Multidrug Resistance-Associated Protein 2 Is Primarily Responsible for the Biliary Excretion of Fexofenadine in Mice

Xianbin Tian, Maciej J. Zamek-Gliszczynski, Jun Li, Arlene S. Bridges, Ken-ichi Nezasa, Nita J. Patel, Thomas J. Raub, and Kim L. R. Brouwer


Received June 20, 2007; accepted October 1, 2007

ABSTRACT:

Previous studies implicated P-glycoprotein (P-gp) as the major transport protein responsible for the biliary excretion of fexofenadine (FEX). However, FEX biliary excretion was not impaired in P-gp- or breast cancer resistance protein (Bcrp)-knockout mice or multidrug resistance-associated protein 2 (Mrp2)-deficient rats. The present study tested the hypothesis that species differences exist in the transport protein primarily responsible for FEX biliary excretion between mice and rats. Livers from Mrp2-knockout (Mrp2KO) mice and Mrp2-deficient (TR−/−) rats were perfused in a single-pass manner with 0.5 μM FEX. N-(4-[2-(1,2,3,4-Tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) (10 μM) was employed to inhibit P-gp and Bcrp. The biliary excretion rate of FEX was decreased 85% in Mrp2KO relative to wild-type mice (18.4 ± 2.2 versus 122 ± 34 pmol/min/g liver). In mice, more than 50% of FEX unbound intrinsic biliary clearance (CI′ bile, int = 3.0 ml/h/g liver) could be attributed to Mrp2 (Mrp2-dependent CI′ bile, int = 1.7 ml/h/g liver), with P-gp and Bcrp playing a minor role (P-gp- and Bcrp-dependent CI′ bile, int = 0.3 ml/h/g liver). Approximately one third of FEX CI′ bile, int was attributed to unidentified mechanisms in mice. In contrast to mice, FEX biliary excretion rate (245 ± 38 and 250 ± 25 pmol/min/g liver) and CI′ bile, int (9.72 ± 2.47 and 6.49 ± 0.68 ml/h/g liver) were comparable between TR−/− and wild-type (Wistar) rats. Mrp2 clearly plays a major role in FEX biliary excretion in mice. In conclusion, remarkable species differences exist in FEX hepatobiliary transport mechanisms.

ABBREVIATIONS: FEX, fexofenadine; Bcrp, breast cancer resistance protein; B6, wild-type C57BL/6 mouse; Mrp2KO, Mrp2-knockout; Oatp, organic anion transporting polypeptide; P-gp, P-glycoprotein; TR−/−, Mrp2-deficient Wistar rat.

FEX is a non-sedating H1 receptor antagonist used clinically for the treatment of seasonal allergies. FEX is metabolically stable; less than 5% of the dose is eliminated by metabolism in humans (Cvetkovic et al., 1999). FEX is eliminated primarily via biliary excretion. In mice, biliary and renal clearances account for 50 to 70% and 10 to 20% of FEX total body clearance, respectively (Tahara et al., 2005).

In vitro studies have demonstrated that cellular uptake of FEX is mediated by the 1A2 and 2B1 isoforms of human organic anion transporting polypeptide (OATP1A2 and OATP2B1, respectively); cellular efflux of FEX is mediated by human P-gp (Cvetkovic et al., 1999). FEX concentrations in plasma, brain, kidney, and liver were elevated significantly after oral and intravenous administration to P-gp-knockout mice (Cvetkovic et al., 1999). FEX has been used as a P-gp probe substrate for clinical drug-drug and food-drug interaction studies (Banfield et al., 2002; Shon et al., 2005).

In rodents, FEX biliary excretion was not impaired in P-gp- or Bcrp-knockout mice or Mrp2-deficient Eisai hyperbilirubinemic rats (Tahara et al., 2005). These findings led to the hypothesis that one or more unidentified transport protein(s) distinct from P-gp, Mrp2, and Bcrp mediate the biliary excretion of FEX. Recent studies have suggested that species differences exist in transport mechanisms mediating biliary excretion (Zamek-Gliszczynski et al., 2006b). The purpose of this work was to determine whether Mrp2 is responsible for FEX biliary excretion in mice and whether species differences in FEX biliary excretion exist between mice and rats. Furthermore, the involvement of transport mechanisms other than Mrp2, P-gp, and Bcrp in FEX biliary excretion was investigated by using the P-gp and Bcrp inhibitor N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) in Mrp2-knockout mice.
Materials and Methods

Chemicals. FEX, taurocholate, and Krebs-Henseleit buffer packets were purchased from Sigma Chemical Co. (St. Louis, MO). GF120918 was a gift from GlaxoSmithKline (Research Triangle Park, NC). All other chemicals were of reagent grade and were readily available from commercial sources.

Animals. Male C57BL/6 (B6) wild-type and Abcc2 (−/−) (Mrp2KO) mice (25–30 g) were provided by Eli Lilly and Co. Mrp2KO mice were generated as described previously (Nezasa et al., 2006). Male Wistar rats (250–300 g) were purchased from Charles River Laboratories, Inc. (Raleigh, NC); male Mrp2-deficient TR− rats (obtained from Dr. Mary Vore, University of Kentucky, Lexington, KY) were bred in the University of North Carolina School of Pharmacy animal facility. All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of North Carolina at Chapel Hill.

Single-Pass Liver Perfusion Study. In mice, the gallbladder was cannulated with polyethylene PE-10 tubing, and both the portal vein and inferior vena cava above the liver were cannulated with a 20G catheter (Nezasa et al., 2006). After a ~15-min preperfusion period (FEX-free Krebs-Henseleit buffer with 5 μM taurocholate; flow rate = 5 ml/min), single-pass perfusion of the liver was continued for 60 min with buffer containing 0.5 μM FEX and 10 μM GW916. Perfusate outflow and bile were collected in toto every 10 min. Rat livers were perfused in a similar, single-pass manner with Krebs-Henseleit buffer except that the common bile duct was cannulated with PE-10 tubing and the perfusate flow rate was 30 ml/min.

Analytical Methods. Livers were homogenized in three volumes (v/w) of 0.1 M phosphate buffer (pH 7.4). Homogenates were dialyzed to equilibrium (4.5 h) against buffer using Spectra-Por 2 membranes (Spectrum Laboratories, Inc., Rancho Dominguez, CA) in a 96-well plate dialysis apparatus (HTDialysis, Gales Ferry, CT) according to the manufacturer’s instructions. Unbound fractions were corrected for dilution (Kalvas and Maurer, 2002).

Bile, outflow perfusate, liver homogenate, and dialysate samples were analyzed by liquid chromatography with detection by tandem mass spectrometry (Applied Biosystems API 4000 triple quadrupole with TurboIonSpray interface; MDS Sciex, Concord, ON, Canada). FEX and cetirizine (internal standard) were detected in positive ion mode using multiple reaction monitoring: FEX, 502.3 → 466.4 m/z; cetirizine, 389.0 → 201.0 m/z.

Data Analysis. Based on pilot studies in which outflow FEX concentrations reached a plateau after 50 min of infusion, steady-state FEX concentrations were defined as the average concentration during the 50- to 60-min interval. The hepatic extraction ratio was calculated as the ratio of the difference between steady-state inflow and outflow FEX concentrations and the steady-state inflow concentration. Unbound intrinsic biliary clearance (CLbile, int) was calculated as the ratio of the FEX biliary excretion rate and the unbound liver concentration (CLliver, unbound). All data are reported as mean ± S.D. (n = 3–4 per group). Statistical significance was assessed by one-way analysis of variance for rat data and two-way analysis of variance with Tukey’s post hoc test for mouse data. In cases where the normality test failed, data were log-transformed before statistical analysis. In all cases, P < 0.05 was considered to be statistically significant.

Results and Discussion

The biliary excretion rate of FEX was decreased 85% in Mrp2KO mice compared with wild-type B6 mouse livers; GF120918 decreased FEX biliary excretion rate ~45% in B6 and ~40% in Mrp2KO mouse livers compared with vehicle controls (Fig. 1A; Table 1). FEX CLbile, int was significantly decreased in Mrp2KO compared with B6 mouse livers, but was not significantly affected by the coinfusion of 10 μM GF120918 in either B6 or Mrp2KO mouse livers (Table 1).

The contribution of individual canalicular transport proteins to FEX CLbile, int may be estimated as the difference between FEX CLbile, int in wild-type and transport-deficient mouse livers, assuming that other CLbile, int processes in the transport-deficient livers, obtained via genetic knockout or chemical inhibition, are not altered by the loss of functional proteins. Using this approach, the contribution of Mrp2 to the biliary excretion of FEX biliary excretion rate

FEX CLbile, int was estimated to be ~1.74 ml/h/g liver (the difference between 3.01 and 1.27), and the combined contribution of P-gp and Bcrp was estimated to be ~0.3 ml/h/g liver (the difference between 3.01 and 2.70 for B6 and 1.27 and 1.03 for Mrp2KO livers) (Table 1). These data clearly demonstrate that Mrp2 is the major transport protein mediating FEX biliary excretion in mice, that P-gp and Bcrp play a minor role, and that at least one other unidentified transport mechanism exists, which accounts for approximately one third of FEX CLbile, int. Although previous studies indicated that P-gp transports FEX in vitro and that P-gp was the major efflux mechanism for FEX in the mouse intestine and brain (Cvetkovic et al., 1999), this is not the case in mouse liver. As exemplified with FEX, a positive result in an in vitro P-gp transport assay (Cvetkovic et al., 1999) does not necessarily imply that P-gp is the predominant transport pathway for the molecule in all organs that express P-gp. Tissue- and organ-specific differences in the predominant transport protein for a drug, as reported previously for paclitaxel (Lagas et al., 2006), may be explained by transport multiplicity, including the affinity of a molecule for multiple transport proteins and the differential expression of these transport proteins in various tissues.

In contrast to mice, the biliary excretion rate and CLbile, int of FEX were comparable between TR− and wild-type Wistar rat livers (Fig. 2A; Table 2), consistent with the findings of Tahara et al. (2005). One interpretation of these findings is that FEX has affinity for mouse Mrp2 but not rat Mrp2. Alternatively, other transport mechanisms in rats may exhibit greater FEX clearance due to greater affinity and/or capacity than Mrp2. The dominant activity of Mrp2 in rats, relative to other preclinical species, has been attributed to high Mrp2 expression (Ninomiya et al., 2005). The biliary excretion of glucuronide and sulfate metabolites is mediated predominantly by Mrp2 in rats,
excretion of a drug in one transporter-deficient animal model does not necessarily translate to impaired biliary excretion in another species deficient in that same transport protein. Overall, tissue- and organ-specific differences within species and interspecies differences in drug transport complicate in vitro-in vivo correlations and allometric scaling for drugs with predominantly transporter-mediated disposition.

Mean steady-state FEX concentrations in outflow perfusate (C_{ss, out}) were significantly higher, consistent with decreased hepatic extraction ratios, in livers from Mrp2KO relative to B6 mice (Fig. 1B; Table 1). Despite the absence of the protein primarily responsible for FEX biliary excretion, FEX liver concentrations and the liver-to-perfusate partition ratio of FEX (C_{liver, unbound}/C_{ss, out}) decreased significantly in Mrp2KO mice (Table 1). This apparent discrepancy reflects the enhanced function of basolateral efflux transport proteins that are responsible for FEX hepatic disposition in Mrp2KO mice. For example, basolateral Mrp3 and Mrp4, which have overlapping substrate specificity with Mrp2, are up-regulated in Mrp2KO mice (Chu et al., 2006; Nezasa et al., 2006; Vlaming et al., 2006). Likewise, FEX liver concentrations were significantly lower in TR− compared with Wistar rats after perfusion (Table 2). The increase in perfusate concentrations during early time points in the livers from TR− relative to Wistar rats (Fig. 2B) may be due to enhanced basolateral efflux of Mrp2 substrates by up-regulated Mrp3 when Mrp2 is deficient.

GF120918 is a more potent inhibitor of P-gp than Bcrp by an order of magnitude, thus concentrations known to inhibit Bcrp in mouse liver perfusions would also have inhibited P-gp transport (de Bruin et al., 1999). The current experiments with GF120918 were designed to inhibit both P-gp and Bcrp based on mouse liver perfusion studies in which 10 μM GF120918 extensively impaired Bcrp-mediated biliary excretion of heptically generated 4-methylumbelliferyl sulfate (Zamek-Gliszczynski, 2006a). In the presence of 10 μM GF120918, FEX C_{liver, unbound} and partitioning between perfusate and liver were significantly decreased in B6 mice (Table 1). FEX C_{liver, unbound} and partitioning between perfusate and liver tended to be lower in the presence of GF120918 in Mrp2KO mice, although the differences were not statistically significant. A similar trend was observed for the extraction ratios in both B6 and Mrp2KO mice (Table 1). A high concentration of GF120918 (25 μM) has been reported to inhibit Oatp2-mediated hepatic uptake of digoxin (Lam and Benet, 2004). Although GF120918 did not significantly alter the 

whereas in mice, Bcrp seems to play a more important role (Zamek-Gliszczynski et al., 2006a,c). Clearly, species differences in hepatic canalicular transport are more complex than simple differences in Mrp2 expression levels. This study demonstrated that impaired biliary
a lesser extent, due to Bcrp and P-gp. In rats, the compensatory transport mechanisms responsible for FEX biliary excretion in the absence of Mrp2 remain to be identified. Alterations in liver basolateral transport proteins can have significant impact on the FEX biliary excretion as well. These findings highlight the complexities of in vivo drug transport processes, which are influenced by differences in transporter multiplicity and differential transport protein expression.

Acknowledgments. We sincerely thank Drs. Elaine Leslie and Peijin Zhang for insightful scientific discussion.

References


Tahara H, Kusuhara H, Fuse E, and Sugiyama Y (2005) P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. *Drug Metab Dispos* 33:963–968.


Address correspondence to: Dr. Kim L. R. Brouwer, School of Pharmacy, C.B. #7360 Kerr Hall, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360. E-mail: kbrouwer@unc.edu