IDENTIFICATION OF NOVEL GLUTATHIONE TRANSFERASES AND POLYMORPHIC VARIANTS BY EXPRESSED SEQUENCE TAG DATABASE ANALYSIS

John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia (P.G.B., G.C., L.J., N.T., A.C.B.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (H.-F.T., M.W.A.)

ABSTRACT:

The human expressed sequence tag (EST) database can be searched by different sequence alignment strategies to identify new members of gene families and allelic variants. To illustrate the value of database analysis for gene discovery, we have focused on the glutathione S-transferase (GST) superfamily, an approach that has led to the identification of the Zeta class. The Zeta class GSTs catalyze the glutathione-dependent biotransformation of \(\alpha \)-haloacids and the isomerization of maleylacetacetocid acid to furumylacetacetocid acid, an essential step in the catabolism of tyrosine.

The human expressed sequence tag (EST\(^1\)) database contains in excess of 1.6 million partial cDNA sequences. These sequences have been obtained from over 200 cDNA libraries prepared from most tissues. The EST database therefore contains cDNA sequences from a large proportion of the genes expressed in human tissues. Since the cDNA libraries have been prepared from tissues obtained from different individuals, the database also contains polymorphic variants of many genes. Thus, the application of bioinformatic searching strategies to the vast amount of information contained within the EST database can reveal new members of gene families and polymorphic variants of previously discovered genes. Although this approach could be used for many gene families, it is particularly valuable for pharmacogenetic studies wherein it is important to identify variants that may have unusual capacities for the metabolism of xenobiotics and therapeutic agents.

In several experiments carried out to illustrate the value of EST database analysis, we have focused our attention on the glutathione transferase (GST) gene family (Board et al., 1997; Blackburn et al., 2000). The GSTs are a large family of phase II enzymes that conjugate glutathione to a wide range of generally hydrophobic and electrophilic compounds including many carcinogens, therapeutic drugs, and the products of oxidative metabolism. Genetic factors that modulate GST expression and function can be clinically important. Overexpression of certain GSTs in tumors has been shown to contribute to drug resistance, and genetically determined deficiencies of the GST\(M1 \) or GST\(T1 \) genes have been shown to be risk factors for several cancers.

\(^1\)Abbreviations used are: GST, glutathione transferase; EST, expressed sequence tag; MAAI, maleylacetacetocid isomerase.

Send reprint requests to: P. G. Board, Molecular Genetics Group, John Curtin School of Medical Research, P.O. Box 334, Australian National University, Canberra ACT 2601, Australia. E-mail: Philip.Board@anu.edu.au

Allelic variants of the GST\(Z1 \) and GST\(A2 \) genes have also been identified by EST database analysis. One GST\(Z1 \) variant (GST\(Z1A \)) has significantly higher activity with dichloroacetic acid as a substrate than other GST\(Z1 \) isoforms. This variant may be important in the clinical treatment of lactic acidosis where dichloroacetic acid is prescribed. Our experience with the application of EST database searching methods suggests that it may be productively applied to other gene families of pharmacogenetic interest.

Materials and Methods

The BLAST Programs Used in These Studies (Altschul et al., 1998) are available online from the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov) and can be used to efficiently search sequence databases by aligning a query sequence with all entries in the database.

Identification of New GST Classes. A variant of the BLAST program, tblastn, can be used to search translations of nucleotide databases with protein sequence. Because of the degeneracy of the genetic code, searching for homologs across wide evolutionary distances has greater sensitivity if protein sequence is used as the query sequence.

To determine whether GST-like proteins identified in lower species have counterparts in humans, we used the tblastn program to search the human EST database with sequences from several plants and insects. The default parameters for the BLAST search were retained, and the similar ESTs thus identified were studied in further detail to determine whether they represented novel or previously identified GSTs. Subsequently, where there was evidence of multiple clones encoding a previously undescribed sequence, a representative EST clone was sequenced completely.
Identification of Alloptic Variants. To search the EST database for alloptic variants of a particular gene, the complete cDNA sequence was used as the query sequence in the blast program using the default settings. The output of the program used the “flat query-anchored with identities” format, which allows rapid visual scanning of the aligned nucleotides for variation.

Results and Discussion

Identification of the Zeta Class GSTs. A BLAST search of the human EST database with the amino terminal sequence of a GST-like protein identified in carnitine (Dianthus caryophyllus) petals (Meyer et al., 1991) revealed a number of similar clones from several cDNA libraries derived from a range of tissues including brain, breast, fibroblast, heart, liver, melanocyte, placenta, skeletal muscle, and pancreas (Board et al., 1997). A representative EST clone (N31040) was completely sequenced and was found to contain an open reading frame encoding 216 residues with a deduced molecular size of 24166 Da. The size of the encoded peptide falls well within the range of the previously described cytosolic GST subunits (Board et al., 1997).

To determine whether this human clone represented a new member of the GST gene family, the amino acid sequence was aligned with representative sequences from previously described GST classes in humans and other species (Board et al., 1997). Phylogenetic analysis based on that alignment clearly demonstrated that the human GST clone and the carnation sequences were closely related to each other, and more distantly related to previously described members of the GST super family. As a result of these studies, it was concluded that GST Z1 provides an explanation for its conservation and expression in such a wide range of species.

BLAST searches of additional databases using the human EST sequence and the carnation sequence have revealed additional members of the Zeta class in a range of species including mouse (AA509394), trout (T23113), Caenorhabditis elegans (Z66560), Drosophila melanogaster (AA978569), Emericella nidulans (AJ001837), carnation, M64268; wheat (AF002211); Arabidopsis thaliana (T88643); rice (D39408); cotton (A055342); human Theta (GST T2) L38503; human Pi (GST P1) X15480; human Mu (GST M2) M63509; and human Alpha (GST A1) M15872.

Identification of Alloptic Variation by Database Analysis. Allelic variants that alter the substrate specificity, reaction kinetics, or stability of an enzyme can be of particular clinical significance and result in increased or decreased drug clearance, drug toxicity, and susceptibility to environmental carcinogens or toxins. Identification of such variants has often been dependent on the detection of an associated phenotype or the chance sequencing of a variant cDNA. Thus, many variants may exist that have not been discovered and characterized.

Because of the number of sequences and the number of individuals...
represented in the EST database, it provides an excellent resource to screen for genetic variation in most frequently expressed genes. In developing a strategy to detect allelic variation embedded in the EST database, we have again used the BLAST programs. In this case, we have used complete cDNA sequences as the query sequence and the database, we have again used the BLAST programs. In this case, we have used complete cDNA sequences as the query sequence and the Blastn alignment option. The output is selected in the “flat query-anchored with identities” format that places the query sequence at the top and aligns all the matched sequences below (Fig. 2). Comparison of the vertical columns rapidly reveals base substitutions that differ from the query sequences and can be evaluated as potential polymorphisms. However, because the EST sequences are generated by single pass automated sequencing, many of the deposited sequences contain errors that generate false positives in the search for polymorphisms. If it is assumed that the sequencing errors are random, then the number of positive positions can be substantially reduced to those that show the same base substitution in more than one EST sequence. Unfortunately, this step tends to limit the detection of rare variants. Figure 2 shows sample data of this type obtained with the human GST Z1 cDNA. In this alignment, there are several examples of single base substitutions that are excluded from further study. However, at nucleotides 94 and 124, the A to G substitutions are clearly identified at positions 94 and 124.

Polymorphism of GST Z1. This EST approach has led us to identify a number of polymorphic sites in GST Z1. As shown in Table 1, each allele that has been identified so far has a different combination of nucleotide changes that give rise to amino acid substitutions. Each of these variants reaches polymorphic frequencies in the Australian European population (Blackburn et al., 2000).

Expression of recombinant isoenzymes with the different substitutions has facilitated the determination of their enzymatic activity. Table 1 shows that GST Z1A-1A appears to have significantly higher activity with dichloroacetic acid than the other isoforms. This correlates with the presence of Arg at position 42. A recent study suggests that dichloroacetic acid inactivates Zeta class GSTs (Cornett et al., 1999), and our data indicate that the higher activity of GST Z1A-1A may be due to increased resistance to substrate-mediated inactivation (Tzeng et al., 2000).

Fig. 2. The alignment of human EST sequences with a portion of the GST Z1 cDNA.

Nucleotides are represented as follows: dots, identical; n, ambiguous; spaces, gaps or where there is no sequence information. Polymorphisms are clearly indicated at positions 94 and 124.

TABLE 1

Activity of recombinant GST Z1 variants towards dichloroacetic acid

<table>
<thead>
<tr>
<th>Allele</th>
<th>Haplotype</th>
<th>Specific Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST Z1</td>
<td>A</td>
<td>Lys 32, Arg 42, Thr 82</td>
</tr>
<tr>
<td>GST Z1</td>
<td>B</td>
<td>Lys 32, Gly 42, Thr 82</td>
</tr>
<tr>
<td>GST Z1</td>
<td>C</td>
<td>Glu 32, Gly 42, Thr 82</td>
</tr>
<tr>
<td>GST Z1</td>
<td>D</td>
<td>Glu 32, Gly 42, Met 82</td>
</tr>
</tbody>
</table>

Alpha Class Variants. We have also screened the EST database for allelic variants in the Alpha class GSTs. There are three members of the human Alpha class for which full cDNA sequences are known (GST A1, GST A2, and GST A4). So far, two variants in GST A2 have been confirmed. These polymorphisms result in Thr112Ser and Glu210Ala substitutions that reach polymorphic frequencies in the Australian European populations.

Limitations Associated with EST Database Analysis. Our strategy for the analysis of the EST database for allelic variants has used readily available BLAST programs and simple rules for the elimination of false positives. While this approach has obvious advantages, such as simplicity and demonstrable productivity, there are a number of disadvantages and limitations that should be recognized.

1. The cDNA that is being studied must be present in libraries from a number of different tissues to ensure that the clones searched are derived from as many individuals as possible. The more clones identified in different libraries, the greater the sensitivity of the search. Rare variants will be missed by this procedure, as they will probably be attributed to sequencing errors.

2. There is little information available on the ethnic origin of the tissues used to construct the cDNA libraries represented in the database. Some variants that are frequent in one ethnic group may be rare or absent in another.

3. As the ESTs are only sequenced from the 5' and 3' ends, there are relatively few sequences covering the central regions of large cDNAs, thus lowering the probability of detecting variation in these areas.

Recent studies in other laboratories have also recognized the potential of EST database analysis for the identification of polymorphisms (Buetow et al., 1999; Forsberg et al., 1999). Buetow et al. (1999) have generated a series of computer programs termed the SNPpipeline to specifically carry out this analysis. In preliminary studies using these programs and our own BLAST-based strategies, we found that while some polymorphisms were identified by both procedures, some were only detected by one procedure. Thus, we conclude that an eclectic approach is possibly the most reliable.

References

