Genetic Variation of Human Cytochrome P450 Reductase as a Potential Biomarker for Mitomycin C-Induced Cytotoxicity

Shou-Lin Wang, Jing-Fen Han, Xiao-Yang He, Xin-Ru Wang, and Jun-Yan Hong

School of Public Health/Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey (S.-L.W., J.-F.H., X.-Y.H., J.-Y.H.); and Institute of Toxicology, Nanjing Medical University, Nanjing, People’s Republic of China (S.-L.W., X.-R.W.)

Received May 13, 2006; accepted October 18, 2006

ABSTRACT:
The importance of genetic variation in clinical response to various drugs is now well recognized. Identification of genetic biomarkers that can predict efficacy and toxicity of chemotherapeutic drugs in cancer patients holds great promise in treatment improvement and cost reduction. Mitomycin C (MMC) is a common anticancer drug used for the treatment of numerous types of tumors. Metabolism-mediated activation, by either one-electron or two-electron reduction, plays a critical role in the chemotherapeutic action of MMC. NADPH-cytochrome P450 (oxido)reductase (POR) is a major enzyme responsible for MMC activation through the one-electron reductive pathway, which leads to the production of semiquinone anion radicals and subsequent DNA damage in the cells. Recently, a total of six naturally occurring human POR variants with single amino acid changes (Y181D, A287P, R457H, V492E, C569Y, and V608F) have been identified. Although the catalytic efficiency of these variants in reduction of cytochrome c was reported to be altered, their capability in activating MMC, a direct substrate of POR, has not been examined. In the present study, we demonstrated that except for the C569Y variant, MMC-induced toxicity assayed as cell viability and proliferative capability was significantly decreased in the Flp-In Chinese hamster ovary cells stably expressing all the other POR variants in comparison with the cells expressing wild-type human POR. Cells expressing the V608F and Y181D variants had a complete loss of the capability to activate MMC. Our finding suggests that these functional POR genetic variations may serve as a potential biomarker to predict the chemotherapeutic response to MMC.

Mitomycin C (MMC) is a naturally occurring antibiotic that was isolated originally from the microorganism Streptomyces caesius. It is a highly active anticancer drug commonly used in combination with other chemotherapeutic agents for the treatment of various cancers. It is anticipated that MMC will continue to play an important role in the treatment of bladder, breast, head and neck, and non-small-cell lung cancers (Bradner, 2001). Bioreduction-mediated activation of MMC is responsible for its chemotherapeutic effects. Bioreduction of MMC leads to the formation of free radicals, which causes a cascade of reactions including lipid peroxidation, protein and DNA damage, and, ultimately, cell death (Kappus, 1986). Formation of MMC-induced DNA cross-links has been suggested to be the critical cytotoxic lesion (Hughes et al., 1991). Among the several reductases that were reported to be involved in MMC activation, NADPH-cytochrome P450 (oxido)reductase (POR), a microsomal flavoprotein, has been demonstrated as a major enzyme (Joseph et al., 1996; Belcourt et al., 1998; Cummings et al., 1998). Human POR is expressed in various normal tissues and a variety of tumor cells (Hall et al., 1989; Yu et al., 2001). It activates MMC through a one-electron reductive mechanism. Reduction of MMC by POR produces semiquinone anion radicals that can be reoxidized with concomitant formation of superoxide anion radicals. The enzymatic or spontaneous dismutation of superoxide anion radicals can produce hydrogen peroxide and hydroxyl radicals in the presence of trace amounts of iron (Kappus, 1986).

Recently, six genetic variants of human POR, each containing a single amino acid change (Y181D, A287P, R457H, V492E, C569Y, and V608F), have been identified in patients with congenital adrenal hyperplasia and Antley-Bixler syndrome (Arli et al., 2004; Fluck et al., 2004). The variant proteins showed a decreased activity in cytochrome c reduction in vitro (Arli et al., 2004; Fluck et al., 2004). However, the reported variants were expressed in Escherichia coli as truncated proteins (lacking 27 or 46 N-terminal amino acid residues) and their catalytic functions may differ from that of the full-length POR proteins. It should also be noted that cytochrome c is merely an artificial electron acceptor used for the activity assay in vitro but not a POR substrate in vivo. To further characterize the functional significance of these reported POR missense variants, we have recently established Flp-In CHO cell lines that stably express full-length cDNAs of the wild-type or variant human POR and used them to examine the effects of these POR variations on the metabolism and toxicity of paraquat, a direct substrate of POR (Han et al., 2006). However, the effects of these genetic variations on POR-mediated MMC activation remain unknown because the enzymatic activity

ABBREVIATIONS: MMC, mitomycin C; POR, NADPH-cytochrome P450 (oxido)reductase; CHO, Chinese hamster ovary; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt; NQO1, NAD(P)H:quinone oxidoreductase-1.
changes resulting from single amino acid substitutions are often substrate-dependent (He et al., 2004). In the present study, we compared MMC-induced toxicity in these stably transfectant cells and demonstrated that except for the C569Y variant, MMC-induced toxicity was significantly decreased in the cells expressing the other POR variants. This result suggests that cancer patients carrying these variant POR alleles may be less responsive to MMC treatment.

Materials and Methods

Chemicals and Reagents. Mitomycin C (>97% purity), crystal violet, NADPH, and cytochrome c were obtained from Sigma-Aldrich (St. Louis, MO). Cell Titer 96AQueous nonradioactive cell proliferation assay kit was purchased from Promega (Madison, WI). Flp-In CHO cells, F12 nutrient mixture, fetal bovine serum, penicillin-streptomycin-glutamine, hygromycin B, and trypsin-EDTA were obtained from Invitrogen (Carlsbad, CA).

Flp-In CHO Cells Expressing Human POR. The procedures to establish the Flp-In CHO cells stably expressing wild-type and variant human POR were described in detail elsewhere (Han et al., 2006). The numbering of the amino acid residues in human POR in this report was based on the National Center for Biotechnology Information database (http://www.ncbi.nlm.nih.gov) for the human POR gene (NC_000007), mRNA (NM_000941), and protein (NP_000932). This numbering is consistent with the terminology used by Fluck et al. (2004) but different from that of Arlt et al. (2004), who used the GenBank accession number P61435, which did not include the first three N-terminal amino acid residues (Met-Ile-Asn). Therefore, the Ala284Pro, Arg457His, and Cys567Tyr variants reported by Arlt et al. (2004) were named as Ala287Pro, Arg457His, and Cys567Tyr in the report by Fluck et al. (2004) and in the present study.

Cell Viability Determination. Cell viability was determined by observation under a microscope (Nikon Eclipse TE2000-S; Nikon, Tokyo, Japan) and by a modified MTS assay as described previously (Wang et al., 2005). In brief, the cells were added into a 24-well plate (1 x 10^5 cells per well) and incubated under 95% humidity and 5% CO2 at 37°C overnight. The cells were then incubated with MMC (dissolved in 70% ethanol) at different concentrations for 24 h. The cells were then replated at a density of 400 cells/100-mm dish and being washed with phosphate-buffered saline, the colonies were stained with NADPH, and cytochrome c/H9262. The stained colonies were visualized. After incubation with MMC (2 x 10^{-5} M) for 24 h or 10^{-5} M for 2 h resulted in a complete loss in the ability of colony formation for all the cells, including the vector control cells (Fig. 2). The IC_{50} (μM) values of MMC in the cells expressing wild-type POR and the C569Y variant were much more sensitive to MMC than the cells expressing wild-type POR (Fig. 1). In particular, the response to MMC in the cells expressing the Y181D and V608F variants were further confirmed by MTS assay, which measures the mitochondrial dehydrogenase released during cell death. The Flp-In CHO cells expressing wild-type human POR and the C569Y variant were much more sensitive to MMC than the vector control cells (Fig. 2). The IC_{50} (μM) values of MMC in the cells expressing wild-type POR and the C569Y variant were 2.5 and 3.1, respectively, whereas the value for the vector control cells was 17.1. Cells expressing the Y181D and V608F variants showed a response to MMC similar to that of the vector control cells, with IC_{50} values of 14.1 μM and 16.9 μM, respectively. Cells expressing the A287P, R457H, and V492E variants, although still more sensitive to MMC than the vector control cells, also showed an increased viability in comparison with the cells expressing wild-type POR (Fig. 2).

In addition to causing cell death, MMC has a potent antiproliferative effect (Granada et al., 2005). Therefore, we also used a colony formation assay to compare the effect of MMC on the proliferative capability in the cells expressing wild-type human POR or its variants. Our pilot experiment showed that the plating efficiency of the Flp-In CHO cells without MMC treatment was approximately 50 to 65%. MMC treatment at 1 μM for 24 h or 10 μM for 2 h resulted in a complete loss in the ability of colony formation for all the cells, including the vector control cells and the cells expressing either wild-type POR or the variants. Therefore, we selected the treatment protocol of 2 μM and 5 μM MMC for 2 h. The results of the colony formation assay showed the same trend as seen in the cell viability...
study. Except for the C569Y variant, cells expressing the other human POR variants showed an increase in cell-proliferating capability in comparison with the cells expressing wild-type POR. Again, cells expressing the Y181D and V608F variants showed the same response to MMC as the vector control cells (Fig. 3).

As shown in Table 1, POR activity in these stably transfectant cells correlated very well with both the cell viability (Fig. 2) and colony formation data (Fig. 3). Whereas there was little endogenous POR activity in the cells transfected with vector alone, the activity was increased approximately 30-fold in the cells expressing wild-type human POR. Except for the C569Y variant, cells transfected with all the other POR variant cDNAs showed a significant decrease in POR activity in comparison with the cells expressing wild-type POR (Table 1).

Discussion

All our results provide direct evidence that the POR genetic variations (except for C569Y) examined in the present study have a significant impact on POR-mediated cytotoxicity of MMC. The molecular mechanisms involved in the POR activity alteration, however, could be different. Our recent work with immunoblot and reverse transcription-polymerase chain reaction analyses suggests that although protein structure alteration is responsible for the activity changes in the R457H, V492E, and V608F variants, a decrease in protein and/or mRNA stability is probably the major mechanism for the activity changes in the A287P and Y181D variants (Han et al., 2006). The lack of activity change in MMC activation in the cells expressing the C569Y variant is consistent with our recent finding that these cells have the same sensitivity as the cells expressing wild-type POR.
expressing wild-type (WT) POR to paraquat-induced cell death (Han et al., 2006). In contrast, the expressed C569Y variant protein was reported to show an activity decrease in cytochrome c reduction in two previous studies (Arlt et al., 2004; Fluck et al., 2004). The discrepancy is probably due to the use of truncated POR proteins in their studies. It has been observed that the N-terminal sequence of POR is important for the electron transfer function (Black et al., 1979; Bonina et al., 2005). Notably, Arlt et al. (2004) observed that the N-terminal sequence of POR is important for the electron transfer function (Black et al., 1979; Bonina et al., 2005). The discrepancy is probably due to the use of truncated POR proteins in their studies. It has been observed that the N-terminal sequence of POR is important for the electron transfer function (Black et al., 1979; Bonina et al., 2005).

By supporting the catalytic function of microsomal cytochrome P450 but not cytochrome P450, stable NADPH-cytochrome P450 reductase (NADPH:cytochrome P450 reductase), and Dr. A.-N.T. Kong (Rutgers University) for permission to use his plate reader.

References

morphism in patients with diagnosed perinatal cancer receiving intraperinatal hyperther-

Han JF, Wang SL, He XY, Liu CY, and Hong J-Y (2006) Effect of genetic variation on human POR cytotoxicity study was conducted under aerobic conditions. It is therefore, reasonable to hypothesize that functional genetic variations of POR, such as the ones identified in the present study, may also significantly influence the therapeutic effects of MMC. Further studies are war-
rried out for the NQO1 variant alleles, either alone or in combination with the functional NQO1 variant alleles.

A significant increase in sensitivity to MMC was observed in CHO cells expressing human MMC under both aerobic and hypoxic conditions, although the cytotoxicity was greater under the latter conditions (Belcourt et al., 1996, 1998). In contrast, POR-mediated activation of doxorubicin (Adriamycin), another quinone anticancer drug, occurs only under aerobic conditions (Bartoszek, 2002). It should be noted that the present MMC cytotoxicity study was conducted under aerobic conditions. It is possible that under hypoxic conditions, the difference in MMC sensitivity to the wild-type POR cells and variant POR cells might be even larger. This prediction needs to be examined by future experiments.

In addition to MMC, POR is directly involved in the bioactivation of other quinone anticancer drugs (Bachur et al., 1979; Rooseboom et al., 2004). By supporting the catalytic function of microsomal cytochrome P450 enzymes, POR also plays an indirect yet critical role in the metabol-
ism of chemotherapy drugs that are substrates of cytochrome P450 enzymes such as cyclophosphamide (Chen et al., 1997). It would be of great interest to determine whether the clinical response to these non-
MMC anticancer drugs is affected by genetic variations of human POR.

Acknowledgments

We thank Dr. Frank J. Gonzalez (National Cancer Institute, National Institutes of Health) for the gift of human POR cDNA, and Dr. A.-N.T. Kong (Rutgers University) for permission to use his plate reader.

Table 1

<table>
<thead>
<tr>
<th>Cells</th>
<th>Cytochrome c Reduction Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>6.26 ± 1.59*</td>
</tr>
<tr>
<td>WT</td>
<td>172.10 ± 16.80*</td>
</tr>
<tr>
<td>Y181D</td>
<td>7.97 ± 2.39*</td>
</tr>
<tr>
<td>A257P</td>
<td>50.86 ± 10.82**</td>
</tr>
<tr>
<td>R457H</td>
<td>75.68 ± 18.76**</td>
</tr>
<tr>
<td>V492E</td>
<td>26.89 ± 5.45*</td>
</tr>
<tr>
<td>C569Y</td>
<td>202.99 ± 25.58*</td>
</tr>
<tr>
<td>V668F</td>
<td>16.30 ± 3.88*</td>
</tr>
</tbody>
</table>

* p < 0.05 in comparison with the vector control cells; ** p < 0.05 in comparison with the cells expressing wild-type (WT) POR.