Short Communication

Measurement of Fraction Unbound Paclitaxel in Human Plasma

(Received January 11, 2000; accepted June 28, 2000)

This paper is available online at http://www.dmd.org

ABSTRACT:

The clinical pharmacokinetic behavior of paclitaxel (Taxol) is distinctly nonlinear, with disproportional increases in systemic exposure with an increase in dose. We have recently shown that Cremophor EL, the formulation vehicle used for i.v. administration of paclitaxel, alters drug distribution as a result of micellar entrapment of paclitaxel, and we speculated that the free drug fraction (fu) is dependent on dose and time-varying concentrations of Cremophor EL in the central plasma compartment. To test this hypothesis, a reproducible equilibrium dialysis method has been developed for the measurement of paclitaxel fu in plasma. Equilibrium dialysis was performed at 37°C in a humidified atmosphere of 5% CO2 using 2.0-ml polypropylene test tubes. Experiments were carried out with 260-μl aliquots of plasma containing a tracer amount of [G-3H]paclitaxel with high-specific activity against an equal volume of 0.01 M phosphate buffer (pH 7.4). Drug concentrations were measured by both reversed-phase HPLC and liquid scintillation counting. Using this method, fu has been measured in three patients receiving three consecutive courses of paclitaxel at dose levels of 135, 175, and 225 mg/m2 and found to range between 0.036 and 0.079. The method was also used to define concentration-time profiles of unbound drug, estimated from the product of the total plasma concentration and fu.

Paclitaxel (Taxol; Fig. 1) is a naturally occurring taxane diterpenoid first extracted from the bark of the Western yew tree, Taxus brevifolia (Wani et al., 1971). The compound is a potent inhibitor of cell replication in malignant cells, a property attributed to its ability to stabilize the microtubule cytoskeleton and to block the transit of cycling cells from the G2-phase to the M-phase (Verweij et al., 1994; Sparreboom et al., 1998c). The clinical pharmacokinetics of paclitaxel (administered as a 3-h i.v. infusion) have been well documented, and revealed a striking nonlinear disposition profile in plasma with disproportional increases in systemic exposure resulting from a given increase in dose (Schiller et al., 1994; Sonnichsen et al., 1994; Gianni et al., 1995; Bhalla et al., 1999; Karlsson et al., 1999).

It has recently been shown that Cremophor EL (CrEL1), the vehicle used for i.v. drug administration, profoundly influences the cellular distribution of paclitaxel in human blood (Sparreboom et al., 1999a). Cellular kinetic experiments indicated that erythrocyte uptake of paclitaxel was significantly reduced by polyoxyethylene glycerol triricinoleate (Fig. 1), the major compound present in CrEL, as a result of binding to CrEL micelles which, in turn, can reduce the free drug fraction (fu) available for cellular partitioning (Sparreboom et al., 1999a). Furthermore, we found that the altered blood distribution is highly dependent on dose and time-varying concentrations of CrEL in the central blood compartment during paclitaxel administration (Sparreboom et al., 1999b). This latter aspect of a concentration-dependent binding of paclitaxel to CrEL micelles occurring after therapeutic doses suggests that the total plasma concentration (Cp), which is routinely measured, is not reflective of the unbound drug concentration (Cu). The rationale for monitoring Cu is founded on the basic pharmacologic tenet that drug bound to protein, or other (macro)molecules, is unable to cross cell membranes and interact with the active site. Although this relationship is intuitive, little has been published on this topic regarding anticancer drugs, with the notable exception of etoposide (Stewart et al., 1991). Knowledge of the extent of binding of paclitaxel is of crucial importance for understanding the clinical pharmacologic behavior of this drug, and could have significant clinical relevance in view of the fact that relationships between drug exposure and effect (i.e., toxicity and efficacy) are still poorly defined. To address these issues, we set out to define a reliable equilibrium dialysis method and demonstrate its application to binding measurements of paclitaxel in plasma samples of cancer patients receiving multiple courses of the drug administered by a 3-h i.v. infusion.

Materials and Methods

Chemicals. Paclitaxel powder (batch 484034; purity 98.3% by reversed phase HPLC) was obtained from Bristol-Myers Squibb (Woerden, The Netherlands). [G-3H]Paclitaxel (batch 227-163-0024; radiochemical purity 99.7%), with a specific activity of 2.4 Ci/mmol was obtained from Moravek (Brea, CA). The majority of the tritium label is in the n- and p-positions of the aromatic rings, with minor amounts in the 10-, 3'-, and 2-positions of the taxane ring system. Ethanol absolute was purchased from Merck (Darmstadt, Germany), and phosphate-buffered saline from Oxoid (Unipath LTD, Basingstoke, Hampshire, UK). The CrEL reference material was obtained from Sigma Chemicals Co. (St. Louis, MO). Emulsifier-safe scintillation cocktail was purchased from Packard Instruments Co. (Groningen, The Netherlands).

Equilibrium Dialysis. Paclitaxel fu was measured by equilibrium dialysis at 37°C in a humidified atmosphere of 5% CO2 using test vials made from 2.0-ml polypropylene Safe-Lock vials (Eppendorf, Hamburg, Germany), carrying a 260-μl inside recess in the lids (Reinard and Jacobsen, 1989). Before incubation, 2 μl of a [G-3H]paclitaxel solution (500-fold diluted in ethanol) was added to 300 μl of plasma, followed by mixing for 10 s. Dialysis was
and 150 isotonic sodium chloride before dosing. The drug was administered every three

3.0

primary origin for whom paclitaxel as monotherapy was a viable therapeutic

option (Table 1). Before treatment, the patients had a World Health Organi-

tation performance status of 2, did not receive previous anticancer treatment

weeks as a 3-h i.v. infusion at consecutive (decreasing) levels of 225, 175, and

135 mg/m². Premedication consisted of dexamethasone (10 mg i.v.), clemas-
hine (2 mg i.v.), and ranitidine (50 mg i.v.), all given 30 min before start of the
drug administration. During administration, no other comedication was given

that might interfere with paclitaxel disposition. The clinical protocol was

approved by the Rotterdam Cancer Institute Review Board, and the patients
gave written consent before entering the study.

Blood samples (6 ml) were collected in Vacutainer glass tubes containing
143 USP units of lithium heparin as anticoagulant at 1, 2, and 3 h during
infusion, and at 5, 15, and 30 min, and 1, 2, 4, 6, 8, 12, and 21 h after end of
the infusion. After agitation, 2-ml aliquots of whole blood were snap-frozen at
−20°C at the patient site, and the remaining sample was centrifuged for 5 min
at 4000g. Plasma was transferred into a polysyntrene container and snap-frozen
at −20°C. All samples were stored at −80°C until analysis. The concentration
of paclitaxel in total plasma (Cp) and whole blood (Cb) was determined by

an equal volume of phosphate-buffered saline (pH 7.4) for 24 h in a moist chamber, which was shown
previously to be sufficiently long to attain equilibrium (Kumar et al., 1993; Sparreboom et al., 1999a). Spectra/Por 3 dialysis tubing with a 12,500 molecular
weight cut-off (Spectrum Medical, Kitchener, Canada) was soaked in
phosphate-buffered saline (pH 7.4) before use. After establishment of the
equilibrium, 150 µl of the buffer solution, containing only unbound paclitaxel, and 150 µl of the plasma fraction, containing both bound and unbound drug,
were transferred to separate 2-ml vials (Eppendorf) and 1.9 ml of Emulsiﬁer-
Safe scintillation cocktail were added. After manual mixing for 30 s, the
3H-labeled paclitaxel was quantified by liquid scintillation counting using a
Wallac 1409 liquid scintillation counter (Turku, Finland). All samples were
counted until a preset time of 20 min was reached. The ratio of drug concen-
trations measured in the buffer and plasma after dialysis was taken as an
estimate of paclitaxel fu. Because the volume shift during dialysis was negli-
gible (<10%), the results were used directly without applying a correction
factor.

Pharmacokinetic Studies. The three patients studied were a 64-year-old
female with non-small cell lung cancer, a 62-year-old male with bladder
cancer, and a 51-year-old female with a malignant solid tumor of unknown
primary origin. The characteristics of the patients are summarized in Table 1.

![Chemical structures of paclitaxel (A) and the major component of CrEL, polyoxyethylene glycerol tristearinoleate (B).](image)

Fig. 1. Chemical structures of paclitaxel (A) and the major component of CrEL, polyoxyethylene glycerol tristearinoleate (B).

![Chemical structures of paclitaxel and polyoxyethylene glycerol tristearinoleate.](image)
Results and Discussion

In Vitro Binding Experiments. We initially investigated ultrafiltration, as measurement of paclitaxel in the ultrafiltrate would provide a direct measure of Cu (Bowers et al., 1984). This technique, using a standard micro system (Amicon Centrifree, Danvers, MA), however, gave nonreproducible results and posed serious hurdles owing to a problem of sensitivity with currently available analytical methods for the determination of paclitaxel (reviewed in Sparreboom et al., 1998a). As a next step, we evaluated the possibility of using equilibrium dialysis to determine the effects of CrEL on paclitaxel fu in human plasma. The major prerequisite in determining paclitaxel Cu is that the condition of the in vitro measurement should simulate those existing in vivo when the blood sample was taken. Hence, all measurements were carried out with undiluted plasma and at 37°C to give meaningful results. It was confirmed in all equilibrium dialysis experiments that the total drug recovery from all the fractions was equal to the amount of [G-3H]paclitaxel added to the plasma samples (P > .29 versus hypothesized mean of initial value).

In the absence of CrEL, paclitaxel was found to bind extensively to human plasma, probably due to nonspecific hydrophobic binding to both serum albumin and α1-acid glycoprotein (Kumar et al., 1993), with a mean (± S.D.) fu of 0.13 ± 0.016 (n = 14). This value is within the same range as described previously in human plasma samples as determined by both equilibrium dialysis and ultrafiltration techniques (Longnecker et al., 1987; Wiernik et al., 1987; Jamis-Dow et al., 1993; Van Tellingen et al., 1999). Experiments demonstrated that the radioactivity seen in the protein-free fraction was not derived from any radioactive material that might have been associated with the polypropylene tube wall or the membrane. Very small amounts of 3H-labeled water were formed, however, during the course of the 24-h incubation experiments. This was determined in selected buffer samples as the difference before and after drying (at 37°C) following equilibrium dialysis in the absence or presence of 5.0 μM/ml (paclitaxel, 1.2 μM). It accounted for ≤4.7% of total radioactivity and was independent of the CrEL concentration applied. The buffer solutions collected after dialysis of paclitaxel (12 μM) were also analyzed by a specific HPLC method (Sparreboom et al., 1998a) to exclude an artifact due to alteration of the fraction of total radioactivity associated with unchanged compound (not shown).

As fu measurements were to be made on patient samples that contained variable amounts of paclitaxel, fu was also determined in blank plasma samples over the entire anticipated concentration range (0.03, 0.12, 0.30, 0.60, and 1.2 μM). Paclitaxel concentration had no influence on fu as determined by unweighted ANOVA (P = .19; n = 36), with an overall coefficient of variation of 4.2%, indicative of a lack in saturation of paclitaxel binding to human plasma. In the presence of CrEL, however, a clear and statistically significant decrease in fu of paclitaxel (1.2 μM) was observed, which was distinctly concentration-dependent within the clinical range (P < .00001, one-way ANOVA). At the highest CrEL concentration tested, i.e., 5 μM/ml, a decrease of (about) 60% was noted in fu as compared to fu in the absence of CrEL (Fig. 2).

During the establishment of the method, duplicate or triplicate plasma samples with differing paclitaxel fu values depending on the spiked CrEL concentrations were subject to repeated analysis on 6 consecutive days, to assess reproducibility. The mean relative deviation of these samples was 9.2% (n = 82), assuring high discriminatory power in the detection of changes in paclitaxel fu in the presence of CrEL. With the final method, the within-run and between-run variability, expressed as the percentage relative standard deviation calculated by one-way ANOVA (Shah et al., 1991), were always less than 9.2% at the six CrEL concentrations analyzed (Table 2). These values are comparable with that obtained for a variety of other compounds using equilibrium dialysis or ultrafiltration techniques (Verbeck and Cardinal, 1985; Legg and Rowland, 1987), and were considered to be

![Figure 2. Extent of binding of paclitaxel to human plasma, expressed as the unbound fraction (fu), as a function of the spiked CrEL concentration.](image)

Data are presented as mean values ± S.D. of fourteen independent observations.

![Figure 3. Fraction unbound paclitaxel (fu) versus time curves in three patients receiving three 3-weekly courses of the drug formulated at 6 mg/ml in a mixture of CrEL-dehydrated ethanol USP (1:1, v/v) at dose levels of 135 mg/m² (A), 175 mg/m² (C) and 225 mg/m² (O).](image)

Data are presented as mean values (symbol) ± S.D. (error bar).

<table>
<thead>
<tr>
<th>CrEL</th>
<th>GM</th>
<th>WRP</th>
<th>BRP</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>μM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.129</td>
<td>4.1</td>
<td>3.0</td>
<td>14</td>
</tr>
<tr>
<td>0.1</td>
<td>0.115</td>
<td>5.4</td>
<td>3.3</td>
<td>14</td>
</tr>
<tr>
<td>0.25</td>
<td>0.117</td>
<td>7.2</td>
<td>2.5</td>
<td>14</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0977</td>
<td>4.5</td>
<td>2.9</td>
<td>13</td>
</tr>
<tr>
<td>2.50</td>
<td>0.0750</td>
<td>9.2</td>
<td>0.77</td>
<td>14</td>
</tr>
<tr>
<td>5.00</td>
<td>0.0545</td>
<td>5.8</td>
<td>1.4</td>
<td>13</td>
</tr>
</tbody>
</table>

GM, grand mean of paclitaxel fu; WRP, within-run precision; BRP, between-run precision; n, total number of observations.

GM, grand mean of paclitaxel fu; WRP, within-run precision; BRP, between-run precision; n, total number of observations.
acceptable for analysis of patient samples in support of pharmacokinetic studies.

Patient Studies. The developed method was applied to plasma samples of three patients treated with paclitaxel at three different dose levels. Similar to our in vitro experiments, a distinct CrEL concentration and time dependence was noted for paclitaxel fu (Fig. 3). Logarithmic concentration-time profiles of paclitaxel Cu, and total paclitaxel in plasma and whole blood are shown in Fig. 4 (upper panel). Plasma AUC values of total paclitaxel increased disproportionally with dose from 10.2 ± 1.34 to 15.5 ± 1.38 and $31.8 \pm 5.40 \ \text{µM} \cdot \text{h}$ at dose levels of 135, 175, and 225 mg/m2, respectively, which is in excellent agreement with earlier studies (Gianni et al., 1995; Bhalla et al., 1999). Disproportionality was less pronounced with data based on fu and whole blood, as indicated by the respective clearance values as a function of the dose administered (Fig. 4; lower panel). The overall mean values for paclitaxel fu and whole blood clearance ($255 \pm 33.1 \ \text{l/h/m}^2$ (coefficient of variation: 13.0%) and $16.0 \pm 3.22 \ \text{l/h/m}^2$ (coefficient of variation: 20.1%), respectively) were relatively consistent in the three patients, suggesting minor interindividual variability. In addition, preliminary analysis showed that a linear two-compartment model could adequately describe the Cu versus time curves based on the Akaike information criterion ($r^2 = 0.99 \pm 0.01$; $P < .0001$), whereas linear models for total paclitaxel plasma data were significantly biased (not shown). The terminal disposition half-life of paclitaxel was similar between dose levels and analyzed matrices, with mean values of 6.54 ± 1.43 h (Cu), 7.10 ± 1.01 h (Cp), and 6.91 ± 0.97 h (Cb). In all, these findings, although preliminary, corroborate our hypothesis that the AUC of unbound paclitaxel should
be a linear function of the dose administered, in spite of the nonlinear disposition profile when only total paclitaxel plasma levels are considered (Sparreboom et al., 1999a). Mean plasma concentration-time profiles of Cremophor following paclitaxel administration are shown in Fig. 5. As expected, the apparent plasma clearance of Cremophor was dose-dependent, leading to changes in the pharmacokinetic behavior of paclitaxel. It is proposed that paclitaxel C should be monitored to further define relationships between drug exposure measures and pharmacodynamic outcome of treatment. Future studies will focus on this aspect in addition to the mechanism for the increased paclitaxel binding in the presence of Cremophor.

References

Fig. 5. Plasma concentration-time curves of Cremophor EL in 3 patients receiving three 3-hour infusions of the drug formulated at 6 mg/ml in a mixture of Cremophor-dehydrated ethanol USP (1:1, v/v) at dose levels of 135 mg/m² (), 175 mg/m² (○), and 225 mg/m² (●). Data are presented as mean values (symbol) ± S.D. (error bar).