ONTOGY OF VALPROIC ACID DISPOSITION AND METABOLISM: A DEVELOPMENTAL STUDY IN POSTNATAL LAMBS AND ADULT SHEEP

HARVEY WONG, SANJEEV KUMAR, DAN W. RURAK, EDDIE KWAN, FRANK S. ABBOTT, AND K. WAYNE RIGGS

Faculty of Pharmaceutical Sciences (H.W., S.K., E.K., F.S.A., K.W.R.) and British Columbia Research Institute for Children’s and Women’s Health, Department of Obstetrics and Gynecology, Faculty of Medicine (D.W.R.), The University of British Columbia, Vancouver, British Columbia, Canada

(Received December 24, 1999; accepted May 2, 2000)

This paper is available online at http://www.dmd.org

ABSTRACT:
The ontogeny of valproic acid (VPA) disposition and metabolism was investigated in developing lambs and adult sheep (Dorset or Suffolk breed). Specifically, we wished to investigate the role of glucuronidation and β-oxidation on VPA elimination during development. Catheters were implanted in a carotid artery, a jugular vein, and the urinary bladder in 10-day-old (10 d; n = 8), 1-month-old (1 M; n = 4), and 2-month-old lambs (2 M; n = 5). In adult sheep (n = 5), catheters were implanted in a femoral artery and vein. After the administration of a 10 mg/kg VPA i.v. bolus, serial blood samples and cumulative urine samples were collected for 36 h in the adult ewes and for 72 h in the lambs. Due to saturable protein binding, age-related differences in VPA clearance were more obvious when examining the total body clearance of unbound drug (Clu

Valproic acid (2-propylpentanoic acid, VPA) is a broad-spectrum anticonvulsant with a unique branched-chain fatty acid structure.

These studies were supported by funding from the Medical Research Council of Canada. H.W. was the recipient of a Pharmaceutical Manufacturers Association of Canada/Health Research Foundation and Medical Research Council of Canada Graduate Scholarship in Pharmacy. S.K. was the recipient of a University of British Columbia Graduate Fellowship. D.W.R. is the recipient of an investigatorship award from the British Columbia Children’s Hospital Foundation.

1 A part of this work was presented at the 1999 Annual Meeting of the American Association of Pharmaceutical Scientists (1999 Nov 14–18, New Orleans, LA) and is abstracted in Pharm Sci Suppl 1:3-222.

2 Abbreviations used are: VPA, valproic acid; 10 d, 10-day-old lambs; 1 M, 1-month-old lambs; 2 M, 2-month-old lambs; AUCmax, area under the curve of arterial plasma concentration-time profile; AUMCmax, area under the first-moment curve; Clr, renal clearance; Clrmax, renal clearance for unbound VPA; Cltb, total body clearance of the total drug; Cmax, total body clearance based on unbound drug concentrations; Cmax, maximal plasma concentration; fα, area weighted unbound fraction of the drug; MRT, mean residence time of the total drug; MRTmax, mean residence time of the unbound drug; t1/2p, terminal elimination half-life of drug; t1/2sb, terminal elimination half-life of unbound drug; Vdss, steady-state volume of distribution; Vdss, steady-state volume of distribution corrected for the effects of saturable protein binding; Vdss, steady-state volume of distribution for the unbound drug; (E)-2-ene VPA, 2-propyl-2-pentenoic acid; (E)-2-ene VPA, 2-propyl-2-pentenoic acid; 3-ene VPA, 2-propyl-3-pentenoic acid; 3-ene VPA, 2-propyl-3-pentenoic acid; 3-keto VPA, 2-propyl-3-oxopentanoic acid; 3-keto VPA, 2-propyl-3-oxopentanoic acid; 4-ene VPA, 2-propyl-4-pentenoic acid; 4-ene VPA, 2-propyl-4-pentenoic acid; 4-keto VPA, 2-propyl-4-oxopentanoic acid; 4-keto VPA, 2-propyl-4-oxopentanoic acid; 3-oxo VPA, 3-hydroxy VPA; 3-oxo VPA, 3-hydroxy VPA; 4-0H VPA, 4-hydroxy VPA; 5-0H VPA, 5-hydroxy VPA; 2-PSA, 2-propylsuccinic acid; 2-PGA, 2-propylglutaric acid.

Send reprint requests to: Dr. K.W. Riggs, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, B.C., Canada V6T 1Z3. E-mail: riggskw@unixg.ubc.ca

(Received December 24, 1999; accepted May 2, 2000)
considerations. Data obtained from different studies indicate that in humans, VPA metabolic clearance appears low in neonates, increases to a maximal level in children before decreasing to adult values (Levy and Shen, 1995). More systematic in vivo studies have been conducted in rats (Haberer and Pollack, 1994) and guinea pigs (Yu et al., 1985, 1987), showing progressive increases in VPA metabolic clearance with age. However, these studies do not address the issue of developmental changes in VPA metabolism and renal elimination of both the parent compound and its metabolites.

The purpose of this study is to systematically investigate age-related alterations in the disposition of VPA and its metabolites in postnatal lambs. Specifically, we wished to study developmental changes in VPA glucuronidation and \(\beta\)-oxidation, as they appear to be the primary pathways responsible for VPA elimination in essentially all species previously examined (Nau and Loscher, 1984). As well, developmental changes in renal excretion were examined. In the past, we have studied VPA pharmacokinetics in pregnant and newborn sheep and have found that the main metabolic pathways (i.e., glucuronidation, \(\beta\)-oxidation, and P-450-catalyzed pathways) and metabolites (i.e., VPA-glucuronide, 3-keto VPA) observed in humans are present in sheep (Kumar, 1998). Finally, the use of chronically catheterized lambs and adult sheep overcomes limitations in the available sampling volume of biological fluids associated with smaller animal models, and thus allows for more detailed studies.

Materials and Methods

Animals and Surgical Preparation. All studies were approved by the University of British Columbia Animal Care Committee, and the procedures performed on sheep conformed to the guidelines of the Canadian Council on Animal Care.

Adult Sheep. Five nonpregnant Dorset Suffolk crossbred ewes, with a body weight of 61.9 ± 7.3 kg (mean ± S.D.) were surgically prepared at least 3 days before experimentation. Polyvinyl catheters (Dow Corning, Midland, MI) were implanted in a femoral artery and vein (catheter i.d. 1.02 mm and o.d. 2.16 mm) as described by Kumar et al. (1999). On the morning of the experiment, a Foley bladder catheter was inserted via the urethra of the ewe and attached to a sterile polyvinyl bag for cumulative urine collection.

Postnatal Lambs. A total of 17 Dorset Suffolk crossbred lambs were used in this study. Lambs were divided into a 10-day-old group (10 d; \(n = 8\)), a 1-month-old group (1 M; \(n = 4\)), and a 2-month-old group (2 M; \(n = 5\)). All lambs were surgically prepared at least 3 days before the experiment under 1% isoflurane anesthesia. Briefly, polyvinyl catheters (Dow Corning) were implanted in a femoral artery and vein (catheter i.d. 1.02 mm and o.d. 2.16 mm). A third larger diameter catheter (i.d. 3.0 mm and o.d. 4.5 mm) was implanted in the urinary bladder via a lower abdominal midline incision. Catheters were flushed daily with ~2 ml of heparinized saline. After the recovery period (minimum of 3 days), the lambs were moved to monitoring pens adjacent to and in full view of their mothers. The urinary bladder catheter was allowed to drain by gravity into a sterile reservoir. While in the holding pens, lambs were fed Deluxe Lamb Milk Replacer (Canadian Nurs-ette Distributor Ltd., Canrose AB) and had free access to hay, grain, and water.
Ampicillin (500 mg) was administered i.m. to both adult sheep and postnatal lambs on the day of the surgery and for 3 days postoperatively.

Experimental Protocols. All sheep experiments involved administration of an i.v. bolus dose of VPA (Sodium Valproate; Sigma Chemical Co., St. Louis, MO) equivalent to 10 mg VPA/kg b.wt. All doses were prepared in sterile water for injection and were sterilized by filtering through a 0.22-μm nylon syringe filter (MSI, Westboro, MA) into a capped empty sterile injection vial. The dose was administered over 1 min via the jugular vein (lambs) or femoral vein (ewes). Postnatal lamb experiments were initiated at approximately 10 days, 1 month, or 2 months after birth, depending on which group the lambs had been assigned to. For postnatal lambs, serial blood samples (–2 ml) were collected from the carotid artery at 5, 15, 30, 45, 60 min, and 2, 4, 6, 9, 12, 24, 36, 48, 60, and 72 h after drug administration. Serial blood samples (~3 ml) were collected for adult sheep from the femoral artery at 5, 15, 30, 45, 60 min, and 2, 4, 6, 9, 12, 15, 24, and 36 h after drug administration. Cumulative urine was also collected for both adult sheep and postnatal lambs for the full duration of the experiment (i.e., 72 h for lambs and 36 h for adult sheep). The only exceptions were the entire 1 month group (n = 4), four lambs in the 10 d group, and one lamb in the 2 M group, where urine collection was incomplete due to catheter failure; these were excluded from data analysis.

All blood samples collected were placed into heparinized Vacutainer tubes (Becton-Dickinson, Rutherford, NJ) and centrifuged at 2000 g for 10 min. The plasma supernatant was removed and placed into clean borosilicate test tubes with polytetrafluoroethylene-lined caps. Plasma and urine samples were stored frozen at -20°C until the time of analysis.

Determination of VPA Plasma Protein Binding. Unbound plasma concentrations of VPA were determined ex vivo in all adult sheep and postnatal lamb plasma samples by an ultrafiltration procedure at sheep body temperature (39°C). The procedure involved centrifuging at 1000g for 30 min using Centrífree micropartition devices (Amicon, Inc., Danver, MA). Plasma samples for the determination of unbound VPA concentrations were stored in separate aliquots so as to avoid repetitive thawing that could result in lipolysis and release of free fatty acids and hence competitive displacement of bound VPA from plasma binding sites (Haberer and Pollack, 1994).

Drug and Metabolite Assay. Concentrations of VPA and its metabolites in all biological fluids and plasma ultrafiltrate were measured using an established gas chromatographic-mass spectrometric analytical method (Yu et al., 1995). Concentrations of the VPA-glucuronide metabolite in both adult and lamb urine were measured using a base hydrolysis procedure described as follows. Urine samples were adjusted to pH 12.5, incubated at 60°C for 1 h, and the total VPA (unconjugated + conjugated) was quantified by the above gas chromatographic-mass spectrometric analytical method. The concentration of the VPA-glucuronide metabolite was estimated as the difference between total and unconjugated (unhydrolyzed) VPA concentrations. This described procedure was preferred over hydrolysis with β-glucuronidase because VPA-glucuronide has been shown to rearrange to at least six β-glucuronidase-resistant structural isomers via migration of the acyl moiety away from the C-1 position and subsequent ring opening, mutarotation, and lactone formation (Dickinson et al., 1984). These rearrangements are pH-, temperature-, and storage time-dependent (Dickinson et al., 1984). Hydrolysis with alkali, however, is capable of measuring total VPA-glucuronide in spite of these possible rearrangements (Dickinson et al., 1984).

Pharmacokinetic Analyses. Pharmacokinetic parameters were calculated by standard methods as described in Gibaldi and Perrier (1982). Terminal elimination half-life of the total (t1/2b) and unbound (t1/2ub) VPA in plasma were obtained from a two-compartment model fitting of the data using the
Parameters \(f_p \) (area weighted unbound fraction of the drug) and \(V_{dss} \) total and unbound drug were calculated by the linear trapezoid rule. Vdss is a total and unbound drug parameter corrected for the effects of saturable protein binding) were also calculated as follows:

Due to the nonlinear/saturable nature of VPA plasma protein binding, the parameters \(f_p \) (area weighted unbound fraction of the drug) and \(V_{dss} \) (steady-state volume of distribution parameter corrected for the effects of saturable protein binding) were calculated as follows:

\[
f_p = \frac{\text{AUC}_{un} \text{ (unbound VPA)}}{\text{AUC}_{total} \text{ (total VPA)}}
\]

\[
V_{dss} = f_p V_d^{un}
\]

For drugs exhibiting saturable protein binding, the steady-state volume of distribution parameter \(V_d^{un} \) when calculated using the ‘model independent’ approach (Gilbaldi and Perrier, 1982) overestimates the “true” \(V_d \), and is concentration-dependent (McNamara et al., 1983). Similarly, steady-state volume of distribution for the unbound drug (\(V_d^{un} \)) is constant only for a particular \(f_p \) value and can be used to relate steady-state plasma concentrations to the amount of drug in the body if steady-state unbound fraction of the drug is equal to \(f_p \) (McNamara et al., 1983). Thus, both \(V_d \) and \(V_d^{un} \) are poor indicators of drug distribution. Instead, the \(V_{dss} \) parameter is more reflective of shifts in drug mass into or out of the vascular space (i.e., information traditionally provided by the \(V_d \) parameter) (McNamara et al., 1983). As with \(V_d^{un} \) above, this \(V_{dss} \) parameter is also constant only for a particular \(f_p \) or a steady-state plasma unbound fraction equivalent to \(f_p \).

Statistical Analysis. All data are reported as mean ± S.D. Pharmacokinetic parameters were compared using ANOVA followed by a Fisher’s Least Significant Difference multiple comparison test. The significance level was \(P < .05 \) in all cases.

Results

Pharmacokinetics of VPA in Postnatal Lambs and Adult Sheep.

Average age of the postnatal lamb groups on the day of their experiments was 10.9 ± 1.4 days for the 10 d group, 30 ± 1.4 days for the 1 M group, and 60.0 ± 1.0 days for the 2 M group. Mean adult ewe body weight was 61.9 ± 7.3 kg, and mean lamb body weights were 5.8 ± 1.4 kg (10 d), 9.4 ± 1.7 kg (1 M), and 13.2 ± 2.1 kg (2 M). Figure 2, A–D, are semilogarithmic plots of mean VPA (unbound and total) concentration versus time for all age groups. After the administration of a 10 mg/kg VPA i.v. bolus, mean plasma levels at the first sampling time (i.e., 5 min after drug administration) were at or near the human therapeutic range (i.e., 50–100 μg/ml). Total and unbound VPA plasma profiles in lambs and adult sheep appeared to be biexponential in nature. In addition, VPA plasma protein binding was saturable (nonlinear) for all age groups. At the first sampling point, where measured VPA concentrations were the greatest (i.e., mean VPA concentration range 48–73 μg/ml), the mean unbound fraction was 0.37 ± 0.11 in 10 d lambs, 0.34 ± 0.12 in 1 M lambs, 0.22 ± 0.04 in 2 M lambs, and 0.22 ± 0.05 in adult sheep. Characteristic of nonlinear plasma protein binding, unbound fractions proceeded to decline with decreasing VPA concentrations in all animals such that at 12 h after drug administration (mean VPA concentration range 2–15 μg/ml), the mean unbound fraction in plasma was 0.11 ± 0.09 in 10 d lambs, 0.06 ± 0.01 in 1 M lambs, and 0.04 ± 0.02 in 2 M lambs and adult sheep.

Figure 3 depicts age-related changes in VPA total body clearance for both total and unbound drug. VPA clearance for total (\(Cl_{tb} \)) and unbound (\(Cl_{un}^{un} \)) drug increased significantly from 10 d values, reaching a maximum in 2 M lambs, before decreasing to adult levels (Fig. 3, Table 1). Due to the nonlinear nature of VPA plasma protein binding, differences in clearance were more evident when examining unbound drug concentrations (Fig. 3). Additional pharmacokinetic parameters for unbound and total VPA for all age groups are presented in Table 1. As with total body clearance, age-related alterations in \(t_{1/2b} \) and mean residence time (MRT) were more pronounced for unbound VPA. Both \(r_{1/2b} \) and MRT\(^a \) (mean residence time of unbound drug) were significantly longer for 10 d lambs than for other age groups. No differences in \(V_d \) and \(V_d^{un} \) were observed between age groups; however, \(V_d^{ss} \) was significantly lower in the 10 d lambs. Furthermore, the \(f_p \) value was significantly higher in 10 d lambs when compared with the corresponding values from the other age groups.

VPA Metabolites in Postnatal Lamb and Adult Sheep Plasma.

Plasma samples collected from postnatal lambs and adult sheep were analyzed for VPA metabolites generated from fatty acid β-oxidation [(E)-2-ene, 2-n-propyl-3-pentenoic acid ([E]-3-ene VPA), and 3-keto VPA], cytochrome P-450-mediated desaturation (4-ene VPA), and

Table 1

<table>
<thead>
<tr>
<th>Age</th>
<th>Total VPA</th>
<th>Unbound VPA</th>
<th>(f_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Cl_{tb})</td>
<td>(t_{1/2b})</td>
<td>MRT (h)</td>
</tr>
<tr>
<td>10 d (n = 8)</td>
<td>0.55 ± 0.38</td>
<td>7.0 ± 3.4</td>
<td>10.0 ± 4.9*</td>
</tr>
<tr>
<td>1 M (n = 4)</td>
<td>0.50 ± 0.27</td>
<td>5.2 ± 1.1</td>
<td>7.2 ± 1.9</td>
</tr>
<tr>
<td>2 M (n = 5)</td>
<td>1.40 ± 0.58</td>
<td>2.6 ± 0.7</td>
<td>3.5 ± 1.1</td>
</tr>
<tr>
<td>Adult (n = 5)</td>
<td>0.70 ± 0.31</td>
<td>4.2 ± 2.0</td>
<td>5.7 ± 2.8</td>
</tr>
</tbody>
</table>

* Statistically different from adult age group \(P < .05 \).

\(^{\text{a}}\) Statistically different from 1 M, 2 M, and adult age groups \(P < .05 \).
hydroxylation and subsequent oxidation [3-hydroxy VPA (3-OH VPA), 4-hydroxy VPA (4-OH), 5-hydroxy VPA (5-OH), 2-α-propyl-4-oxopentanoic acid (4-keto VPA), 2-propylsuccinic acid (2-PSA), and 2-propylglutaric acid (2-PGA)]. The diunsaturated metabolites (see Fig. 1) were not observed in both preliminary experiments in this study or in previous studies with fetal, newborn, and pregnant sheep (Kumar, 1998), and thus were not monitored. The main metabolites observed in lamb and adult sheep plasma were the β-oxidation metabolites 3-keto and (E)-2-ene VPA. This was followed by the cytochrome P-450-generated 4-OH VPA. Figure 4, A–C, shows mean plasma profiles of these three metabolites for lambs and adult sheep after i.v. bolus administration of the drug. The maximal plasma concentration (C_{max}), time of occurrence of the maximal plasma concentration (t_{max}), and AUC_{o-\infty} for the three mentioned metabolites are presented in Table 2. In general, metabolite profiles appeared to be more similar between 10 d and 1 M lambs in comparison to 2 M lambs and adult sheep. All three metabolites could be detected for a longer period of time in the younger animal groups (10 d and 1 M). The C_{max} of 3-keto and (E)-2-ene VPA were both significantly higher in 10 d and 1 M lambs when compared with 2 M lambs and adult sheep (Table 2). Also, the mean t_{max} values of 3-keto, (E)-2-ene, and 4-OH VPA were significantly longer for the 10 d group than for all the other age groups. Mean 3-keto AUC_{o-\infty} values were significantly larger (~7- to 10-fold) for the two younger age groups (i.e., 10 d and 1 M). Similarly, AUC_{o-\infty} estimates for (E)-2-ene and 4-OH VPA were also significantly larger in the two younger groups (i.e., ~13- to 16-fold for (E)-2-ene VPA and ~3- to 5-fold for 4-OH VPA). Accurate estimates of AUC_{o-\infty} could not be obtained for 5-OH, (E)-3-ene, 4-ene, and 4-keto VPA due to their low plasma concentrations (i.e., C_{max} values of <0.2 μg/ml). Plasma concentrations of 3-OH VPA, 2-PGA, and 2-PSA were almost always below the lower limit of quantification of the assay (Yu et al., 1995).

Urinary Excretion of VPA and its Metabolites. Urinary recovery of the VPA dose as the parent compound and its metabolites for 10 d, 2 M, and adult sheep is presented in Table 3. The majority of the administered dose was recovered in urine as VPA, VPA-glucuronide, 3-keto VPA, and 4-OH VPA. All other metabolites (3-OH, 5-OH, (E)-2-ene, (E)-3-ene, 4-ene, 4-keto VPA, 2-PSA, and 2-PGA) individually accounted for less than 1% of the administered dose in all age groups. When added together, these minor metabolites combined to account for 1.1 ± 0.6% of the dose in 10 d lambs, 1.4 ± 0.2% of the dose in 2 M lambs, and 2.2 ± 0.9% of the dose in adult sheep. For both 2 M lambs and adult sheep, essentially the entire dose was recovered in urine during the experimental period with the major component being in the form of the glucuronide metabolite (Table 3). However, for 10 d lambs, only ~50% of the dose could be accounted for. The percentage of the dose recovered as the parent compound was significantly lower in lambs when compared with adult sheep. Similarly, recovery of the parent compound as VPA-glucuronide and 4-OH VPA was significantly less in 10 d lambs. No differences were found in the percentage of the dose excreted in urine as 3-keto VPA.

Figure 5A depicts age-related alterations in renal clearance for unbound (Cl_u,*) and total VPA (Cl_r). As with total body clearance, changes in VPA renal clearance were more apparent when examining unbound drug concentrations. Consistent with the mass balance data mentioned above, renal clearance estimates for unbound VPA from both lamb groups (10 d Cl_u,* = 0.28 ± 0.02 ml/min/kg and 2 M Cl_u,* = 0.39 ± 0.21 ml/min/kg) were significantly lower than adult values (0.97 ± 0.43 ml/min/kg). Figure 5B displays changes in Cl_r of 3-keto and 4-OH VPA with age. Similar to unbound VPA, Cl_r of both of these metabolites increased significantly with age, reaching adult levels by 2 months after birth. Renal clearance values were not calculated for other metabolites due to either their low plasma concentrations and/or trace levels excreted in urine.

Discussion

The results of this study indicate that VPA plasma protein binding is nonlinear in nature at therapeutic concentrations for all age groups. This is consistent with previous observations in sheep (Kumar, 1998), rats (Haberer and Pollack, 1994), guinea pigs (Yu and Shen, 1992),
clearance in 10 d lambs is reflected in the longer observed in humans where metabolic clearance is lowest in newborns, decreasing to adult levels. This pattern of change is similar to what is greater (\(\text{ene} \)) VPA Cmax values for 10 d and 1 M lambs were significantly appeared to persist longer in the two younger animal groups as evident dogs, rats, and mice (Nau and Loscher, 1984). All three metabolites metabolites in plasma is similar to previous observations in humans, \(E\)-2-ene VPA as the two most prominent \(-\)oxidation metabolites, 3-keto and \((-\)E\))-.2-ene, and 3-ene VPA) were observed in children <2 years of age in comparison to children >2 years of age. Also, 4-OH VPA concentrations, although not significant, were slightly higher in children <2 years of age. The higher observed \(AUC_{\text{vss}}\) values for the 3-keto, \((E)\)-2-ene, and 4-OH VPA in the younger lambs may be related to either an increased formation and/or a reduced elimination of the mentioned metabolites.

As a component of this study, we examined postnatal development in VPA renal elimination. As mentioned, VPA \(C_{\text{pl}}\) increased progressively with age. The mechanisms responsible for the tubular secretion of organic acids are not fully functional in late gestational lamb (Jones and Stapleton, 1992). We have observed in previous studies, using pregnant sheep, that the urinary excretion of acidic compounds such as indomethacin (Krishna et al., 1995) and VPA (Kumar, 1998) by the fetal lamb is limited. Thus, the postnatal increase in VPA \(C_{\text{pl}}\), may be a result of the development of mechanisms responsible for the tubular secretion of organic acids. This study indicates that by 2 months of age, VPA \(C_{\text{pl}}\), has not yet reached adult levels (Fig. 5A). The significantly lower \(C_{\text{pl}}\), in 10 d and 2 M lambs is reflected in the lower percentage of the dose recovered as the parent compound in postnatal lamb urine when compared with adult sheep (Table 3). Renal excretion of unchanged VPA accounts for a larger percentage of the administered dose in sheep (\(\sim\)12% in adult) in comparison with humans (\(\sim\)3%) (Levy and Shen, 1995). This observed difference has been previously attributed to species differences in VPA renal clearance (Kumar, 1998). Despite playing a larger role in sheep, renal excretion of the unchanged drug remains a minor route of elimination.

VPA-glucuronide is by far the major metabolite recovered in urine, accounting for \(\sim 74\%\) of the dose in adult sheep. This is at the high end of the range of values previously reported for humans (10–70%) (Gugler et al., 1977; Dickinson et al., 1989; Levy et al., 1990). The percentage of the dose metabolized via glucuronidation appears to increase with age. Our data in 10 d lambs indicates that a significantly smaller portion of the dose is recovered as VPA-glucuronide (i.e., \(\sim 29\%\)) in younger animals. This is in excellent agreement with previous studies in 1-day-old lambs, where \(\sim 28\%\) of the administered dose was recovered as the glucuronide metabolite (Kumar, 1998). A similar phenomenon was observed in studies involving acetaminophen, where the percentage of the dose that was glucuronidated in newborn lambs (46 ± 11%) was less in comparison to the adult (64 ± 4%) (Wang et al., 1990). By 2 months of age, recovery of VPA-glucuronide in urine accounts for \(\sim 75\%\) of the administered dose,
suggested using rat hepatic S9 fractions (Chen et al., 1996), there are no detailed studies examining the role of glucuronidation in overall VPA elimination early on in development. Our data suggests that glucuronidation may play an important role in changes in VPA disposition that occur during the first 2 months of life.

Approximately 11% of the administered dose was recovered in adult sheep urine as the β-oxidation metabolite, 3-keto VPA. In contrast with VPA-glucuronide, this is at the lower end of the range of values previously reported for humans (10–60%) (Dickinson et al., 1989; Levy et al., 1990; Sugimoto et al., 1996). Recovery of the dose in nonpregnant sheep urine as 3-keto VPA is substantially larger than corresponding values in pregnant sheep (~1.6%) (Kumar, 1998). This difference may be related to reductions in β-oxidation activity associated with pregnancy (Grimbert et al., 1993). No developmental changes with age were observed when examining mass balance data for the 3-keto metabolite. In fact, a similar percentage of the administered VPA dose was recovered in studies involving 1-day-old lambs (~11%) (Kumar, 1998). Thus, it appears that β-oxidation activity is substantially developed early on in life. This observation is consistent with findings that β-oxidation activity increases dramatically during the first few hours after birth and may reach levels exceeding that of the adult within 1 day (Krahling et al., 1979; Duee et al., 1985; De Vivo et al., 1991). In contrast, the percentage of the dose recovered in urine as 4-OH VPA increased ~3-fold from 10 d lambs to adult sheep, suggesting postnatal development of cytochrome P-450-mediated metabolism. Despite the observed increases, the cytochrome P-450 pathway remains relatively unimportant in terms of overall VPA elimination.

Overall, the entire administered dose was essentially recovered in 2 M lambs and adult sheep. In contrast only ~50% of the dose was excreted in urine by 10 d lambs. This is similar to the observations in 1-day-old lambs where ~30 to 50% of the total VPA dose could not be accounted for (Kumar, 1998). Thus, it is possible that additional routes of metabolism, which are responsible for the elimination of a significant portion of the administered VPA dose, are present during the newborn period.

Examination of the Clr of 3-keto and 4-OH VPA revealed age-related increases in this parameter. By 2 months of age, the Clr values of these two metabolites appear to be at adult levels. The reduced Clr of these metabolites in 10 d animals may play a role in the significantly larger metabolite AUCo-∞ values observed for 3-keto and 4-OH VPA in the younger animals.

In summary, age-related alterations in VPA clearance for unbound and total drug in developing lambs appears to follow a pattern similar to what is observed in humans. The mass balance urine data suggests that these changes in clearance may be largely related to postnatal development of enzymes involved in VPA glucuronidation. Further investigations are needed to fully understand the impact of age-related alterations in glucuronidation on VPA elimination.

Acknowledgments. We thank Nancy Gruber for her assistance with the animal surgeries.

References

Table 3

Recovery of VPA and its metabolites as a percentage of the total dose in 10 d, 2 M, and adult sheep after administration of a 10 mg/kg i.v. bolus

<table>
<thead>
<tr>
<th>Drug or Metabolite</th>
<th>% of Administered Dose Recovered in Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 d (n = 4)</td>
</tr>
<tr>
<td>VPA</td>
<td>5.6 ± 1.1*</td>
</tr>
<tr>
<td>VPA-glucuronide</td>
<td>29.2 ± 16.0b</td>
</tr>
<tr>
<td>3-keto</td>
<td>12.6 ± 9.8</td>
</tr>
<tr>
<td>4-OH VPA</td>
<td>0.6 ± 0.4a</td>
</tr>
<tr>
<td>Other*</td>
<td>1.1 ± 0.6</td>
</tr>
<tr>
<td>% of Dose Recovered</td>
<td>49.1 ± 25.6</td>
</tr>
</tbody>
</table>

* Statistically different from adult age group (P < .05).

* Statistically different from 2 M and adult age groups (P < .05).

* Includes 3-OH, 5-OH, (E)-2-ene, (E)-3-ene, 4-ene, 4-keto VPA, 2-PSA, and 2-PGA.

