FUNCTIONAL ANALYSIS OF THE HUMAN VARIANTS OF BREAST CANCER RESISTANCE PROTEIN: I206L, N590Y, AND D620N

R. Robert Vethanayagam, Honggang Wang, Anshul Gupta, Yi Zhang, Fred Lewis, Jashvant D. Unadkat, and Qingcheng Mao

Department of Pharmaceutics, School of Pharmacy (R.R.V., H.W., A.G., Y.Z., J.D.U., Q.M.), and Department of Immunology, School of Medicine (F.L.), University of Washington, Seattle, Washington

Received January 10, 2005; accepted February 25, 2005

ABSTRACT:

Previous studies have shown that the V12M and Q141K variants of breast cancer resistance protein (BCRP) can affect expression and function of the transporter. In this study, the effects of the I206L, N590Y, and D620N variants on protein expression, plasma membrane localization, and transport activity of BCRP were investigated. Wild-type BCRP and the three variants were stably expressed in human embryonic kidney (HEK) cells. Confocal microscopy analysis showed that the three variants were predominantly routed to the plasma membrane of HEK cells. The expression level of I206L in the plasma membrane was approximately 45% of that of wild-type protein, whereas the N590Y and D620N levels were increased approximately 3.6-fold and 2.4-fold, respectively, as determined by immunoblotting. All three variants transported mitoxantrone, pheophorbide a, and BODIPY FL-prazosin. After normalization for differences in BCRP expression, I206L, N590Y, and D620N exhibited approximately 2-fold, 0.3-fold, and 0.5-fold wild-type efflux activities, respectively. The variants also conferred resistance to mitoxantrone and topotecan. Mitoxantrone and topotecan resistance by I206L and N590Y was approximately 2-fold and 0.3-fold of the wild-type BCRP resistance levels, respectively. Although D620N conferred a topotecan resistance similar to that of the wild-type protein, its level of mitoxantrone resistance was decreased by 50%. After normalization to BCRP expression levels, ATPase activities of I206L were not significantly different from those of wild-type protein, whereas N590Y and D620N exhibited approximately 30% and 50% of wild-type ATPase activities, respectively. These results suggest that I206L has the lowest protein expression and the highest activity, whereas N590Y and D620N display higher expression and lower activity, relative to wild-type BCRP.

Human BCRP (ABCG2) is a 72-kDa efflux drug transporter belonging to the subfamily G of the ABC transporter superfamily (Allikmets et al., 1998; Doyle et al., 1998; Miyake et al., 1999). Previous studies have shown that BCRP confers high levels of resistance to anticancer drugs including mitoxantrone, topotecan, and methotrexate by enhanced drug efflux (Litman et al., 2000; Bates et al., 2001; Doyle and Ross, 2003). In addition to chemotherapeutic agents, BCRP is an active transporter of organic anions with diverse chemical structures such as estrone-3-sulfate and 17β-estradiol 17β-d-glucuronide (Imai et al., 2003; Suzuki et al., 2003). BCRP also plays an important role in disposition of drugs including topotecan, irinotecan, and methotrexate, as demonstrated in both animal and clinical studies (Jonker et al., 2000, 2002; Kruijtzer et al., 2002; van Herwaarden et al., 2003; Breedveld et al., 2004; Stewart et al., 2004). This role is consistent with the high-level expression of BCRP in organs of absorption (small intestine), elimination (liver and small intestine), and distribution (placenta and the blood-brain barrier) of drugs (Maliepaard et al., 2001). Furthermore, BCRP may protect tissues or fetus from toxicities of chemotherapeutics and/or potentially harmful endogenous substances. For example, it has been demonstrated that BCRP protects hematopoietic stem cells under hypoxic conditions by preventing the accumulation of heme that causes mitochondrial death (Krishnamurthy et al., 2004). Therefore, naturally occurring mutations that alter BCRP expression and/or function could affect the pharmacokinetic properties of substrate drugs and influence the tissue-protective role of this transporter.

In recent years, a variety of single nucleotide polymorphism variants of BCRP have been identified in DNA samples of ethnically diverse origins (Honjo et al., 2002; Imai et al., 2002; Zamber et al., 2003; Kondo et al., 2004; Mizuarai et al., 2004). Two variants, V12M and Q141K, occurred at particularly high allele frequencies in Chinese and Japanese populations (30–60%) and at relatively lower allele frequencies in white people and African-Americans (5–26%) (Zamber et al., 2003). Other variants such as I206L, N590Y, and D620N are generally much less frequent, with allele frequencies of approximately 1% or less (Honjo et al., 2002; Zamber et al., 2003). In vitro functional studies have already demonstrated alterations in expression and function of several BCRP single nucleotide polymorphisms. For instance,
Q141K seems to be associated with reduced protein expression compared with wild-type BCRP in mammalian expression systems (Imai et al., 2002; Kondo et al., 2004).

Functional analysis of the I206L, N590Y, and D620N variants of BCRP has not been reported so far. In the present study, we stably expressed wild-type BCRP and the variants I206L, N590Y, and D620N in HEK cells and analyzed the effects of the variants on BCRP expression, plasma membrane localization, transport, and ATPase activities, as well as drug resistance characteristics.

Materials and Methods

Materials. BODIPY FL-prazosin was purchased from Molecular Probes (Eugene, OR). Mitoxantrone hydrochloride and daunorubicin were obtained from Sigma-Aldrich (St. Louis, MO). Pheophorbide a was obtained from Frontier Scientific (Logan, UT). Rhodamine 123 was obtained from MP Biomedicals (Irvine, CA). Topotecan was obtained from Calbiochem (San Diego, CA). Fumitremorgin C was a generous gift from Dr. Susan E. Bates (National Cancer Institute, Bethesda, MD). High-performance liquid chromatography-grade DMSO was obtained from Fisher Scientific Co. (Pittsburgh, PA) and was used as the solvent for making stock solutions of all the drugs and FTC. Eagle’s minimal essential medium (MEM) and heat-inactivated horse serum were purchased from American Type Culture Collection (Manassas, VA). Dulbecco’s modified Eagle’s phenol-free low-glucose medium, phosphate-buffered saline (PBS), trypsin-EDTA solution, and G418 were purchased from Invitrogen (Carlsbad, CA).

Construction of BCRP Expression Vectors. The pcDNA-482R plasmid containing the full length of wild-type BCRP cDNA (Robey et al., 2003) was kindly provided by Dr. Susan E. Bates (National Cancer Institute). The following strategy was used to construct expression vectors for BCRP variants. First, the DNA fragment containing wild-type BCRP cDNA was obtained by digestion of pcDNA-482R with NotI and BamH1 and subcloned into the pBluescript SK(+) plasmid (Stratagene, La Jolla, CA), which was digested with the same restriction enzymes. The variants I206L, N590Y, and D620N were then generated using the QuickChange Site-directed Mutagenesis Kit (Stratagene) and the pBluescript SK(+) plasmid carrying wild-type BCRP as a template, according to the manufacturer’s instructions. For each variant, two complementary primers were used, each containing the specific sequence, and an ATG start codon at the 5’ end, and a stop codon and a BamH1 site at the 3’ end of the BCRP gene.

Cell Culture and Stable Transfection of BCRP cDNAs into HEK Cells. HEK293 cells were purchased from American Type Culture Collection and maintained in MEM with 10% (v/v) heat-inactivated horse serum at 37°C in a 5% CO2 incubator. For stable transfection, approximately 4 × 10^5 cells were seeded per 6-well plate. For transfection, 4 × 10^5 10^6 cells per reaction in 1-ml volume. In the accumulation phase, cells were incubated with the following fluorescent compounds: 500 nM BODIPY-FL-prazosin, 10 mM rhodamine, 0.5 µg/ml mitoxantrone, and 500 nM G418. Levels of BCRP variants in G418-resistant cell populations were then determined by immunoblotting. All the cell lines were then grown and maintained in MEM supplemented with 10% (v/v) heat-inactivated horse serum in the presence of 500 µg/ml G418 at 37°C in a 5% CO2 incubator. Cells were grown to 90% confluence and treated with trypsin-EDTA prior to harvesting for subculturing, immunoblotting, confocal microscopy analysis, or flow cytometry assays. Only cells within six passages were used in these experiments.

Detection of Surface Expression of BCRP Vectors Using Flow Cytometry. The flow cytometry assay detecting cell surface expression of BCRP was essentially the same as that previously described (Robey et al., 2003; Polgar et al., 2004). Approximately 5 × 10^6 cells were harvested by trypsinization and washed once with PBS. The cells were resuspended in 0.75 ml of PBS with 2% bovine serum albumin and incubated with 20 µl of the phycoerythrin-conjugated anti-BCRP surface mAb 5D3 (eBioscience, San Diego, CA) or the phycoerythrin-conjugated mouse IgG2b as a negative control for 30 min at room temperature. Cells were then washed once with PBS and placed on ice in the dark until analyzed. Within 1 h, cells were analyzed on a BD FACSscan flow cytometer (Becton Dickinson, San Jose, CA) flow cytometer and observed at 488-nm excitation and a 585/42-nm bandpass filter. Ten thousand (10^4) events were collected.

Detection of Surface Expression of BCRP Vectors Using Flow Cytometry. The flow cytometry assay detecting cell surface expression of BCRP was essentially the same as that previously described (Robey et al., 2003; Polgar et al., 2004). Approximately 5 × 10^6 cells were harvested by trypsinization and washed once with PBS. The cells were resuspended in 0.75 ml of PBS with 2% bovine serum albumin and incubated with 20 µl of the phycoerythrin-conjugated anti-BCRP surface mAb 5D3 (eBioscience, San Diego, CA) or the phycoerythrin-conjugated mouse IgG2b as a negative control for 30 min at room temperature. Cells were then washed once with PBS and placed on ice in the dark until analyzed. Within 1 h, cells were analyzed on a BD FACSscan flow cytometer (Becton Dickinson, San Jose, CA) flow cytometer and observed at 488-nm excitation and a 585/42-nm bandpass filter. Ten thousand (10^4) events were collected.

Flow Cytometric Efflux Assay. The efflux assays were essentially the same as described previously (Wang et al., 2000; Robey et al., 2001; Gupta et al., 2004) with minor modifications. HEK cells expressing wild-type BCRP and the variants or vector control cells were trypsinized, washed once in PBS, and suspended in incubation buffer (Dulbecco’s modified Eagle’s phenol-free low-glucose medium supplemented with 10% heat-inactivated horse serum and 5 mM HEPES buffer) at a cell concentration of approximately 10^5 cells per reaction in 1-ml volume. In the accumulation phase, cells were incubated with the following fluorescent compounds: 500 nM BODIPY-prazosin, 10 µM MX, 2 µM PhA, or 0.5 µg/ml rhodamine 123 in the presence of 10 µM FTC for 30 min at 37°C. Cells were then immediately transferred on ice, washed once with ice-cold PBS, and resuspended in 1 ml of incubation buffer with or without 10 µM FTC but containing no fluorescent compounds, and then incubation was continued for 1 h at 37°C to allow maximum efflux of fluorescent compounds (efflux phase). Cells were then washed once with ice-cold PBS and resuspended in 500 µl of ice-cold PBS and
kept on ice in the dark. Intracellular fluorescence was measured within 1 h with a 488-nm argon laser and a 650-nm longpass filter for MX and Pha, and a 488-nm argon laser and a 530-nm bandpass filter for BODIPY-prazosin and rhodamine 123 in a BD FACScan flow cytometer. Ten thousand (10⁵) events were collected for all the samples. Cell debris was eliminated by gating on forward versus side scatter. Cells in medium containing fluorescent compounds alone or medium containing fluorescent compounds and FTC were used to generate efflux and FTC/efflux histograms, respectively. Cells in medium containing vehicle (0.2% v/v DMSO) yielded the control histogram, a measure of cellular autofluorescence. No effects of the vehicle on efflux activity of BCRP were observed at this concentration. The difference (ΔF) in median fluorescence between the FTC/efflux histogram and the efflux histogram was used as a measure of FTC-inhibitable drug efflux activity of BCRP. The efflux activities were normalized to the BCRP levels to take into consideration differences in BCRP expression. Statistical significance of difference of efflux activities between wild-type BCRP and its variants was calculated by Student’s t test. A difference with a p value of <0.05 was considered significant.

Cytotoxicity Assay. Drug resistance profiles of stably transfected cell lines were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) microtiter plate assay as described previously (Wilson, 2000). HEK cells stably expressing wild-type or variant BCRP or the vector control cells were seeded at a density of 1000 to 2000 cells/well in 96-well plates in 200 μl of MEM supplemented with 10% heat-inactivated horse serum and 500 μg/ml G418. After 24 h of incubation at 37°C in a 5% CO₂ incubator, the medium was replaced with fresh medium containing 5% heat-inactivated horse serum and without G418. Drugs were then added to the medium at various concentrations, and cells were further incubated with drugs for 72 h. After 72 h, the medium with drugs was replaced with 200 μl of fresh medium containing 10 mM HEPES (pH 7.4). Fifty microliters of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (Sigma-Aldrich) at a concentration of 2.5 mg/ml in PBS was then immediately added in each well. The plates were incubated for 4 h at 37°C in the dark. The medium was then removed. The resulting metabolite of MTT, formazon, was solubilized by adding 200 μl of 10% trichloroacetic acid followed by 200 μl of 0.1 M NaCl equilibrated to pH 10.5 with 0.1 M NaOH. The optical density of the plates was read at 540 nm. Untreated cells were used as control.

Drug resistance factors were calculated as ratios of the IC₅₀ values of cells expressing wild-type BCRP and its variants to the IC₅₀ values of cells transfected with the empty vector alone. The relative resistance levels were normalized to the BCRP levels to take into account differences in BCRP expression. Statistical significance of difference of resistance levels between wild-type BCRP and its variants was calculated by Student’s t test. A difference with a p value of <0.05 was considered significant.

Plasma Membrane Preparation. Plasma membrane preparations were prepared essentially as described previously (Loe et al., 1996). Aliquots of the plasma membrane preparations were stored at −80°C until use and protein concentration was determined using the Bio-Rad Dc protein assay kit. Protein concentrations of the plasma membrane preparations were typically 1 to 4 mg/ml. Relative levels of BCRP in the plasma membrane preparations were determined by immunoblotting using BXP-21.

Vanadate-Sensitive ATPase Assay. The vanadate-sensitive ATPase activity of BCRP was determined by measuring the release of inorganic phosphate from ATP, using a calorimetric assay as previously described (Chifflet et al., 1988; Mao et al., 2004). The plasma membranes (5 μg of protein per reaction) prepared from the cells expressing wild-type BCRP and its variants or the vector control cells were added in 100 μl of buffer containing 50 mM HEPES, pH 7.0, 5 mM MgCl₂, 5 mM Mg-ATP, 10 mM NaN₄, 2 mM EGTA, and 2 mM ouabain in the presence or absence of 1 mM vanadate. The mixture was incubated at 37°C for 30 min. Na₃P₂O₄, EGTA, and ouabain were included in the assay mixtures to eliminate contributions from nonspecific mitochondrial ATPases, Ca²⁺-ATPases, and Na⁺/K⁺-ATPases. To determine the effects of substrates or inhibitors on ATPase activity of BCRP, MX, prazosin, and FTC were also included in the assay mixtures at 10 μM concentrations. Reactions were stopped and the amount of inorganic phosphate released was determined immediately by measuring the optical density at 650 nm as described (Chifflet et al., 1988). The differences between the ATPase activities measured in the absence and in the presence of vanadate were used to express the vanadate-sensitive ATPase activities of BCRP, and are presented relative to the amount of total protein in the plasma membrane preparations. Finally, the ATPase activities were normalized to the BCRP levels to take into account differences in BCRP expression. The ATPase activities of the variants were compared with the respective ATPase activities of wild-type BCRP by Student’s t test. A difference with a p value of <0.05 was considered significant.

Results

Stable Expression of Wild-Type BCRP and the I206L, N590Y, and D620N Variants in HEK Cells. To examine the effects of I206L, N590Y, and D620N on protein expression, plasma membrane localization, and function of BCRP, we generated the three variants by site-directed mutagenesis. The pcDNA expression vectors containing cDNAs of wild-type BCRP (482R) and the three variants were used to transfect HEK cells, and stable cell lines were generated. Approximately 20 clonal cell lines expressing wild-type BCRP and the variants were established by limited serial dilution and subjected for screening BCRP expression by immunoblotting of whole cell lysates. The expression levels of BCRP in individual clones varied. Figure 1A shows a typical immunoblot of whole cell lysates prepared from various cell lines (482R-13, 482R-21, I206L-13, I206L-20, N590Y-1, N590Y-13, D620N-9, and D620N-10) that express the highest levels of BCRP. The cell lines 482R-21, I206L-13, N590Y-1, and D620N-9 were used in all subsequent experiments. Since it is the BCRP that is present in the plasma membrane that determines the apparent drug efflux activity of cells, we determined the relative BCRP expression levels in the plasma membrane preparations isolated from cells ex-
pressing wild-type BCRP and the variants. A typical immunoblot of the plasma membrane preparations showed that I206L, N590Y, and D620N were expressed at levels of approximately 0.45-fold, 3.6-fold, and 2.4-fold those of the wild-type protein (482R), respectively (Fig. 1B). Similar results were obtained from the analysis of the immunoblots of whole cell lysates using \(\beta \)-actin as an internal standard (Fig. 1A). Since \(\beta \)-actin is a soluble protein, it was separated from BCRP in the relatively pure plasma membrane preparations. Therefore, we could not detect \(\beta \)-actin in the plasma membrane samples. Endogenous BCRP in the vector control HEK cells (pcDNA-7) could not be detected under the conditions used (Fig. 1A).

The I206L, N590Y, and D620N Variants Were Predominantly Routed to the Plasma Membrane. To explore whether the variants might influence plasma membrane localization of BCRP, the 482R-21, I206L-13, N590Y-1, and D620N-9 cells were examined by immunofluorescent confocal microscopy. Cells transfected with cDNAs of wild-type BCRP (482R-21) and the three variants (I206L-13, N590Y-1, and D620N-9) showed strong plasma membrane staining (Fig. 2), suggesting that, similar to wild-type BCRP, all three variants were predominantly routed to the plasma membrane. There appears to be some intracellular staining for the variants, particularly for N590Y. BCRP was not detectable in cells transfected with the empty pcDNA expression vector (Fig. 2).

To further confirm cell surface expression of the variants, the 482R, I206L, N590Y, and D620N cells were incubated with the phycocyanin-labeled anti-BCRP surface mAb 5D3 and the IgG negative control. The phycocyanin fluorescence associated with the cells was then measured by flow cytometry. All these cell lines demonstrated strong expression of BCRP on the cell surface (Fig. 3). As expected, cell surface expression of BCRP was not detectable in the vector control cells (Fig. 3). The differences in phycocyanin fluorescence between cells incubated with the 5D3 and the IgG antibodies were used to measure the expression levels of surface expression of wild-type BCRP and the variants. The relative levels of I206L, N590Y, and D620N on the cell surface were calculated from three independent experiments to be approximately 0.79-fold, 3.1-fold, and 1.3-fold those of wild-type BCRP, respectively. It should be noted that a small difference in BCRP expression may not be distinguished by this flow cytometry assay. For example, Robey et al. (2003) noticed a 2-fold higher level of 482R than of the 482G or the 482T mutant in HEK cells by immunoblotting; however, this 2-fold difference in BCRP expression could not be detected by flow cytometry (Robey et al., 2003). This may explain why the differences in expression levels between wild-type BCRP (482R) and the variants measured by immunoblotting (Fig. 1B) were generally greater than those determined by flow cytometry. For this reason, only the relative expression levels shown in Fig. 1B were used in all subsequent calculations.

Efflux Activities of the BCRP Variants. To determine whether the variants exhibit altered drug efflux activity, flow cytometric efflux
assays were performed. Figure 4 shows that intracellular fluorescence of MX, PhA, and BODIPY-prazosin in cells expressing wild-type BCRP and the three variants were increased by addition of 10 μM FTC, whereas FTC did not affect intracellular fluorescence of these compounds in the vector control cells. These results suggest that, like wild-type BCRP, the three variants were capable of transporting MX, PhA, and BODIPY-prazosin, which are known BCRP substrates (Robey et al., 2001, 2004). In both the vector control and BCRP-expressing cells, addition of 10 μM FTC decreased rather than increased intracellular accumulation of rhodamine 123 (Fig. 4), indicating that rhodamine 123 is not transported by wild-type BCRP and the three variants. To further quantitatively analyze efflux activity, the changes of intracellular fluorescence (ΔF) upon addition of FTC were used to express the FTC-inhibitable efflux activities of BCRP and its variants, since FTC is a BCRP-specific inhibitor. The ΔF values were calculated by subtracting the median fluorescence of the efflux histograms from the median fluorescence of the FTC/efflux histograms. The results are summarized in Table 1. The cells expressing I206L exhibited apparent efflux activities comparable to those of the cells expressing wild-type BCRP for all three fluorescence compounds tested, whereas the cells expressing N590Y and D620N showed higher efflux activities. Since wild-type BCRP and the variants were expressed at different levels in the plasma membranes of the cells used in efflux assays (Fig. 1B), to compare specific transport activities of 482R and the variants, the apparent efflux activities were normalized to the BCRP levels. After normalization, the efflux activities of I206L were approximately 2- to 3-fold those of wild-type BCRP for the three fluorescent substrates, and the efflux activities were reduced by approximately 60 to 70% and 40 to 50% for N590Y and D620N, respectively (Table 1).

Drug Resistance Profiles of Cells Expressing the BCRP Variants. To further confirm whether the variants affected the drug resis-
BCRP variants. Imai et al. (2002) demonstrated that Q141K was essentially unchanged. The ATPase activity of wild-type BCRP was not significantly affected by addition of MX and topazosin that were approximately 2-fold increase in resistance to MX and topazosin compared with wild-type BCRP. In contrast, after normalizing to the BCRP levels, I206L demonstrated an approximately 2-fold increase in resistance to MX and topazosin compared with wild-type BCRP. The basal ATPase activities in the presence of MX and prazosin were approximately 50%, whereas its level of topotecan resistance remained topotecan comparable to those of the cells expressing wild-type BCRP.

Discussion

Functional characterization has already been reported for several BCRP variants. Imai et al. (2002) demonstrated that Q141K was expressed at a lower level in transfected murine fibroblast PA317 cells and conferred lower levels of drug resistance compared with wild-type BCRP, whereas V12M exhibited an expression level and drug resistance profiles very similar to those of wild-type protein (Imai et al., 2002). Another study (Mizuarai et al., 2004) showed that V12M and Q141K were expressed in the polarized LLC-PK1 porcine kidney cells at levels comparable to that of wild-type protein; however, both V12M and Q141K conferred significantly lower drug resistance than wild-type protein, accompanied with increased drug accumulation and decreased drug efflux. Further analysis of the mechanism of transport dysfunction revealed that the apical membrane localization of V12M was disrupted, whereas the expression and apical membrane localization of Q141K were not affected; however, the ATPase activity of Q141K was decreased. A recent study illustrated that V12M was expressed in HEK cells at levels similar to that of wild-type BCRP, whereas the Q141K level was significantly decreased compared with wild-type protein; however, the transport activity normalized by the BCRP expression was almost the same for V12M, Q141K and wild-type BCRP (Kondo et al., 2004). The reason for such apparent discrepancies is currently unknown but might be possibly caused by the inconsistency of experimental conditions used in these studies, such as different mammalian expression systems and/or varying transfection efficiencies. However, the lower Q141K expression appears to be consistent with in vivo data. When 99 Japanese placental samples were analyzed, the subjects who were homozygous for Q141K were found to express significantly lower amounts of BCRP (Kobayashi et al., 2005). The lower protein expression and/or transport dysfunction of Q141K could affect drug disposition. A recent clinical study has shown that Q141K is associated with significant changes in pharmacokinetics of diflomotecan (Sparreboom et al., 2004). In five patients heterozygous for Q141K, the plasma levels of diflomotecan after intravenous administration were 299% of those in 15 patients expressing wild-type BCRP. Moreover, the plasma levels of diflomotecan were not significantly affected by 11 known variants in ABCB1/P-gp, ABCC2/MRP2, CYP3A4, and CYP3A5 genes. Although more extensive and larger clinical studies are needed, this is the first direct evidence linking an ABCG2 variant to altered drug exposure. Since diflomotecan is a weak BCRP substrate, the possibility that the changes in diflomotecan pharmacokinetics are caused by other transporters and/or drug-metabolizing enzymes could not be excluded.

Several other BCRP variants occurring at much lower allele frequencies (0.5–1%) such as A149P, R163K, Q166E, P269S, and Q412N may also affect disposition of BCRP substrates. Several other BCRP variants occurring at much lower allele frequencies (0.5–1%) such as A149P, R163K, Q166E, P269S, and Q412N may also affect disposition of BCRP substrates.
variants, I206L, N590Y, and D620N were stably expressed in HEK cells. The immunoblots of the plasma membranes revealed a markedly lower protein level for I206L compared with wild-type BCRP, whereas the levels of N590Y and D620N were increased (Fig. 1B). Although the expression levels were changed, the three variants were all predominantly routed to the plasma membrane (Fig. 2), and their cell surface expression was demonstrated by flow cytometry using the 5D3 anti-BCRP surface mAb (Fig. 3). The data indicate that these natural mutations do not significantly influence protein trafficking of BCRP to the plasma membrane. The mechanism of lower expression for I206L is not known but might be related to the location of position 206 in the functionally important Walker B motif of the NBD in BCRP. Several mutations in the Walker B motif in MRP1, the I206L variant can affect recognition of one substrate but not the other, likely due to the existence of different ligand binding sites on BCRP, which has been implicated in previous studies (Nakanishi et al., 2003; Gupta et al., 2004). Consistent with the changes in efflux activities, although not statistically significant, the ATPase activities of I206L were also found to be increased approximately 3-fold compared with wild-type protein (Fig. 6). These data indicate that, similar to the mutants in the Walker B motif in MRP1, the I206L variant can reduce protein expression and influence BCRP activity.

The N590Y and D620N variants are predicted to be in the extracellular loop connecting the fifth and sixth TM segments of BCRP. Functional analysis showed that, after normalization to the BCRP level, N590Y exhibited less than 50% of wild-type efflux and drug resistance activities (Tables 1 and 2). The efflux activities of D620N for MX, PhA, and BODIPY-prazosin were also reduced, but to a lesser extent as compared with N590Y (Table 1). Whereas D620N conferred resistance to MX at a level approximately 50% of that of wild-type BCRP, its resistance to topotecan was essentially unchanged (Table 2). These data indicate that the naturally occurring N590Y and D620N mutations in the extracellular loop can alter function and substrate selectivity of BCRP without significantly affecting cell surface expression, and that a mutation such as D620N in BCRP could affect recognition of one substrate but not the other, likely due to the existence of different ligand binding sites on BCRP, which has been implicated in previous studies (Nakanishi et al., 2003; Gupta et al., 2004).
ATPase activities of both N590Y and D620N were also decreased to approximately 30 to 50% of the wild-type activities (Fig. 6).

Mutations in the extracellular loops of P-gp have been reported to alter function of the transporter. For instance, the W208G mutation located in the second extracellular loop of P-gp was shown to drastically reduce affinity of valinomycin, FK506, and α-factor for P-gp (Kwan and Gros, 1998). In addition, mAb UIC2, which recognizes a conformational epitope in the first extracellular loop of P-gp, inhibits P-gp-mediated resistance to a large number of drugs (Mechtcheri and Roninson, 1992). These data indicate that transport activity and substrate specificity of P-gp could be modified by conformational changes induced by mutations in the extracellular loops or by binding of mAb to an extracellular moiety. Our data, demonstrating that the efflux activities and drug resistance capabilities of N590Y and D620N, except for the topotecan resistance, are decreased, indicate that amino acid changes in the extracellular loop of BCRP can selectively affect function of the transporter. The mechanism of such effects is unknown. One possible explanation is that amino acids such as those at positions 590 and 620 in the extracellular loops might be involved in interactions between two BCRP molecules and thus affect dimerization and/or conformational changes that may be essential for substrate recognition and transport activity of BCRP (Doyle and Ross, 2003). Whereas N590 is not predicted to be a glycosylation site, N620 may not be detrimental to patients bearing such polymorphisms. The resistance profiles of the cells expressing these variants remained approximately 0.6 to 1.5% allele frequencies (Zamber et al., 2003; Mizuara et al., 2004). The D620N variant was detected in 1.1% of all DNA samples examined with unknown genetic origin (Honjo et al., 2002). The in vitro analysis in this study revealed that, after normalization to the BCRP expression levels, the specific activities of 1206L, N590Y, and D620N were significantly altered as compared with wild-type BCRP; however, the overall efflux activities and drug resistance profiles of the cells expressing these variants remained essentially unchanged. Therefore, expression of these BCRP variants may not be detrimental to patients bearing such polymorphisms.

Acknowledgments. We thank Drs. Robert W. Robey and Susan E. Bates (National Cancer Institute, Bethesda, MD) for providing FTC and BCRP cDNA. We are very grateful to Meng Li (Department of Pharmacaceutics) for support in cell transfection. We also acknowledge Dr. Yurong Lai (Department of Pharmacognosy and Greg Martin (the Keck Imaging Center, Department of Pharmacology, University of Washington, Seattle, WA) for technical assistance in performing confocal microscopy.

References

Address correspondence to: Dr. Qingcheng Mao, Department of Pharmaceutics, School of Pharmacy, Box 357610, Seattle, WA 98195-7610. E-mail: qmao@u.washington.edu