TRANSCRIPTIONAL REGULATION OF THE PXR GENE: IDENTIFICATION AND CHARACTERIZATION OF A FUNCTIONAL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR α BINDING SITE WITHIN THE PROXIMAL PROMOTER OF PXR

Sihem Aouabdi, Gordon Gibson, and Nick Plant

School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, United Kingdom

Received June 15, 2005; accepted October 14, 2005

ABSTRACT:
The pregnane X receptor (PXR, NR112) is widely regarded as a central factor in the body’s response to changes in the fluxome, the overall metabolite profile in the body. PXR expression is regulated by a number of chemicals at the transcriptional level; the majority of these chemicals are ligands for PXR and substrates for PXR target genes. However, transcriptional activators of PXR, such as clofibrate, do not seem to be PXR ligands or substrates for its target genes. Understanding the molecular mechanisms underlying both these expected and, more importantly, unexpected transcriptional activations is central to fully understanding the roles of PXR in the human body. We have carried out an in silico analysis of the human PXR proximal promoter, identifying putative protein/DNA interaction sites within the 2 kilobases (kb) 5′ to the putative transcription start site. These sites included several for liver-enriched transcription factors, such as the hepatic nuclear factors and CAAT-enhancer binding protein α, and chicken ovalbumin upstream promoter transcription factor, commensurate with the high expression of PXR in liver. Furthermore, we identified putative binding sites for a number of ligand-activated transcription factors, suggesting that these factors may regulate PXR gene expression. Further analysis of this regulatory region has shown that transcriptional activation of PXR by peroxisome proliferator-activated receptor α (PPARα) is via a binding site located approximately 1.3 kb upstream of the putative transcription start site, with ablation of this site preventing PPARα-mediated activation of PXR gene expression. We present a model of how regulation of PXR gene expression by ligand-activated transcription factors may play a central role in the body’s response to xenobiotic exposure.

Chemical levels within the body are constantly fluctuating. This may be as a result of circadian rhythms, normal or pathophysiological processes, or the exposure of the body to foreign chemicals such as pollutants or therapeutic medicines. The body responds to these changes by altering chemical flow through metabolic pathways [the fluxome (Sauer, 2004)], aiming to maintain the status quo and ensuring normal/homeostatic physiology. Proteins involved in this process include active transport pumps (e.g., MDR1 and OATP2) to regulate cellular influx/efflux of chemicals and phase I (e.g., cytochromes P450) and phase II (e.g., glutathione S-transferase) metabolic enzymes, which catalyze chemical alterations to increase rates of excretion (Plant, 2004). To respond effectively to fluxome alterations, a feedback mechanism exists whereby levels of drug transporters and metabolic enzymes are regulated by a superfamily of ligand-activated transcription factors (LATFs). These LATFs generally possess large ligand-binding domains and show promiscuity in their activation profile (Watkins et al., 2001). Due to the overlapping nature of these activation profiles and the complex chemical pool within the body at any one time, it is perhaps not surprising that an interaction network exists between these LATFs, with the sum of the interactions/activations elicited by a chemical determining the exact profile of transporters and/or drug-metabolizing enzymes activated to respond.

The pregnane X-receptor (PXR; alternate names SXR, PAR, or NR112) is an LATF that has emerged as a transcriptional activator of at least 40 genes, including several biologically important drug transporters and metabolic enzymes, including CYP3A4 (El-Sankary et al., 2000), CYP2B6 (Goodwin et al., 2001), GST-A2 (Falkner et al., 2000), CYP2C9 (El-Sankary et al., 2000), and OATP2 and MDR1a (Maglich et al., 2002). This allows PXR to act as a xenobiotic/metabolite sensor, responding to alterations in the fluxome. Furthermore, evidence is beginning to accrue that PXR may function as a master xenobiotic/metabolite sensor, integrating inputs from other LATFs into the final output it places on the body. This integration is achieved through the interactions of these LATFs, with PXR at both the transcriptomic (Pascussi et al., 2000a) and proteomic (Ourlin et al., 2003) levels. To understand how the body responds to alterations in the fluxome, it is therefore imperative that we delineate this highly refined interaction network.

Whereas many studies have been undertaken on the transcriptional regulation of PXR target genes [e.g., CYP3A4 (El-Sankary et al., 2001, 2002)], little research has been directed at understanding the transcriptional regulation of PXR itself. Several chemicals have been shown to regulate PXR mRNA levels, both in primary human hepa-

ABBREVIATIONS: LATF, ligand-activated transcription factor; PXR, pregnane X receptor; GRα, glucocorticoid receptor α; PPARα, peroxisome proliferator-activated receptor α; kb, kilobase(s); CAR, constitutive active receptor; VDR, vitamin D receptor binding element; Wy-14,643, 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (pirinixic acid); SEAP, secretory alkaline phosphatase; PCR, polymerase chain reaction; PPRE, PPARα binding site; DTT, dithiothreitol; EMSA, electromobility shift assay; bp, base pair(s); HNF, hepatic nuclear factor; C/EBPα, CAAT-enhancer binding protein α; ANOVA, analysis of variance.
toctyes [dexamethasone (Pascussi et al., 2000a); lithocholic acid (Kliewer and Willson, 2002)] and rat liver [clofibrate, perfluoro-
decanoic acid, isoniazid, and troleandomycin (Zhang et al., 1999)]. As these chemicals are known ligands for other metabolite sensors (e.g.,
GRα, farsenoid X receptor, liver X receptor, PPARα), this is consis-
tent with PXR acting as a master metabolite sensor, coordinating body
responses to changes in the fluxome. In the case of glucocorticoids
such as dexamethasone, the reason behind such an interaction is clear;
glucocorticoids are ligands for both GRα and PXR (Ekins and Erick-
son, 2002) and are metabolized by PXR target genes [e.g., CYP3A4
(Gibson et al., 2002)]. Hence, increased levels of PXR will ultimately
lead to increased metabolism of the stimulating glucocorticoid. Acti-
vation of PXR expression by bile acids such as lithocholic acids may
also be explained, since they are ligands for the LATFs farsenoid X
receptor and liver X receptor, which undergo protein/protein interac-
tions with PXR (Edwards et al., 2002). By comparison, the activation of
PXR gene expression by clofibrate and perfluorodecanoic acid,
ligands for the fatty acid sensor PPARα, is more difficult to explain.
These chemicals do not seem to be PXR ligands, nor does their
metabolism seem to be dependent upon PXR target genes, although
some more potent PPARα agonists do seem to be able to activate
PXR. Such data are suggestive that the role of PXR as a master
metabolite sensor extends beyond what is currently understood; de-
lineation of the interaction network of metabolic-sensing LATFs will
thus greatly increase our knowledge on this key biological molecule.
Currently, several assays have been developed to measure PXR ac-
tivation (Kawana et al., 2003; Vignati et al., 2004), and research into
PXR target genes/pathways is extensive (Handschin and Meyer, 2003;
Bhalla et al., 2004; Uppal et al., 2005). However, the majority of
research on transcriptional activation of PXR has been descriptive
(Zhang et al., 1999; Pascussi et al., 2000a,b; Kliewer and Willson,
2002) rather than mechanistic, and the work presented herein aims to
provide novel mechanistic insights into the transcriptional regulation
of the master xenobiotic/metabolite sensor PXR.

Materials and Methods
In Silico Binding Site Analysis. Proximal promoter (2.2 kb) immediately
upstream of the putative transcription start site for PXR was extracted from the
National Center for Biotechnology Information data base (http://www.ncbi.
.nlm.nih.gov/), and MatInspector was used to interrogate the TRANSFAC data
base. Nucleotide sequences of the putative transcription start site for PXR was extracted from the
NCBI database (http://www.ncbi.nlm.nih.gov/); VDR, Dr. R. Kim (Vanderbilt University, Nashville, TN); and RXR,
Dr. J. Tugwood (AstraZeneca, Macclesfield, Cheshire, UK). All
other chemicals were of
depth international (Nune International, Leicestershire, UK), using minimal essential medium with
Earle’s salts supplemented with 1% nonessential amino acids, 2 mM
L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% fetal bovine
serum. To maintain phenotypic consistency, HuH7 cells were only used for 3
weeks (approximately five passages) following recovery from liquid nitrogen.

Transfection. HuH7 cells were seeded into 96-well plates (Nune Interna-
tional) at a concentration of 10,000 cells/well and incubated at 37°C for 24 h in
a humidified container for attachment. FuGENE 6-mediated DNA cotrans-
factions, using 75 ng/well PXR reporter gene construct, were performed as
described previously (Goodwin et al., 1999), using serum-free medium for the
6-h transfection period; this was then replaced with fresh, complete medium
for the remaining culture period. For cotransfection experiments, 25 ng/well of
the expression plasmid for each ligand-activated transcription factor, or the
empty expression plasmid as a control, was included in the transfection mix.
Transfections were allowed to proceed for 48 h, and secretary alkaline phosphatase (SEAP) activity was measured.

Alkaline Phosphatase Activity Assay and Data Analysis. Aliquots of cell
culture medium (25 μl/well) were transferred into 96-well optiplates (Canberra
Harwell Ltd., Didcot, UK). Endogenous alkaline phosphatase activity was
deactivated by heat treatment of the medium at 65°C for 30 min. SEAP activity
was then assayed using the AURORCATM system (ICN, Thame, Oxfordshire, UK),
according to the manufacturer’s protocol. Chemiluminescent output was mea-
sured using a LumiCount automated plate reader (Wolf Laboratories, Pock-
lington, UK). SEAP activity following 48-h culture was calculated for both
reporter constructs and blank, control, plasmid, and a fold induction relative to
vehicle control calculated.

Quantitative PCR. Total RNA was extracted using the RNeasy Mini Kit
(QIAGEN Ltd., Crawley, UK), quantified using RiboGreen (Invitrogen), and
reverse transcribed to cDNA. Primers were designed using the primer3,
and PCR was performed using the AB21370A protocol.

Plasmids. Expression plasmids for LATFs were kindly provided as follows:
PXR, Dr. S. Kliewer (University of Texas, Dallas, TX); CAR, Prof. M. Negishi
(National Institute of Environmental Health Sciences, Research Triangle
Park, NC); VDR, Dr. R. Kim (Vanderbilt University, Nashville, TN); PPARα and
GRα, Dr. J. Tugwood (AstraZeneca, Macclesfield, Cheshire, UK); and RXRα,
Prof. P. Chambon (INSERM, Strasbourg, France).

Cell Culture. All cell culture medium and supplements were purchased from
Invitrogen (Paisley, UK).

Primary human hepatocytes were obtained from the UK Human Tissue
Bank (Leicester, UK) and cultured in Williams’ E Medium [containing 2 mM
L-glutamine, 10% heat-inactivated bovine serum, penicillin/streptomycin (50
μM clofibrate or Wy-14,643). The HuH7 human hepatocellular carcinoma cell
line (Nakabayashi et al., 1982) was a kind gift from Dr. Steve Hood (GlaxoSmithKline, Ware, UK). All
cells were routinely cultured in 75-cm² vented tissue culture flasks (Nunc
International, Leicestershire, UK), using minimal essential medium with
Earle’s salts supplemented with 1% nonessential amino acids, 2 mM
L-glutamine, isoniazid, and troleandomycin (Zhang et al., 1999).
Cells were pelleted by centrifugation (1300g for 5 min) and washed twice with phosphate-buffered saline. After the second wash, cells were resuspended in 5× packed cell volume of ice-cold phosphate-buffered saline. Cells were pelleted, resuspended in 2× packed cell volume of buffer A (10 mM Hepes-KOH, pH 7.9, 1.5 mM MgCl₂, 10 mM KCl, and 0.5 mM DTT), and allowed to swell on ice for 10 min before disruption using a Dounce homogenizer (VWR International, Lutterworth, UK). Nuclei were pelleted (2000g for 15 min) and resuspended in 0.5× packed nuclear volume (homogenate volume-supernatant volume) of buffer C (25% glycerol, 20 mM Hepes-KOH, pH 7.9, 1.5 mM MgCl₂, 0.2 mM EDTA, 20 mM NaCl, 0.5 mM DTT, and 0.5 mM PMSF); 0.5× packed nuclear volume of high-salt buffer (buffer C containing 1.2 M NaCl) was then added dropwise with swirling, and the suspension was homogenized with a Dounce homogenizer. The resulting homogenate was centrifuged at 16,000g for 30 min, and supernatant (nuclear protein) aliquots were stored at −80°C. Protein concentration was determined by a modification of the method of Stoscheck (1990) and integrity assessed by SDS-polyacrylamide gel electrophoresis. Each aliquot was taken through only three freeze/thaw cycles to maintain protein integrity.

Electromobility Shift Assay (EMSA). Sense oligomers for wild-type and mutated binding sites were labeled at their dephosphorylated 5′ end with [γ-32P]ATP, using T4 polynucleotide kinase (Promega). Oligomer sequences were as follows (PPRE sequence underlined; mutated bases in bold): putative PPRE, ggataagacagacggtccggc; mutated PPRE#1, ggataagacagacggtcggtgc; and mutated PPRE#2, ggataagacagacggtgagt.

EMSA binding reactions were carried out at room temperature (22°C) and consisted of 10 μl of 2× binding buffer (40 mM Tris-HCl, pH 7.9, 100 mM NaCl, 20% glycerol, and 0.2 mM DTT), 1 μg of poly-dIdC, and 1 to 10 μl of protein extracts (representing 4 to 40 μg of nuclear proteins) in a total volume of 20 μl. After 10-min incubation, 2 μl of oligomer probe was added, and the reaction was further incubated for 30 min, followed by separation by polyacrylamide electrophoresis. Competition experiments used between a 1× and 100× excess of unlabeled putative PPRE probe in addition to the labeled probe. In vitro-translated PPARα was produced using the PPARα expression plasmid coupled to the TNT T7 Quick system (Promega) according to the manufacturer’s protocol.

Results

To begin dissection of the molecular mechanisms underlying transcriptional regulation of the PXR gene, we initially used web-based resources to predict protein/DNA interaction sites within the PXR proximal promoter. The reference mRNA sequence for PXR was aligned against human chromosome 3, and 2.2 kb of genomic DNA 5′ to this extracted from the human genomic sequence. MatInspector Professional was used to interrogate the TRANSFAC data base and identify putative protein/DNA interaction sites (Quandt et al., 1995). Figure 1 details those sites identified with a high match and hence represent good possibilities of representing functional sites. A TATAA box was identified 30 bp from the putative transcription start site, consistent with previous studies that have indicated that approximately 25 to 30 bp upstream of the transcription start site is the optimal location for a TATAA box (Latchman, 2001). In addition, we have identified putative DNA/protein interaction sites for both auxiliary/tissue-specific transcription factors such as HNFs, C/EBP, and Sp1, and a large number of ligand activated transcription factors, including VDR, GRα, PRE, and PPARα. This suggests that the PXR proximal promoter is a complex promoter with binding sites for many regulatory transcription factors, consistent with the paradigm of PXR as a master xenobiotic/metabolite sensor capable of responding to many different stimuli.

Whereas identification of putative protein/DNA interaction sites by in silico data mining provides the basis for an investigative hypothesis, it does not form the basis for proven molecular mechanisms of action. Hence, we next examined the regulation of PXR using in vitro...
expression of the ligand-activated transcription factor PPAR may act in a negative-feedback mode and prevent overexpression of deletion constructs (Fig. 3, A and B). This would suggest that PXR construct, and indeed this suppression occurs across most of the tested standable, since GR ligands are also ligands for PXR itself (El-Sankary et al., 2001) and are metabolized in the body by protein products of PXR target genes (Gibson et al., 2002). By contrast, the large transcriptional activation of PXR gene expression by overexpression of the ligand-activated transcription factor PPARα is less readily understandable, since PPARα ligands have not previously been shown to be PXR ligands or to be metabolized by PXR target genes. In all cotransfection experiments carried out herein, it should be noted that no exogenous ligands are added, with activation of receptors via the endogenous ligand pool being presumed. Whereas this may, to some extent, limit the extent of the responses observed, it should not alter their effect/presence. Indeed, previous evidence has shown that many of the ligand-activated and liver-enriched transcription factors are expressed in Huh7, albeit at reduced levels compared with in vivo, supportive of the presence of all the necessary factors within these cells for functioning of these transcription factors (Phillips et al., 2005).

To further investigate this phenomenon, we examined which region of the PXR proximal promoter was involved in mediating activation by PPARα. Figure 4A shows that the region −1514 to −1321 bp (relative to the putative transcription start site) bounded by the −1.5 kb and −1.3-kb daughter constructs was significantly activated by overexpression of PPARα; examination of other fragments showed no significant induction, thus localizing the PPARα-mediated activation of PXR to this region (Fig. 4B). In addition, we examined the role of RXRα, the heterodimerization partner of PPARα, in this response (Fig. 4B). Overexpression of both PPARα and RXRα in the system resulted in an increased degree of activation of the 1.5-kb fragment (data not shown). Thus we have experimentally localized the PPARα-mediated activation of PXR to the −1514 to −1321 bp region, a localization that is consistent with the identification of a putative PPRE within this region (Fig. 2A).

To test the functionality of this putative PPRE, we have used electromobility shift assay and site-directed mutagenesis. Figure 4C shows EMSA of the putative PPRE with Huh7 nuclear protein extract, demonstrating a protein/DNA interaction; competition with unlabeled probe demonstrates this interaction to be specific, and the binding of in vitro-translated PPARα provides strong evidence that it is indeed
resulted in a decrease in PXR gene expression. Expression was measured 48 h later. Cotransfection with PXR (A) or CAR (B) gene deletion construct series was transfected into Huh7 human hepatoma cells, and gene construct to PPAR interactions (Fig. 4D) and reduced activation of the 1.5-kb reporter

PPARα that is the protein that interacts with this site in vitro. Finally, mutagenesis of the putative PPRE resulted in disrupted protein/DNA interactions (Fig. 4D) and reduced activation of the 1.5-kb reporter gene construct to PPARα overexpression (Fig. 4E). To examine whether the observed in vitro effects were likely to translate into an in vivo effect, we next examined the level of PXR transcripts in primary human hepatocytes exposed to the PPARα ligands clofibrate and Wy-14,643. As seen in Fig. 4F, clofibrate elicited a statistically significant increase in PXR transcript level, 189% of control levels, whereas no significant change was observed with Wy-14,643 (160% of control levels). For comparison, these changes are significantly less than that caused by dexamethasone (316% of control), a chemical previously shown to increase human PXR gene expression (Pascussi et al., 2000a), although the use of only a single dose cannot rule out the possibility of larger effects with increased doses. We have thus demonstrated that PPARα mediates its activation of PXR gene expression via a PPRE located −1346 bp upstream of the putative transcription start site and that this activation is mirrored in primary human hepatocytes.

Discussion

There has existed for a long time the accepted but unexplained paradigm that the body was capable of producing the most effective response to any individual chemical stimulus or indeed mixture of chemicals. For such a paradigm to be realistic, it is necessary for the body to not only interpret and react to stimuli but to assimilate multiple stimuli into a single response, most likely through interaction networks (Plant, 2004). The ligand-activated transcription factors represent one of the best examples of such an interaction network, with the 48 members of this family found in humans (Zhang et al., 2004) interacting both at the transcriptional (Pascussi et al., 2000a) and protein (Edwards et al., 2002) levels. The outcomes of such interactions are 2-fold; first, it is possible for a single stimulus to elicit tissue-specific responses, activating a gene set to produce the most effective response in each tissue (Hartley et al., 2004). Second, that redundancy in the response system allows for a metabolic safety net, ensuring correct cellular homeostasis is maintained even under extreme external stimulation (Xie et al., 2000b). The PXR seems to be a prime candidate for this last role, with increasing evidence demonstrating that it can be stimulated (at both the gene and protein levels) by a wide range of both xenobiotic and endogenous chemicals (Lehmann et al., 1998; Kliwer and Willson, 2002).

Based upon the findings described herein, we propose a model by which PXR may be regulated both by itself and other LATFs (Fig. 5). Xenobiotic exposure results in the activation of LATFs, which in turn may stimulate PXR gene expression. If the stimulating chemical is a ligand for PXR, then PXR is activated and two endpoints are seen: feedback inhibition of PXR gene expression and activation of PXR target gene expression. The latter would result in increased metabolism of the stimulating chemical and reducing its level. However, if the stimulating chemical is not a ligand for PXR, then we hypothesize that the increased expression of PXR would only result in increased activity of PXR if sufficient levels of endogenous PXR ligands were present within the cell. Activation of PXR target genes in this latter case would presumably not result in metabolism of the stimulating chemical but may have consequences for coexposed chemicals or endogenous metabolism.

An interesting implication from our studies is the potential transcriptional activation of PXR by chemicals that are not direct ligands for the gene product PXR. Previous work has shown that PPARα ligands such as clofibrate increase PXR transcript levels in rat hepatocytes (Zhang et al., 1999), despite the fact that molecular modeling suggests that clofibrate is not a ligand for PXR, with a theoretical

EC_{50} in excess of 100 μM (D. Lewis, University of Surrey, Guildford, UK, personal communication). In this study, we have shown that there exists a molecular rationale for a transcriptional activation by PPARα, enabled by the presence of a functional PPRE within the proximal promoter of the human PXR gene. In addition, this suggests that transcriptional activation of PXR by nonligands such as clofibrate may be a cross-species event, since the initial observations were made in rat liver. This is of potential interest in terms of extrapolation from rodent models to the human situation and may go some way to explaining the apparent conflict between the high species selectivity of the PXR ligand binding domain (Xie et al., 2000a) and the cell type-specific responses observed in vivo (Barwick et al., 1996; Swales et al., 2003).

If the stimulating chemical is not a direct ligand of PXR, the question as to the biological relevance of such activations is raised. It is possible that such activation may be effectively a “bystander effect”, whereby PXR gene activation is not the desired biological endpoint but merely a silent side effect of chemical stimulation (Butte, 2002; Cajiao et al., 2004; Jansen and Gerstein, 2004). However, as described in Fig. 5, an increase in PXR protein levels may result in increased PXR activation by endogenous ligands or coadministered chemicals. This increased biological activity could result in disruption of endogenous metabolic processes, leading to a loss of cellular homeostasis. Such events could therefore represent a mechanism by which adverse side effects could occur; indeed, these events may.
FIG. 4. PPARα-mediated increases in PXR gene expression occur via a PPRE within the proximal promoter. The 1.5-kb PXR reporter gene construct was transfected into HuH7 human hepatoma cells, and expression was measured 48 h later. Cotransfection with expression plasmids for ligand-activated transcription factors demonstrated a positive effect by PPARα (A), and this was further increased by overexpression of its heterodimer partner RXRα (B). EMSA demonstrated that a specific protein/DNA interaction occurs at a putative PPARα binding site via competition with excess unlabeled PXR PPRE (xs wt cold) and binding of in vitro-translated PPARα protein (C) and that ablation of the site via mutagenesis could remove this binding (D). Transfection of 1.5-kb PXR reporter gene construct containing the mutated PPARα binding site resulted in a loss of transcriptional activation by PPARα overexpression (E). An arrow indicates specific protein/DNA interactions, and a dagger indicates unbound probe. Primary human hepatocytes were exposed to xenobiotics for 48 h, and then RNA was extracted and PXR transcript levels were measured using TaqMan (F). *, p < 0.01; **, p < 0.05, ***, p < 0.001 relative to indicated control by one-way ANOVA with Bonferroni post hoc analysis. Data are representative of experiments undertaken on at least two separate occasions.
become increasingly relevant as the potency of chemicals against PXR-activating LATFs increases and hence their activation of PXR gene expression.

In summary, we have undertaken an examination of the proximal promotor of PXR and provide a molecular rationale for the activation of PXR gene expression by LATFs, including PPARs. We have proposed a model of PXR regulation whereby PXR levels are controlled through the activation of both PXR and other LATFs, placing PXR at the center of a regulatory network designed to sense, assimilate, and respond to a chemical stimulus.

References

Cajiao I, Zhang A, Yoo EJ, Cooke NE, and Liebhaber SA (2004) Bystander gene activation by PXR gene expression by LATFs, including PPARs and pregnane X receptors.

Pascussi JM, Gerbal-Chaïn S, Pichard-Garcia L, Daugat M, Fabre JM, Maurel P, and Vilarem MJ (2000b) Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and pregnane X receptor SXR.

Address correspondence to: Dr. Nick Plant, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK. E-mail: n.plant@surrey.ac.uk