3,4-Dehydrodebrisoquine, a Novel Debrisoquine Metabolite Formed from 4-Hydroxydebrisoquine That Affects the CYP2D6 Metabolic Ratio

Yueying Zhen, Ondřej Slanař, Kristopher W. Krausz, Chi Chen, Josef Slavík, Kerry L. McPhail, T. Mark Zabriskie, František Perlík, Frank J. Gonzalez, and Jeffrey R. Idle

Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Y.Z., K.W.K., C.C., F.J.G.); Institute of Clinical Pharmacology, University of Bern, Switzerland (J.S., J.R.I.); Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon (K.L.M., T.M.Z.); and Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic (O.S., F.P., J.R.I.).

Received December 12, 2005; accepted June 12, 2006

ABSTRACT:

Considerable unexplained intersubject variability in the debrisoquine metabolic ratio (urinary debrisoquine/4-hydroxydebrisoquine) exists within individual CYP2D6 genotypes. We speculated that debrisoquine was converted to as yet undiscovered metabolites. Thirteen healthy young volunteers, nine CYP2D6*1 homozygotes [extensive metabolizers (EMs)] and four CYP2D6*4 homozygotes [poor metabolizers (PMs)] took 12.8 mg of debrisoquine hemisulfate by mouth and collected 0- to 8- and 8- to 24-h urines, which were analyzed by gas chromatography-mass spectrometry (GCMS) before and after treatment with β-glucuronidase. Authentic 3,4-dehydrodebrisoquine was synthesized and characterized by GCMS, liquid chromatography-tandem mass spectrometry, and 1H NMR. 3,4-Dehydrodebrisoquine is a novel metabolite of debrisoquine excreted variably in 0- to 24-h urine, both in EMs (3.1–27.6% of dose) and PMs (0–2.1% of dose). This metabolite is produced from 4-hydroxydebrisoquine in vitro by human and rat liver microsomes. A previously unstudied CYP2D6*1 homozygote was administered 10.2 mg of 4-hydroxydebrisoquine orally and also excrated 3,4-dehydrodebrisoquine. EMs excreted 6-hydroxydebrisoquine (0–4.8%) and 8-hydroxydebrisoquine (0–1.3%), but these phenolic metabolites were not detected in PM urine. Debrisoquine and 4-hydroxydebrisoquine glucuronides were excreted in a highly genotype-dependent manner. A microsomal activity that probably does not involve cytochrome P450 participates in the further metabolism of 4-hydroxydebrisoquine, which we speculate may also lead to the formation of 1- and 3-hydroxydebrisoquine and their ring-opened products. In conclusion, this study suggests that the traditional metabolic ratio is not a true measure of the debrisoquine 4-hydroxylation capacity of an individual and thus may, in part, explain the wide intragenotype variation in metabolic ratio.
identified the phenolic metabolites and the carboxylic acid metabolites, as previously reported (Allen et al., 1975), together with a dihydroxy metabolite, which was later reported by another laboratory (Eiermann et al., 1998). Of interest was the report that one of the subjects excreted 60.8% of the dose as debrisoquine and only 5.4% as 4-hydroxydebrisoquine. This would correspond to a metabolic ratio (Mahgoub et al., 1977) (MR) of $60.8/5.4 = 11.3$. Subsequent studies showed this volunteer to be a phenotypic poor metabolizer (PM) (Mahgoub et al., 1977). The other three subjects in this study had MR values of 0.5 to 1.4, typical of what is regarded as extensive metabolizers (EMs) (Mahgoub et al., 1977). This was perhaps the first report containing evidence of the existence of two drug oxidation phenotypes, EM and PM.

There were few further qualitative insights added to the debrisoquine metabolism knowledge base at that time, with the exception of a single 14C-debrisoquine study (Idle et al., 1979). These authors confirmed the excretion of debrisoquine, 4-, 5-, 6-, 7-, and 8-hydroxydebrisoquine, and also reported that neither the debrisoquine urea derivative nor N-hydroxydebrisoquine (see Fig. 1A) was excreted in human urine after administration by mouth of 40 mg of debrisoquine sulfate (Idle et al., 1979). However, none of these early studies accounted for the chemical nature of all the debrisoquine metabolites.

Subsequently, debrisoquine 4-hydroxylation took on a special significance as the first drug oxidation pathway to display genetic polymorphism (Mahgoub et al., 1977). This reaction is mediated by the polymorphic cytochrome P450 CYP2D6 (Gonzalez et al., 1988), but CYP1A1 may also play a role (Granvil et al., 2002). A wide variety of allelic variants of CYP2D6 give rise to four phenotypes for CYP2D6-mediated metabolism: ultrarapid metabolizer (UM), EM, intermediate metabolizer (IM), and PM phenotypes, which have been estimated to occur in 5 to 10%, 65 to 80%, 10 to 15%, and 5 to 10% of populations, respectively (Zanger et al., 2004). In addition to the archetypal polymorphically metabolized substrates, debrisoquine and sparteine, CYP2D6 substrates include at least 50 common pharmaceutical agents (Zanger et al., 2004), together with four endogenous 5-methoxyindolethylamines (Yu et al., 2003b), and also progesterone and tyramine (Niwa et al., 2004). PMs have an impaired hydroxylation capacity, and this may lead to adverse effects (Yu et al., 2004; Zanger et al., 2004). The current practice for the identification of PMs is to screen for common CYP2D6-inactivating alleles using polymerase chain reaction (PCR) amplification of candidate CYP2D6 alleles and sequencing.
ase chain reaction (Muller et al., 2003; Schaeffeler et al., 2003) or microarray-based methods (Chou et al., 2003). However, genotypic analysis provides only a forecast of the extent of metabolism of such well studied test substrates as debrisoquine and sparteine. Part of the problem is that the UM, EM, and IM phenotypes are both broad and overlapping. Despite this, individual MR values for debrisoquine and sparteine are stable over many years (Crothers et al., 1986; Zanger et al., 2004), and phenotype testing with debrisoquine or sparteine still provides a cheap, reliable, and direct evaluation of the CYP2D6 metabolic phenotype.

The factors that contribute to the intraphenotype variance in CYP2D6-mediated metabolism are poorly understood. For example, in the case of polymorphic debrisoquine 4-hydroxylation, most homozygous extensive metabolizers have MR values in the range 0.1 to 1.0, corresponding to 50 to 91% 4-hydroxylation of the drug (Daly et al., 1991). The occurrence of multiple variant CYP2D6 alleles explains the broad interphenotype variation in debrisoquine 4-hydroxylation but does not account for the wide intraphenotype variation in metabolism. Other explanations must be sought for this variability and, thus, the metabolism of debrisoquine was reexamined in both genotypic EM and PM subjects. In this study, a novel human urinary metabolite of debrisoquine, 3,4-dehydrodebrisoquine, was uncovered. The data also indicate that both debrisoquine and 4-hydroxydebrisoquine undergo glucuronidation. These novel metabolites could have a significant impact upon the debrisoquine metabolic ratio.

Materials and Methods

Chemicals. Debrisoquine hemisulfate was obtained from Kolbjørn Zahlsen (Trondheim, Norway), 7-methoxyguanoxan from Professor Ann K. Daly, University of Newcastle, Newcastle, UK), and 4-, 6-, and 8-hydroxydebrisoquine from Professor Urs Meyer (Biozentrum, University of Basel, Basel, Switzerland). 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione (hexafluoroacetylacetone) was purchased from Sigma-Aldrich (St. Louis, MO). All solvents were of high-performance liquid chromatography grade.

Subjects. The study was approved by the ethics committee of the General Faculty Hospital Prague and the Office of Human Subjects Research, National Institutes of Health, and was performed according to Good Clinical Practice Guidelines. All volunteers gave their written informed consent to participate in the study. The volunteers comprised 14 healthy Caucasians of Czech or Slovak nationality, primarily students of Charles University 1st Faculty of Medicine, and were aged 23.5 ± 1.0 years (mean ± S.E.M.) of 23.4 ± 1.0 years (mean ± S.E.M.). They were selected according to CYP2D6 genotype and availability from a pool of 250 volunteers that had been previously genotyped as EM or PM by the determination of CYP2D6 alleles *2, *3, *4, *5, *6, *7, *8, *9, *10, *11, *12, *13, *14, and *15 and gene duplications (Sachse et al., 1997). They comprised nine *1/*1 EM subjects (6 M, 3 F) and four *4/*4 PM subjects (3 M, 1 F), with mean Body Mass Index (± S.E.M.) of 23.4 ± 0.7 (male) and 20.5 ± 1.8 (female). All subjects were non-smokers, with the exception of one female EM who smoked 5 cigarettes per day and one male PM who smoked 10 cigarettes per day. Alcohol consumption was 0 to 3 units/week for males and 0 to 2 units/week for females. The volunteers were drug-free for the previous month, with the exception of one male EM who had taken 800 mg of ibuprofen at −7 days and 10 mg of zolpidem [a CYP3A4 substrate (Richard et al., 1995)] at −10 days, and one female EM who had taken 1200 mg of ibuprofen at −11/12 days. Cigarette smoking (Vincent-Viry et al., 2000), alcohol consumption (Vincent-Viry et al., 2000), and ibuprofen (Hamman et al., 1997) and zolpidem (von Molke et al., 2002) administration are unlikely to alter debrisoquine metabolism by CYP2D6. However, the effect of these potential confounders on non-P450 metabolism is at present unknown.

Debrisoquine Administration. After an overnight fast, each subject took a single tablet containing 12.8 mg of debrisoquine hemisulfate, equivalent to 10 mg of debrisoquine (gift of Professor Ann K. Daly, University of Newcastle, UK), taken from a newly opened bottle, from which five tablets had been taken, ground, suspended in water, shaken, centrifuged, and assayed by gas chromatography-mass spectrometry (GCMS) (see below) to ensure the quantity and quality of their debrisoquine content. After a period of 2 h, volunteers were allowed food and soft drinks ad libitum. They collected bulked 0- to 8- and 8- to 24-h urines which were taken promptly to the Clinical Pharmacology Unit, General Teaching Hospital in Prague, where they were measured, and 10-ml aliquots were frozen at −20°C before transport of a single set of samples by courier on dry ice to the National Institutes of Health, Bethesda, MD for analysis. These samples were coded in such a way that they could not be identified in Bethesda with particular volunteers. The same urine samples were analyzed for creatinine excretion (millimoles per 24 h) and a blood sample was taken for the determination of serum creatinine (micromoles per liter). Creatinine clearance (milliliters per second) and glomerular filtration rate (milliliters per second) were calculated using the Cockcroft-Gault formula (Cockcroft and Gault, 1970).

In Vitro Metabolism Studies. Long-term (24-h) incubations to obtain cytochrome P450 activity were carried out using pre-prepared human liver microsomes and rat liver microsomes under conditions we have described previously (Yu et al., 2003a). Both debrisoquine hemisulfate (7 μg/ml; 31 μM) and 4-hydroxydebrisoquine (20 μg/ml; 105 μM) were used as substrates. The incubations were assayed for their content of debrisoquine, 4-hydroxydebrisoquine, and 3,4-dehydrodebrisoquine by GCMS with single ion extraction, as described below for urine samples.

Analysis of Debrisoquine and Its Hydroxylated Metabolites by GCMS. The following calibration curves were constructed using blank human urine: debrisoquine hemisulfate and 4-hydroxydebrisoquine, from 0.2 to 20 μg/ml; 6- and 8-hydroxydebrisoquine, from 0.5 to 5.0 μg/ml. All urines were treated with β-glucuronidase to deconjugate phenolic metabolites, as follows. To urine (0.5 ml) was added 1 M potassium phosphate-buffered saline (pH 4.8) and β-glucuronidase solution (54 μl; Sigma-Aldrich) to give a final pH of 5.0, and heated in a shaking water bath at 37°C for 24 h. Distilled water (0.44 ml) was then added and the samples with 1.00-ml volume were then treated like the diluted urine samples below. Standards and volunteer urines, with and without β-glucuronidase treatment, were treated with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hexafluoroacetylacetone) (Sigma-Aldrich) to give bis(trifluoromethyl)pyrimidine derivatives (Erdtmansky and Goehl, 1975) as follows. Duplicate urine samples or standards (0.5 ml) were diluted with distilled water (0.5 ml), unless already diluted after deconjugation, mixed with both saturated aqueous sodium hydrogen carbonate (0.2 ml) and internal standard solution (0.1 ml) containing 7 μg/ml 7-methoxyguanoxan, and then hexafluoroacetylacetone (200 μl) and high-performance liquid chromatography-grade toluene (1 ml) were added. The samples were heated in sealed septum-cap vials in a heating block at 90°C for 1 h and cooled, 1 M sodium hydroxide (1 ml) was added, and the samples were vortexed for 10 s and centrifuged at 1800g for 5 min. Upper organic layers were transferred to autoinjector vials and capped. Samples (1 μl) were injected in splitless mode from an Agilent 7683 Automatic Liquid Sampler (Agilent, Palo Alto, CA) into an Agilent 5979N Network GC system coupled to an Agilent 5973N Mass Selective Detector and a G1701 DA Enhanced ChemStation. Chromatography was performed on a 0.25-μm film thickness HP-5MS capillary column (28 m × 0.25 mm i.d.; Agilent, Palo Alto, CA). Carrier gas was helium (linear velocity 39 cm/s) with a temperature program of 10 min at 120°C, then 10°C/min to 250°C, then 20°C/min to 300°C, and then held at 300°C for 3 min (total run time 28.5 min). Injector and interface temperatures were 230 and 280°C, respectively. The mass spectrometer was operated in the electron ionization mode (69.9 eV). A mass range of 100 to 550 atomic mass units was scanned, only for the retention period of 16.8 to 24.0 min, and this permitted acquisition of 3.25 scans/s. Data sharing was accomplished by file transfer direct from the ChemStation to a file transfer protocol (ftp) server in Prague, where the appropriate analytical software was located. Peaks were identified from the retention times and mass spectra of authentic standards. For quantitation, peak area ratios (ratio of peak area of analyte/peak area of internal standard) were calculated for all peaks of interest using single ion-extracted chromatograms with the following ions: debrisoquine (347 m/z), 4-hydroxydebrisoquine (344 m/z), 3,4-dehydrodebrisoquine (344 m/z), 6-hydroxydebrisoquine (362 m/z), 8-hydroxydebrisoquine (362 m/z), and 7-methoxyguanoxan (internal standard) (379 m/z).
centrifuged at 14,000 rpm to remove particles and protein. A 200-μl aliquot of the supernatant was transferred to an autosampler vial for UPLC-TOFMS analysis (Wilson et al., 2005). Urine samples (5 μl/injection) were separated on a 50 × 2.1 mm ACQUITY 1.7-μm C18 column (Waters Corp., Milford, MA) using an ACQUITY UPLC system (Waters) with a gradient mobile phase composed of A, 0.1% formic acid; and B, acetonitrile containing 0.1% formic acid. A 0.6 ml min⁻¹ flow rate was maintained in a 10-min run. The eluent was directly introduced into the mass spectrometer. Mass spectrometry was performed on a Waters Q-TOF Premier operating in positive ion mode. The desolvation gas flow was set to 600 l h⁻¹ at a temperature of 350°C, with the cone gas set to 50 l h⁻¹ and the source temperature set to 120°C. The capillary voltage and the cone voltage were set to 3000 and 60 V, respectively. Leucine-enkephalin was used as the lock mass (m/z 556.2771) for accurate mass measurement. In MS scanning, data were acquired in centroid mode from 100 to 950 m/z. As for MS/MS fragmentation of target ions, collision energy ranging from 15 to 30 V was applied. After data acquisition, UPLC-MS chromatograms and spectra were further analyzed by MassLynx application software (Waters).

Synthesis and Characterization of 3,4-Dehydrodebrisoquine. 4-Hydroxydebrisoquine (6 mg; 31.4 μmol) was added to 18 M sulfuric acid (100 μl; 1.8 mmol) and dimethyl sulfoxide (200 μl) in a screw-topped vial, and the mixture was vortexed and then heated at 90°C for 20 min. An aliquot was taken, neutralized with saturated sodium hydrogen carbonate, and derivatized with hexafluoroacetylacetone, as described above. GCMS analysis established the absence of 4-hydroxydebrisoquine at 19.60 min, but the appearance of a single large signal at 19.60 min, for Fig. 2A, together with its mass spectrum (Fig. 2B). A single large resonance of the 3,4-double bond with both the aromatic ring and the guanidine nitrogen lone electron pairs. This mass spectrum (Fig. 2B) is indicative of formation of 3,4-dehydrodebrisoquine. Moreover, the 1H NMR spectrum of crude 3,4-dehydrodebrisoquine revealed two 7.6 Hz doublets at 6.5 and 6.2 ppm. A two-dimensional correlation spectroscopy experiment confirmed that the two signals were coupled (Fig. 2C). The chemical shifts, coupling constants, and lack of further connectivity were consistent with protons occupying an isolated and disubstituted cis double bond such as that in 3,4-dehydrodebrisoquine. The chemical shifts are not consistent with H-3 and H-4 of a fully oxidized isoquinoline derivative, which are expected to resonate further downfield. Furthermore, the 1H NMR spectrum of the 4-hydroxydebrisoquine starting material showed no impurities and no signals between 4.7 and 7 ppm. Hence, the only plausible explanation for the coupled signals at 6.5 and 6.2 ppm is the formation of 3,4-dehydrodebrisoquine by the acid-catalyzed dehydration of 4-hydroxydebrisoquine. In addition, the synthetic material yielded a mass spectrum by LC-MS/MS with a protonated molecular ion of mass 174.1043 (Fig. 2D) that corresponded to an empirical formula of C10H12N3, with an error of 5.1 ppm. In addition, two fragment ions of masses 157.0774 and 132.0780 were observed, that correspond to the neutral losses of ammonia and cyanamide, respectively. Finally, a fragment ion of mass 115.0692 was observed, corresponding to the neutral loss of ammonia from 132.0780 (Fig. 2D). Taken together with the NMR evidence, these findings establish unequivocally that the synthetic material, which produces an ion of 344 m/z by GCMS, is 3,4-dehydrodebrisoquine.

GCMS Assay of Debrisoquine, 4-, 6-, and 8-Hydroxy-debrisoquine, and 3,4-Dehydrodebrisoquine in Urine. It should be stated at the outset that the peak on GCMS that we have characterized as the derivative of 3,4-dehydrodebrisoquine was not observed when authentic 4-hydroxydebrisoquine, or any other authentic debrisoquine metabolite, was derivatized with hexafluoroacetylacetone, showing that it is not formed as an artifact in the derivatization reaction. This peak was only detected in two situations, either when biological samples were analyzed or after the dehydration of authentic 4-hydroxydebrisoquine with 18 M sulfuric acid. In addition, LC-MS/MS analysis of urine from an EM subject gave the mass spectrum shown in Fig. 2E. The protonated molecular ion of mass 174.1035 corresponds to protonated 3,4-dehydrodebrisoquine (C10H12N3+), with an error of 2.3 ppm. The fragmentation pattern of this ion is virtually identical to that for the synthetic material (Fig. 2D).

Calibration curves for debrisoquine (retention time 17.46 min) and 4-hydroxydebrisoquine (retention time 19.60 min) were determined. The correlation coefficients (r²) were 0.999 for both debrisoquine and 4-hydroxydebrisoquine, and of sensitivity for debrisoquine and 4-hydroxydebrisoquine were 0.02 μg/ml and 0.05 μg/ml, respectively. Interassay variation was in the range 3 to 5%. Calibration curves for 4-hydroxydebrisoquine (retention time 20.39 min) and 6-hydroxydebrisoquine (retention time 20.56 min) were determined. Coefficients (r²) were 0.974 and 0.918 for 6-hydroxydebrisoquine and 8-hydroxydebrisoquine, respectively, and the limit of sensitivity for both compounds was 0.2 μg/ml. Interassay variation was in the range 5 to 10%. Calibration curves for 3,4-dehydrodebrisoquine (retention time 17.36 min), and an unknown peak (retention time 17.52 min) that was always present in solutions of 3,4-dehydrodebrisoquine, except immediately after synthesis, were determined (Fig. 2). This unknown compound had a mass spectrum almost identical to that of 3,4-dehydrodebrisoquine. As will be seen, it was present in urine samples. The nature of this unknown compound is dealt with below. The relative concentrations of peaks A and B were determined from the relative total ion abundances for each peak. The correlation coefficients (r²) for both 3,4-dehydrodebrisoquine and its unknown derivative were 0.996, and the limits of sensitivity for 3,4-dehydrodebrisoquine and its unknown derivative were 0.4 μg/ml and 0.06 μg/ml, respectively.

The Nature of the Unknown Derivative of 3,4-Dehydrodebrisoquine. An extracted-ion chromatogram (344 m/z), with two peaks...
running at 17.33 min (peak A) and 17.48 min (peak B) in a solution of 5 μg/ml authentic 3,4-dehydrodebrisoquine derivatized with hexafluoroacetylacetone, is displayed in Fig. 3. Peak A corresponds to 3,4-dehydrodebrisoquine, with the difference in retention time to the synthetic material, shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.

Determination of Debrisoquine Metabolism in Human Volunteers. First, the 0- to 8-h and 8- to 24-h excretion of debrisoquine, 4-, 6-, and 8-hydroxydebrisoquine was determined, together with the excretion of 3,4-dehydrodebrisoquine shown in Fig. 2, due wholly to analysis on different GC columns. Peak B has an almost identical mass spectrum dominated by the M−1 transition (loss of H radical) shown in Fig. 2. No type of isomerism is possible for 3,4-dehydrodebrisoquine, neither around the 3,4-double bond nor the heterocyclic nitrogen atom. Therefore, peak B must represent a precursor of 3,4-dehydrodebrisoquine, and we propose that it is 3-hydroxydebrisoquine formed by the mechanism shown in Fig. 1B, specifically via the equilibrium A and the addition of OH− in reaction B. This relatively unstable carbocyclic, 3-hydroxydebrisoquine, is expected to dehydrate to give 3,4-dehydrodebrisoquine in the mass spectrometer [as the respective bis(trifluoromethyl)pyrimidine derivatives] via reaction C. Indeed, this reaction occurs to some extent for 4-hydroxydebrisoquine itself, which also has a prominent ion at 344 m/z. Therefore, it would appear that a proportion of synthetic 3,4-dehydrodebrisoquine is converted to 3-hydroxydebrisoquine in vitro.
Debrisoquine in urine (7.8 ± 2.2% dose), and three of four PMs also excreted this metabolite (0.9 ± 0.4% dose; \(U = 35.0, P = 0.0028 \)). Table 2 shows that this pattern of metabolite excretion was mirrored in the 8- to 24-h urines also. 4-Hydroxydebrisoquine excretion (percentage of dose) was significantly greater in EMs (7.2 ± 1.4) than in PMs (0.2 ± 0.1; \(U = 36.0, P = 0.0014 \)) and debrisoquine excretion (percentage of dose) was significantly greater in PMs (19.5 ± 5.3) than in EMs (3.7 ± 0.9; \(U = 36.0, P = 0.0014 \)). The excretion of 3,4-dehydrodebrisoquine in the 8- to 24-h urine was 2.5 ± 0.9% of dose for EMs. Only one of four PMs excreted this metabolite in the 8- to 24-h urine. The interphenotype difference was barely statistically significant (\(U = 31.0, P = 0.025 \)). Finally, Table 3 shows that, for the

TABLE 1

Urinary excretion (0–8 h) of debrisoquine, 4-hydroxydebrisoquine, and 3,4-dehydrodebrisoquine (sum of peaks A and B) in 13 human volunteers genotyped for CYP2D6

Debrisoquine (10 mg) was administered by mouth as debrisoquine hemisulfate (12.8 mg). Results are expressed as percentage of dose excreted.

<table>
<thead>
<tr>
<th>Subject No. (Genotype)</th>
<th>Debrisoquine</th>
<th>4-Hydroxy-Debrisoquine</th>
<th>3,4-Dehydro-debrisoquine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (*1/*1)</td>
<td>14.3</td>
<td>23.8</td>
<td>3.8</td>
</tr>
<tr>
<td>2 (*1/*1)</td>
<td>6.7</td>
<td>30.0</td>
<td>10.0</td>
</tr>
<tr>
<td>3 (*1/*1)</td>
<td>9.2</td>
<td>8.3</td>
<td>2.0</td>
</tr>
<tr>
<td>4 (*1/*1)</td>
<td>7.9</td>
<td>19.0</td>
<td>10.1</td>
</tr>
<tr>
<td>5 (*1/*1)</td>
<td>4.3</td>
<td>30.3</td>
<td>3.9</td>
</tr>
<tr>
<td>6 (*1/*1)</td>
<td>8.0</td>
<td>31.1</td>
<td>23.6</td>
</tr>
<tr>
<td>7 (*1/*1)</td>
<td>7.7</td>
<td>23.3</td>
<td>3.1</td>
</tr>
<tr>
<td>8 (*1/*1)</td>
<td>6.6</td>
<td>12.9</td>
<td>6.7</td>
</tr>
<tr>
<td>9 (*1/*1)</td>
<td>9.8</td>
<td>9.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Mean ± S.E.M.</td>
<td>8.3 ± 1.0</td>
<td>20.9 ± 3.0</td>
<td>7.8 ± 2.2</td>
</tr>
</tbody>
</table>

10 (*4/*4)	39.2	1.1	2.1
11 (*4/*4)	29.2	<0.15	0
12 (*4/*4)	34.1	0.23	1.0
13 (*4/*4)	32.9	0.5	0.6
Mean ± S.E.M.	33.9 ± 2.1	0.5 ± 0.2	0.9 ± 0.4

Significance (\(P \)) (Mann-Whitney \(U \) test): 0.0014, 0.0014, 0.0028

FIG. 3. Mass spectra of peaks A (17.33 min) and B (17.48 min) in a standard solution of 5 μg/ml 3,4-dehydrodebrisoquine.
combined 0- to 24 h urine, debrisoquine metabolism displayed clear polymorphism based upon the excretion of debrisoquine itself (12.0 ± 1.5% of dose in EMs, 53.3 ± 7.0% of dose in PMs; U = 36.0, P = 0.0014), 4-hydroxydebrisoquine (28.1 ± 3.4% of dose in EMs, 0.7 ± 0.3% of dose in PMs; U = 36.0, P = 0.0014). This observation adds weight to the proposition that 3,4-dehydrodebrisoquine is formed from 4-hydroxydebrisoquine. Of intense interest is the observation that one EM subject excreted inordinately large amounts of 3,4-dehydrodebrisoquine. EM subject 6 excreted 23.6% of dose as 3,4-dehydrodebrisoquine. EM subject 6 excreted inordinately large amounts of 3,4-dehydrodebrisoquine. We interpret these findings as being due to conjugation of both debrisoquine and 4-hydroxydebrisoquine, in the absence of authentic standards. The excretion of 6-hydroxydebrisoquine was found to be 1.8 ± 0.5 and 0.1 ± 0.1% of dose in EM 0- to 8 h and 8- to 24 h urine, respectively (Table 4). The excretion of 8-hydroxydebrisoquine was found to be 0.5 ± 0.2 and 0 ± 0% of dose in the EM 0- to 8 h and 8- to 24 h urine, respectively. Neither phenolic metabolite was detected in any urine from a PM volunteer. The total 6- and 8-hydroxy-debrisoquine excretion for EMs in 0 to 24 h was 2.4% of dose, which was significantly greater than in PMs (U = 34.0, P = 0.006).

Finally, the concentration in all urine samples of debrisoquine and 4-hydroxydebrisoquine, both before and after β-glucuronidase treatment, was determined for 24 h. In all duplicate urine samples, we saw a small but consistent rise in these concentrations, which could not be explained by evaporation because the tubes were well sealed during incubation at 37°C. Moreover, concomitant elevation in 3,4-dehydrodebrisoquine was not observed. We interpret these findings as being due to conjugation of both debrisoquine and 4-hydroxydebrisoquine with glucuronic acid. In the case of debrisoquine, this must be as a ω-glucuronidase-labile N-glucuronide. With 4-hydroxydebrisoquine, an O-glucuronide would be formed. Glucuronide formation from secondary alcohols, including benzyl alcohol (such as 4-hydroxydebrisoquine), has been known for many years (Williams, 1959). Neither of these metabolites has been described previously.
Upon fragmenta-
tion, yielded a 192.1
M ion, corre-
2.5 0 2.5 0.7 0.7 3.2
3 0.1 0 0.1 0 0.3 0.6
4 1.9 0.1 2.0 0.5 0.5 2.6
5 0 0.1 0.1 0 0 0.1
6 2.1 0 2.1 0.5 0.5 2.6
7 2.5 0 2.5 0.7 0.7 3.2
8 1.0 0.3 1.3 0.3 0.3 1.6
9 0 0 0 0 0 0
Mean ± S.E.M. 1.8 ± 0.5 0.1 ± 0.1 1.9 ± 0.6 0.5 ± 0.2 0 ± 0 0.5 ± 0.2 2.4 ± 0.7
10 (*4/*4) 0 0 0 0 0 0 0
11 (*4/*4) 0 0 0 0 0 0 0
12 (*4/*4) 0 0 0 0 0 0 0
13 (*4/*4) 0 0 0 0 0 0 0
Significance (P) Mann-Whitney U test 0.017 0.13 (N.S.) 0.006 0.038 0.41 (N.S.) 0.038 0.006
N.S., not significant.

(Allen et al., 1975; Idle et al., 1979). Definitive identification of O^2-glucuronide was achieved using UPLC-TOFMS, which enables exact mass determination (Fig. 4). Indeed, a 368.14 m/z ion, corresponding in O to the hydroxydebrisoquine O^2-glucuronide, was found at 1.76 and 2.23 min of the chromatogram and, upon fragmentation, yielded a 192.1 m/z ion that corresponds to the M$_2$ of hydroxylated debrisoquine. Although it is assumed that this is the O^2-glucuronide, glucuronides derived from other minor hydroxylated metabolites, i.e., 6-, 7-, and 8-hydroxydebrisoquine, cannot be excluded by this analysis. In any case, debrisoquine glucuronide accounted for 0.4 ± 0.2, 1.5 ± 1.1, 0.3 ± 0.1, and 1.3 ± 0.8% of dose in EM 0–8 h, PM 0–8 h, EM 8–24 h, and PM 8–24 h urines, respectively. Interestingly, PMs excreted more of this glucuronide than did EMs, but the difference did not reach statistical significance. 4-Hydroxydebrisoquine glucuronide accounted for 2.5 ± 0.9, 0.1 ± 0.03, 1.5 ± 0.5, and 0.1 ± 0.1% of dose in EM 0–8 h, PM 0–8 h, EM 8–24 h, and PM 8–24 h urines, respectively. EMs excreted more of this glucuronide, in contrast to the debrisoquine glucuronide, and the difference was statistically significant in 0–8 h ($U = 30.0, P = 0.032$), 8–24 h ($U = 32.5, P = 0.01$), and 0–24 h ($U = 33.0, P = 0.01$) urines.

The biotransformation of debrisoquine to its various metabolites excreted in the 0–8 h urine is summarized in Fig. 5. 3,4-Dehydrodebrisoquine (7.8% of dose) represented the second most abundant metabolite of debrisoquine detected in EMs, after 4-hydroxydebrisoquine (20.9% of dose). In PMs, debrisoquine glucuronide (1.5% of dose) was the principal metabolite detected, more abundant than 4-hydroxydebrisoquine (0.5% of dose). In most respects, debrisoquine is an unmetabolized drug in PM subjects, the levels of determined metabolites being almost trivial. This insight may be at variance with a host of previous studies in various populations, which reported greater 4-hydroxylation of debrisoquine in PMs.

Determination of 4-Hydroxydebrisoquine Metabolism in a Single Human Volunteer. A 0–8 h urine was obtained from a single human volunteer, homozygous for the CYP2D6*1 allele, who had taken 10.2 mg of 4-hydroxydebrisoquine by mouth. This volunteer was not drawn from the panel who took debrisoquine. No peaks on GCMS analysis were found corresponding to debrisoquine or to 6- or 8-hydroxy-debrisoquine. However, the percentage of dose eliminated as unchanged 4-hydroxydebrisoquine was 32.7%. Moreover, 3,4-dehydrodebrisoquine accounted for 1.6% of the excreted dose in 0 to 8 h, similar to the findings after debrisoquine administration. The amount of this metabolite was not increased when urine was left overnight at 37°C. Incubation of 4-hydroxydebrisoquine under acidic conditions also did not result in formation of 3,4-dehydrodebrisoquine. These findings demonstrate that 4-hydroxydebrisoquine is converted into 3,4-dehydrodebrisoquine in vivo. The yield of 3,4-dehydrodebrisoquine was not as great as had been anticipated (7.8 ± 2.2% of dose in 0 to 8 h after debrisoquine administration; see Table 1), perhaps reflecting the polarity of 4-hydroxydebrisoquine and its poor penetration to sites of further metabolism. In addition, absorbed 4-hydroxydebrisoquine would be expected to be readily excreted by the kidney.

Formation of 3,4-Dehydrodebrisoquine in Vitro. Debrisoquine hemisulfate was incubated with both human and rat liver microsomes. Debrisoquine was converted to 4-hydroxydebrisoquine, as expected, with 6.6 and 2.1% substrate conversion in 24 h, by rat and human liver microsomes, respectively. However, debrisoquine was also converted to 3,4-dehydrodebrisoquine, with 6.3 and 4.4% substrate conversion in 24 h, by rat and human liver microsomes, respectively. Moreover, 4-hydroxydebrisoquine was converted to 3,4-dehydrodebrisoquine and a late running peak at 22.40 min, by both rat and human liver microsomes. The conversion of 4-hydroxydebrisoquine to 3,4-dehydrodebrisoquine in 24 h was 33 and 25.4% for rat and human liver microsomes, respectively. More recently, 4-hydroxydebrisoquine was converted to 3,4-dehydrodebrisoquine and an additional peak at 24.40 min, by both rat and human liver microsomes. The production of 4-hydroxydebrisoquine to 3,4-dehydrodebrisoquine was dependent upon the presence of microsomes, and depended on either NADH or NADPH, suggesting involvement of a non-P450 enzyme, such as a dehydratase.

Modification of the Metabolic Ratio by 3,4-Dehydrodebrisoquine Formation from 4-Hydroxydebrisoquine. All observations point to the further metabolism of 4-hydroxydebrisoquine to 3,4-dehydrodebrisoquine by a dehydratase enzyme, which has yet to be identified. The true extent of 4-hydroxylation for individuals can therefore be better estimated by the summation of 4-hydroxydebrisoquine and 3,4-dehydrodebrisoquine fluxes. Figure 7A shows the correlation in EMs between the traditional metabolic ratio (Mahgoub et
al., 1977) of percentage dose as debrisoquine/percentage dose as 4-hydroxydebrisoquine and a revised metabolic ratio of percentage dose as debrisoquine/(percentage dose as 4-hydroxydebrisoquine/H11001 percentage dose as 3,4-dehydrodebrisoquine). A strong and highly significant correlation was found (r = 0.969; P = 0.001) for which the revised metabolic ratio was 33% lower than the traditional metabolic ratio (paired Student’s t test; t = 3.43, P = 0.0089). All homozygous EMs had a revised metabolic ratio 1. For PMs, who did not excrete much 3,4-dehydrodebrisoquine (0.9%), the effect on metabolic ratio was nevertheless considerable, with traditional and revised metabolic ratios of 111 ± 37 and 66.3 ± 43, respectively [paired Student’s t test; t = 1.71, P = 0.19 (NS)].

There was no statistically significant correlation found between debrisoquine 4-hydroxylation and 3,4-dehydrodebrisoquine formation in the nine subjects homozygous for CYP2D6*1 (Fig. 7B). This is not surprising, since the formation of 3,4-dehydrodebrisoquine requires not only initial CYP2D6 activity to produce 4-hydroxydebrisoquine, but also a second enzyme activity, independent of CYP2D6, to de-saturate the 3,4-carbon-carbon bond. This dehydratase activity may vary from person to person.

The question remains whether or not failure to account for the formation of 3,4-dehydrodebrisoquine in debrisoquine phenotyping tests using 0- to 8-h urine collections might have led to erroneous assignment of CYP2D6 phenotype. Many thousand of such tests have been performed, and it is not possible to answer this question here, based upon the study of only nine homozygous EMs, four PMs, and no heterozygotes. The consistent reduction by 33% of the metabolic ratio in our volunteers suggests that this may be a possibility. One way to answer this question would be in a large population study of debrisoquine metabolism versus CYP2D6 genotype.

Discussion

Authentic 3,4-dehydrodebrisoquine was synthesized by dehydration of 4-hydroxydebrisoquine with concentrated sulfuric acid and characterized by GCMS, LC-MS/MS, and 1H NMR. In vivo studies with human volunteers revealed that 3,4-dehydrodebrisoquine is a novel metabolite of debrisoquine that is excreted in both the 0- to 8-h and 0- to 24-h urine after a single oral dose of 12.8 mg of debrisoquine hemisulfate (10 mg of debrisoquine free base). The excretion of this metabolite is highly variable, from 3.1 to 27.6% (10.3 ± 2.6) of dose in homozygous EMs and 0 to 2.1% (1.0 ± 0.5) of dose in PMs in the 0- to 24-h urine. 3,4-Dehydrodebrisoquine comprised over one-third of the measured debrisoquine metabolites in one individual (subject 6). In addition, the excretion of the two phenolic metabolites, 6-hydroxydebrisoquine and 8-hydroxydebrisoquine, were determined, but, taken together, they never exceeded 6.1% of the dose with a mean of

![FIG. 4. UPLC chromatogram and positive-ion mass spectra of putative monohydroxylated debrisoquine glucuronides. Ions eluting at 1.76 min and 2.23 min with the predicted molecular weight of monohydroxylated debrisoquine glucuronide (368.14) were extracted from the total ion chromatogram. Loss of the glucuronic acid moiety (−176) from these two parent ions in MS/MS fragmentation is shown in the respective inlaid panels.](https://example.com/fig4)

![FIG. 5. Metabolic profiles in 0- to 8-h urine for nine CYP2D6*1 homozygotes (open bars) and four CYP2D6*4 homozygotes (filled bars) given 12.6 mg of debrisoquine hemisulfate by mouth. Asterisks indicate metabolites showing statistical differences between genotypes. D, debrisoquine; 4-HD, 4-hydroxydebrisoquine; 6-HD, 6-hydroxydebrisoquine; 8-HD, 8-hydroxydebrisoquine; 3,4-DHD, 3,4-dehydrodebrisoquine; D-gluc, debrisoquine glucuronide; 4-HD-gluc, 4-hydroxydebrisoquine glucuronide.](https://example.com/fig5)
2.4 ± 0.7% in homozygous EMs. Interestingly, neither phenol was detected in any urine from the four PM volunteers. This finding is in stark contrast to earlier studies, in which phenols were reported in the urine of eight Caucasian PMs and four Ghanaian PMs (Woolhouse et al., 1979), and 0.6% and 0.4% of dose of 6-hydroxydebrisoquine and 8-hydroxydebrisoquine, respectively, were reported in the 0- to 8-h urine of six Nigerian PMs (Mbanefo et al., 1980). It is possible that our findings reflect interethnic variation; however, they are more likely to be due to the deployment in this study of the highly specific analytical tool of GCMS.

A second novel finding of the current study is the observation that both debrisoquine and 4-hydroxydebrisoquine appear to form β-glucuronidase-labile glucuronides, as confirmed by UPLC-TOFMS analysis of urine metabolites. Furthermore, the pattern of glucuronide excretion was highly genotype-dependent, reducing the likelihood that it was due to artifact. A metabolic ratio constructed as percentage of dose eliminated as debrisoquine glucuronide/percentage of dose eliminated as 4-hydroxydebrisoquine glucuronide had a mean value of 0.2 for EMs and 15 for PMs.

Further studies revealed that 3,4-dehydrodebrisoquine is produced from 4-hydroxydebrisoquine, both in vivo and in vitro. Its formation in vitro, using both human and rat liver microsomes, was dependent on either NADPH or NADH, and was, therefore, probably not mediated by a cytochrome P450. Therefore, not only is 3,4-dehydrodebrisoquine a major and variable metabolite, but its production may also depend upon the activity of a secondary enzyme system, possibly a dehydratase. Thus, the intergenotype difference in excretion of 3,4-dehydrodebrisoquine may be largely due to the CYP2D6 polymorphism, whereas the considerable intragenotype variation in production of this metabolite may arise from intersubject variation in the 4-hydroxydebrisoquine desaturation reaction. A subject who has a high 4-hydroxydebrisoquine dehydratase activity may excrete relatively little 4-hydroxydebrisoquine, compared with a subject (with the same CYP2D6 genotype) who has a low 4-hydroxydebrisoquine dehydratase activity and thus excretes relatively larger amounts of 4-hydroxydebrisoquine. Owing to the contribution of CYP1A1 to debrisoquine 4-hydroxylation (Granvil et al., 2002), coupled with the variation introduced by glucuronidation of debrisoquine and 4-hydroxydebrisoquine, described herein, we can begin to comprehend why the debrisoquine metabolic ratio is so highly variable within a single genotype such as CYP2D6*1/CYP2D6*1. Owing to the contribution of CYP1A1 to debrisoquine 4-hydroxylation (Granvil et al., 2002), coupled with the variation introduced by glucuronidation of debrisoquine and 4-hydroxydebrisoquine, described herein, we can begin to comprehend why the debrisoquine metabolic ratio is so highly variable within a single genotype such as CYP2D6*1/CYP2D6*1. The discovery in recent years of a large number (close to 90) of CYP2D6 variant alleles (http://www.imm.ki.se/cypalleles/cyp2d6.htm) has explained the existence of the CYP2D6 UM, EM, IM, and PM phenotypes and some of the ethnic variability associated with them. However, these genetic data have failed to explain why the archetypal drug debrisoquine is metabolized quite differently in persons with identical genotypes.
such as age, diet, lifestyle, and liver and kidney blood flow, it is the operation of additional mechanisms, both metabolic and nonmetabolic, that surely dictate the pattern of urinary metabolites of a drug such as debrisoquine. The effect of a second enzyme system on debrisoquine metabolism was not anticipated because debrisoquine has been very well studied with respect to the P450 system. It was not immediately apparent that the subject of investigation should be 4-hydroxydebrisoquine, in addition to debrisoquine, and only then was the participation of a second enzyme system, the 4-hydroxydebrisoquine 3,4-dehydrogenase, uncovered. The metabolism of debrisoquine in relation to the CYP2D6 polymorphism is now more completely understood.

Since the discovery of the debrisoquine 4-hydroxylation polymorphism almost three decades ago (Mahgoub et al., 1977), there have appeared a host of reports that correlated some aspect of drug disposition with numerical values of the debrisoquine metabolic ratio, with greater or lesser success; for example, with nortriptyline (Mellstrom et al., 1981; Woolhouse et al., 1984), amitriptyline (Mellstrom et al., 1986), phenformin (Oates et al., 1982), sparteine (Inaba et al., 1983), tolbutamide (Peart et al., 1987), and ifosfamide (Philip et al., 1988). It is now clear that the classical metabolic ratio, as used by these various investigators, may not have been the best tool with which to correlate the metabolism of a second substrate. However, these types of investigations have been superseded by genotype-based studies, which have their own advantages and disadvantages.

The ring-opened metabolites of debrisoquine ([7] and [8] in Fig. 1A) are believed to represent a significant proportion of debrisoquine metabolism in rats, dogs, and humans (Allen et al., 1975, 1976; Eiermann et al., 1998). It was first proposed in 1976 that these two ring-opened metabolites were formed as a consequence of 1- and 3-hydroxylation of debrisoquine (Allen et al., 1976). More recently, this concept has been reinforced after the detection of the two ring-opened metabolites using LCMS (Eiermann et al., 1998). These authors also reported that the excretion of these two metabolites correlated highly, across a broad range of metabolic capacity, with debrisoquine 4-hydroxylation, as judged by the traditional metabolic ratio (debrisoquine/4-hydroxydebrisoquine). However, no one has ever performed an experiment that demonstrated 1- or 3-hydroxylation of debrisoquine; simply detection of metabolites [7] and [8] (Fig. 1A) is taken as evidence for these hydroxylation reactions. An alternative scenario, that is based both upon our observation of the formation of 3,4-dehydrodebrisoquine from 4-hydroxydebrisoquine and upon some other literature, is proposed. Examination of the various published correlations between debrisoquine 4-hydroxylation and individual phenol metabolite formation, together with the data presented herein, is enlightening. The data presented in Tables 3 and 4 permit correlations to be made, within the homozygous CYP2D6*1 genotype, among 4-, 6-, and 8-hydroxylation of debrisoquine. The correlation coefficients (r) for 4-hydroxylation versus 6-hydroxylation, 4-hydroxylation versus 8-hydroxylation, and 6-hydroxylation versus 8-hydroxylation are 0.059, 0.055, and 0.993, respectively. 4-Hydroxylation does not correlate with either 6- or 8-hydroxylation, even though all three reactions are CYP2D6-dependent (see Tables 1–4). Moreover, published data from 10 Nigerian EMs (Mbanefo et al., 1980) permit correlations to be made among 4-, 5-, 6-, 7-, and 8- hydroxylation of debrisoquine. The correlations with debrisoquine 4-hydroxylation and 6-, 7-, and 8-hydroxylation are virtually zero, and there is a weakly significant correlation with 5-hydroxylation (r = 0.642, P < 0.05). Therefore, there is no reason to expect 4-hydroxylation to correlate with 1- or 3-hydroxylation, should these latter reactions occur.

We propose that debrisoquine 4-hydroxylation also leads to 3,4-dehydrodebrisoquine in considerable amounts; as high as 27.6% of the dose was obtained in one subject. In addition, the possibility exists that 3,4-dehydrodebrisoquine not only is in equilibrium with the 3-dehydro-isoquinolinium compound in Fig. 4, but also rearranges to the 1-dehydro-isoquinolinium compound, because of the resonance between the 1,2-double bond and the aromatic system and the guanidine lone pairs. As shown in Fig. 1C, the desaturation of 4-hydroxydebrisoquine, subsequent rearrangement of the 3,4-dehydrodebrisoquine, and reaction with hydroxyl ions leads to 1- and 3-hydroxydebrisoquine, which then becomes further oxidized to yield, ultimately, the two ring-opened metabolites. In this proposed scheme, all but the phenolic metabolites arise via 4-hydroxylation of debrisoquine by CYP2D6.

In summary, this study has shown that debrisoquine forms a novel metabolite, 3,4-dehydrodebrisoquine, both in vivo and in vitro, from 4-hydroxydebrisoquine by an unknown dehydratase activity. The existence of this new metabolite has several consequences. First, the total flux of 4-hydroxylation is, on average, at least 30% greater in CYP2D6*1 homozygotes than previously thought. This has the effect of lowering the metabolic ratio, but does so in a predictable manner.

In turn, this may have implications for studies in which the metabolic ratio is correlated with the metabolism of a second drug or, indeed, is used in case-control studies of cancer (Ayesh et al., 1984), Parkinson’s disease (Barbeau et al., 1985), and other clinical entities. Second, the process of CYP2D6-mediated hydroxylation followed by desaturation may not be restricted to debrisoquine. It is possible that this double reaction plays a role in sparteine metabolism. Finally, we propose a metabolic scheme whereby all the major metabolites of debrisoquine arise via the 4-hydroxylation pathway. Neither the extent of metabolism nor the ratio of metabolites to each other can be readily predicted from CYP2D6 genotyping studies alone. Genotype determines an average metabolic performance, but the variability about this mean may be due to a range of factors, including alternative non-CYP2D6 metabolic pathways.

Acknowledgments. We gratefully acknowledge the advice of Professor Roger J. Griffin, University of Newcastle (Newcastle, UK), regarding the potential rearrangement and reactivity of 3,4-dehydrodebrisoquine. We are also grateful to Kolbjørn Zahlen (St. Olav Hospital, Trondheim, Norway), Professor Ann K. Daly (University of Newcastle), and Professor Urs Meyer (University of Basel, Basel, Switzerland) for their kind gifts of authentic standards.

References
Eiermann B, Edlund PO, Tjemberg A, Dales P, Dahl ML, and Bertilsson L (1998) 1- and

3,4-DEHYDRODEBRISOQUINE IMPACTS ON CYP2D6 METABOLIC RATIO
3-Hydroxylations, in addition to 4-hydroxylation, of debrisoquine are catalyzed by cytochrome P450 2D6 in humans. Drug Metab Dispos 26:1096–1101.

Address correspondence to: Professor Jeffrey R. Idle, Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague 2, Czech Republic. E-mail: jeff@cyp2d6.com