Role of P-Glycoprotein and the Intestine in the Excretion of DPC 333 [(2R)-2-[(3R)-3-Amino-3-[4-(2-methylquinolin-4-ylmethoxy)phenyl]-2-oxopyrrolidin-1-yl]-N-hydroxy-4-methylpentanamide] in Rodents

Infection and Cancer Discovery, AstraZeneca PLC, Waltham, Massachusetts (C.E.G.); Preclinical Development Drug Metabolism and Pharmacokinetics, AstraZeneca Plc, Wilmington, Delaware (J.L.); Infection and Cancer Discovery, AstraZeneca Plc, Macclesfield, United Kingdom (K.J.); Quest Pharmaceutical Services Inc, Newark, Delaware (E.S., C.-M.L., H.-S.S.); Bristol-Myers Squibb Company, Pennington, New Jersey (G.L., J.D., C.P.D., S.E.M., S.P.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (L.-S.G.); Pharmacokinetics, Pharmacodynamics and Bioanalytical Sciences, Genentech Inc., San Francisco, California (M.O.); Incyte Pharmaceuticals, Newark, Delaware (T.M.); and Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts (F.W.L.)

Received July 6, 2007; accepted March 13, 2008

ABSTRACT:

The role of the intestine in the elimination of (2R)-2-[(3R)-3-amino-3-[4-(2-methylquinolin-4-ylmethoxy)phenyl]-2-oxopyrrolidin-1-yl]-N-hydroxy-4-methylpentanamide (DPC 333), a potent inhibitor of tissue necrosis factor α-converting enzyme, was investigated in mice and rats in vivo and in vitro. In Madine-Darby canine kidney cells stably transfected with P-glycoprotein (P-gp) and DPC 333, the transport from B→A reservoirs exceeded the transport from A→B by approximately 7-fold. In Caco-2 monolayers and isolated rat ileal mucosa, DPC 333 was transported from basolateral to apical reservoirs in a concentration-dependent, saturable manner, and transport was blocked by N-[4-{2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl}-phenyl]-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), confirming the contribution of P-gp/breast cancer resistance protein in B→A efflux of DPC 333. In quantitative whole body autoradiography studies with [14C]DPC 333 in mice and rats, radioactivity was distributed throughout the small intestine in both species. In GF120918pretreated bile duct-cannulated rats, radioactivity in feces was reduced 60%. Using the in situ perfused rat intestine model, ~20% of an i.v. dose of [14C]DPC 333 was measured in the intestinal lumen within 3 h postdose, 12% as parent. Parentic analysis of data suggested that excreted DPC 333 may be further metabolized in the gut. Intestinal clearance was 0.2 to 0.35 l/h/kg. The above data suggest that in the rodent the intestine serves as an organ of DPC 333 excretion, mediated in part by the transporter P-gp.

The literature contains evidence for direct intestinal secretion of a number of structurally diverse xenobiotics ranging from inorganic metals (Zalups, 1998) to large organic molecules such as digoxin (Caldwell et al., 1980). Evidence has accumulated to suggest that active intestinal secretion may play a major part in the elimination of several drugs (Mayer et al., 1996; Rabbaa et al., 1996; Sparrenboom et al., 1997; Smit et al., 1998a,b; Dautey et al., 1999; van Asperen et al., 2000; Leusch et al., 2002; Li et al., 2005; Lagas et al., 2006; Villanueva et al., 2006).

P-glycoprotein (P-gp, MDR1) and breast cancer resistance protein (BCRP, ABCG2) are ATP-dependent multidrug efflux pumps belonging to the ATP-binding cassette superfamily of proteins (Hyde et al., 1990; Allen et al., 1999) that protect cells from xenobiotics by transporting them out of cells and reducing their intracellular levels. Physiologically, these transporters are widely expressed in the epithelial cells of intestine, liver, and kidney and in the endothelial cells of brain and placenta (Eisenblatter et al., 2003; Yeboah et al., 2006). The broad substrate specificity and distinctive expression locations suggest that P-gp/BCRP may have a direct role in modulating the absorption and disposition of drugs or xenobiotics (Hall et al., 1999; Merino et al., 2005; Zhang et al., 2005). The acridonecarboxamide derivative GF120918 potently inhibits both of these transporters.

ABBREVIATIONS: P-gp, P-glycoprotein; MDR, multidrug resistance; BCRP, breast cancer resistance protein; GF120918, N-[4-{2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl}-phenyl]-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide; DPC 333, (2R)-2-[(3R)-3-amino-3-[4-(2-methylquinolin-4-ylmethoxy)phenyl]-2-oxopyrrolidin-1-yl]-N-hydroxy-4-methylpentanamide; TEER, transepithelial electronical resistance; MDCK, Madine-Darby canine kidney; HPLC, high-performance liquid chromatography; QWBA, quantitative whole body autoradiography; IP, imaging plate; GI, gastrointestinal.
P-gp activity measured in the presence of orthovandate represents non–
P-gp ATPase activity and can be subtracted from the activity generated without
orthovandate to yield vanadate-sensitive ATPase activity. The reaction was
stopped by the addition of 30 μl of 10% SDS + antifoam A. Two additional
reaction mixtures (+ and − orthovandate but without MgATP) were also
prepared and incubated with the others and then supplemented with SDS and
MgATP to represent time = 0 min of reaction. The incubations were followed
with addition of 200 μl of 35 mM ammonium molybdate in 15 mM zinc
acetate/10% ascorbic acid (1:4) and incubated for an additional 20 min at 37°C.

The liberation of inorganic phosphate was detected by its absorbance at 800
nm and quantitated by comparing the absorbance with a phosphate standard
curve. The A maximum for the measured phosphomolybdate chromophore is
850 nm; however, absorbance detection between 630 and 850 nm has been
reported to be useful for this method (Druke et al., 1990).

Caco-2 transport studies. Caco-2 cells were obtained from American Type
Culture Collection (Manassas, VA). Cell stocks were maintained in T-75-cm²
flasks (Costar, Corning, NY) at 37°C in a humidified atmosphere of 5%
CO₂/95% air. The culture media consisted of high glucose (4.5 g/l) Dulbecco’s
modified Eagle’s medium (GIBCO, Grand Island, NY), containing 10% fetal
bovine serum (Hyclone, Logan, UT), 1% nonessential amino acids, 100 U/ml
cillin, and 100 mg/ml streptomycin (GIBCO). The culture media were
replaced every other day. Monolayers were subcultured using 0.05% trypsin/
0.02% EDTA when they reached 75 to 85% confluency at a split ratio of
approximately 1:5.

Single-cell suspensions of Caco-2 cells were plated onto the 12-mm
diameter Transwell polycarbonate membranes (0.4-μm pore size, Corning) at
a density of 6 × 10⁴ cells/cm². The Transwell inserts were placed in 12-well
culture plates with 0.5 ml of media in the apical compartment and 1.5 ml of
media in the basolateral compartment. The media at both compartments were
replaced every other day for 3 to 4 weeks before the cells were used for
transport studies.

Before the transport experiments, the integrity of Caco-2 cell monolayers
was assessed by determining transepithelial electrical resistance (TEER)
using an Evon epithelial volt-ohm meter (World Precision Instruments, Inc.,
Sarasota, FL). TEER values were in the range of 400 to 800 Ω·cm². The
culture medium in Transwell was aspirated and washed twice with transport
buffer (Hanks’ balanced salt solution containing 25 mM glucose and 10 mM
HEPES, pH 7.4, except indicated). The cells then were incubated in the
transport buffer at 37°C for 30 min. The transport was initiated by replacing
transport buffer in the donor compartment with fresh transport buffer contain-
ing [14C]DPC 333 with or without GF120918. After 2-h incubation, total
radioactivity in media of receptor compartment was determined using Tri-Carb
liquid scintillation analyzer (PerkinElmer Life and Analytical Sciences, Bos-
ton, MA).

Materials and Methods

In Vitro Transporter Studies. ATPase activity assay. In the present study,
we expressed MDR1 in baculovirus-infected Spodoptera frugiperda ovarian
insect cells and measured the ATP-dependent, vanadate-sensitive transport of
known and potential MDR1 substrates using the method of Sarkadi et al.
(1992). Briefly, a 60-μl reaction mixture containing 40 μg of membranes, 20
μM verapamil (positive control) or test drug, and 3 to 5 mM MgATP, 50 mM
Tris-MES, pH 6.8, 2 mM EGTA, 50 mM KCl, 2 mM dithiothreitol, and 5 mM
sodium azide was incubated at 37°C for 20 min. An identical reaction mixture
containing 100 μM sodium orthovanadate was assayed in parallel. Orthovan-
adate inhibits P-gp by trapping MgADP in the nucleotide binding site. Thus,
incubation period, aliquots were analyzed by liquid chromatography/tandem mass spectrometry.

Rat Intestinal Membrane Permeability Experiments. Sprague-Dawley rats were supplied by Charles River Canada Inc. (Senneville, QC, Canada). Ussing chambers and mounts were supplied by NaviCyte Co. (Reno, NV).

Male Sprague-Dawley rats (250 g) were anesthetized with ether, the abdo-
men opened, and the intestinal segments of interest were quickly removed and rinsed twice with chilled normal saline (0.9%). Smaller segments were cut (approximately 2.5 cm) and placed in cold Tyrode’s buffer on ice, which was continuously bubbled with an O2/CO2 (95:5%) gas mixture. For these experiments ileal segments were used. Segments were cut along their mesenteric border, and the serosa was removed using blunt dissection. The mucosal side was rinsed with cold saline, and the segment was gently placed into position on the Ussing chambers (NaviCyte). During the preparation, the segments were submerged in Tyrode’s buffer, which was bubbled continuously. The stripped intestinal mucosal from the rat ileum were then mounted in modified Ussing chambers with stirring conditions as described by Ungeil et al. (1998). The effective exposed area of the tissues was 1.8 mm². All the experiments were carried out unidirectionally at 37°C. The serosal and the mucosal reservoirs were filled with Tyrode’s buffer, and oxygen was provided to both chambers. To the donor compartment 5 ml of buffer containing test article (0.3 μCi/ml) was added, and to the receiving compartment 5 ml of drug-free buffer was added. In parallel experiments, the potent P-gp/BCRP inhibitor GFI20918 (0.2 μM) was added 10 min before the test article addition to determine the effect of P-gp/BCRP blockade on basolateral to apical transfer. Receiving chamber samples (0.2 ml) were removed at 15, 30, 45, 60, 75, 90, 105, and 120 min and replaced with equal amount of drug-free buffer. For the investigation of apical to basal transport, drug was placed in the mucosal side. For the investigation of basal to apical transport, drug was placed in the serosal side.

The radioactivity in each receiving chamber was determined by liquid scintillation spectrometry, and the cumulative radioactivity permeating the membrane was calculated. Analysis of representative medium samples for parent drug by high-performance liquid chromatography (HPLC) (see below) coupled with flow-through radiochemical detection showed stability under the experimental conditions above.

Quantitative Whole-Body Autoradiography Studies of [14C]DPC 333 in Intact Mice and Bile Duct-Cannulated Rats. Materials. [14C]DPC 333 was prepared by the Radiochemistry Department at DuPont Pharmaceuticals (Newark, DE). Specific activity was approximately 1 μCi/mg DPC 333. The radiolabeled dose, undiluted with cold material, was reconstituted on the day of dosing with sterile water for injection, USP.

Animals. Female BALB mice (approximately 25 g at study initiation) were obtained from Charles River Laboratories Inc. (Wilmington, MA). Male Sprague-Dawley rats, which were bile duct– and jugular vein–cannulated by the vendor, were obtained from Charles River Laboratories Inc. (Wilmington, MA). Whole-body autoradiography. Animals were prepared for QWBA based on the methods of Ullberg (1954) as follows. Mice were individually housed with control standards (14C-spiked rat blood) in carboxymethylcellulose (Chay and Poland, 1994) (frozen at approximately –70°C). Appropriate sections (~30 μm thick) were collected on adhesive tape (Nakagawa NA-70 MAG, Tokyo, Japan) using a Leica CM3600 cryomicrotome (Leica Microsystems, Deerfield, IL) with temperature controlled at approximately ~20°C. Sections were collected at five levels of interest in the sagittal plane. All the major tissues, organs, and fluids were included in these levels. Sections were lyophilized, mounted on a black cardboard support along with 14C-autoradiographic calibration standards (Code RPA 511, Amersham Life Sciences, Buckinghamshire, UK), wrapped with Mylar (DuPont film), and exposed to phosphor IPs (BASIII, Fuji Photo Film Co., Ltd., Tokyo, Japan) for 4 days. Exposed IPs were scanned into the QWBA imaging system via an FLA 3000 BioImaging Analyzer (Fuji Biomedical Products, Fuji Photo Film Co., Ltd.), and digital images of the radioactivity in each section were obtained using M5+ MCID software (Imaging Research Inc.). Tissue concentrations were interpolated from each standard curve as nanocuries per gram and converted to microgram equivalents 14C-labeled test article per gram of tissue. The concentrations of radioactivity in the calibration standards used ranged from 0 to approximately 9400 nCi/g tissue (r² = 0.9994–0.9999). Tissue concentrations were obtained from tissues that could be visually identified on the autoradiograph. The limit of quantitation was determined as 3 times the background radioactivity concentration value for background plus 3 times the S.D. (mean of 10 measurements/IP using sampling tools provided by the image analysis software, where small tool area = 1 × 1 mm; large sampling tool area = 5 × 5 mm). This was determined for small and large sampling tool areas on each IP (n = 7) used for study. Small tissues included the pituitary gland, adrenal gland, thyroid gland, skin, and bone marrow, and remaining tissues were considered as large tissues.

Disposition of [14C]DPC 333 in Bile Duct-Cannulated Rats. Materials. Unlabeled DPC 333 was prepared by DuPont Pharmaceuticals. [14C]DPC 333 was prepared by the Radiochemistry Department at DuPont Pharmaceuticals. Specific activity was approximately 4 μCi/mg DPC 333 free base. The radiolabeled dose, diluted with cold material, was reconstituted on the day of dosing with sterile water for injection, USP. GFI20918 was prepared by the Radiochemistry Department at DuPont Pharmaceuticals. GFI20918 doses were formulated in diethylene glycol/H2O (1:9).

Animal mass balance studies. Male Sprague-Dawley rats (approximately 250 g at study initiation), fitted with indwelling bile duct cannulas for the collection of bile, were obtained from Charles River Laboratories Inc. Before administration of radiolabeled test compound, two rats were pretreated (20 min) with the potent P-gp and BCRP inhibitor GFI20918 at 24 h and 1 h predose. Each rat received a single i.v. injection (tail vein) of 15 mg/kg (5 ml/kg, 4 μCi/rat) of the dosing solution. Following administration of test material, each animal was placed into individual metabolism cages that allowed for separate collection of urine, feces, and bile. Bile was collected at 0.15, 0.5, 1, 2, 4, 8, 12, 24, 36, and 48 h postdose. Urine and feces were collected at 4, 12, 24, and 48 h postdose. At 48 h postdose, the animals were sacrificed by CO2 asphyxiation, and the intestinal contents were collected into preweighed containers.

Sample analysis. Radioactivity in urine, cage washes, and bile was quanti-
tated by directly assaying aliquots by liquid scintillation spectrometry. Total radioactive residues in solid samples (feces, intestinal contents) were deter-
mined by combusting aliquots of homogenized samples in an oxidizer (Pack-
ard Instruments, Meriden, CT), trapping the liberated [14C]CO2, and then analyzing samples by liquid scintillation spectrometry.

Samples were collected for 10 min or until 160,000 disintegrations (0.5% 2σ) were accumulated, whichever came first. Low-activity samples were collected for up to 75 min or until 6400 disintegrations (2.5% 2σ) were accumulated.

Effect of P-gp blockade on DPC 333 pharmacokinetics. Male Sprague-
Dawley rats (approximately 250 g at study initiation), fitted with indwelling jugular cannulas for the collection of blood, were obtained from Charles River Laboratories Inc. Before conduct of dosing studies, animals were anesthetized...
with pentobarbital, and duodenal catheters were implanted for intestinal delivery of solutions. Approximately 10 min before administration of test compound, one group of three rats was pretreated with verapamil (1 mg/kg), a known P-gp inhibitor (Chang et al., 2006), and another group of three rats was administered saline. Following pretreatment each rat then received a single p.o. gavage dose of DPC 333 of 15 mg/kg. Blood was collected from each animal at 0.083, 0.17, 0.25, 0.5, 1.5, and 2 h following administration of test material.

Plasma was prepared, and the concentration of DPC 333 was determined via liquid chromatography/tandem mass spectrometry. Plasma concentration versus time data were then analyzed by noncompartmental methods using WinNonlin (Mountain View, CA).

In Situ Intestinal Perfusion. Sprague-Dawley rats previously fitted with portal vein and bile duct cannuulas were supplied by Charles River Canada Inc. Ketamine and xylazine were purchased from Fort Dodge Lab Inc. (Fort Dodge, IA). Krebs-Ringer bicarbonate buffer components (KH2PO4, MgSO4, NaCl, KCl, CaCl2, H2O, NaHCO3, glucose) were purchased from Sigma Chemical Co. (St. Louis, MO).

A single-pass intestinal perfusion technique was used. Surgery was adapted from that described by Wang et al. (1997, 1999). Briefly, male Sprague-Dawley rats (~200 g) prefitted with indwelling jugular vein cannulas before surgery were anesthetized with ketamine/xylazine (100:7 mg/kg). The fur from the abdominal region was removed with clippers; the skin was cleaned with alcohol; and the rat was then placed in a supine position on a heating pad within a chamber designed to maintain body temperature throughout the experiment. The apparatus, which was constructed in-house, consisted of a Lucite (Lucite International, Southampton, UK) housing with thermostatically controlled electric heaters to maintain the rat and all the perfusion solutions at 37°C. Once the rat was positioned, laparotomy was performed, and the small intestine was fitted at inlet and outlet with polished glass tubing to allow for perfusion of the interior with Krebs-Ringer buffer (pH 7.4, 37°C). The intestinal lumen was then gently flushed to remove intestinal contents. The proximal end of the intestine was connected to a perfusion syringe on a variable speed compact infusion pump, and the interior of the intestine was perfused with Krebs-Ringer buffer at a flow rate of 250 μl/min. Effluent was collected from the glass tubing at the distal end of the intestine. The intestine was carefully arranged and continuously monitored to avoid kinks and ensure a consistent flow. Saline-soaked cotton gauze was used to cover opened body cavities to prevent loss of fluids. Once the intestinal effluent flow had been established, [14C]DPC 333 (15 mg/kg, 14.4 μCi) was then administered i.v. via the indwelling jugular vein cannula. Following administration of test substance, intestinal effluent samples were collected into preweighed glass vials every 15 min for up to 180 min. Blood samples were sampled at times of effluent collection time points for plasma analysis of parent compound. Blood volume was maintained by immediately transfusing back into the cannula an equal volume of blood taken from donor rats. At the end of the experiment, the remaining intestinal perfusate solution was expelled by infusing air and then flushing with normal saline through the intestinal segment. Aliquots of the collected material were analyzed for total radiochemical content by liquid scintillation spectrometry before characterization of radiochemical profile by HPLC.

Analysis of intestinal perfusate and plasma. DPC 333 was determined in plasma and intestinal perfusate by HPLC radiochemical analysis. Before HPLC analysis, perfusate or plasma samples were mixed with an equal volume of acetoniitrile (EM Science, Gibbstown, NJ) and vortexed for approximately 30 s. The mixtures were centrifuged at approximately 3000g for 10 min, and the supernatants were filtered with a 0.45 μM syringe filter (Whatman Inc., Florham Park, NJ). Aliquots (100 μl) were then analyzed for parent compound by HPLC/flow-through radiochemical detection. Briefly, the chromatographic system consisted of a Hewlett Packard (Palo Alto, CA) model 1100 chromatography system (pumps, controllers, and injectors), a Metachem Polaris (Ventura, CA) C18-A 2 × 150-mm column, and a linear gradient mobile phase at a flow rate of 0.4 ml/min. Mobile phase A was 10 mM ammonium formate, pH 7.4 (Fisher Scientific Co., Pittsburgh, PA), and mobile phase B was acetonitrile. The gradient conditions started at 6% mobile phase B, ramping linearly to 11% B over 10 min, then to 45% B over 6 min, then to 61% B over 2 min, then held at 61% B over 2 min, and finally ramping to 71% B over the final 2 min. Column eluent was monitored via IN/US Systems (Tampa, FL) β-RAM flow-through radioactivity detector outfitted with a 1-ml liquid/liquid flow-through cell. Column eluent was mixed with Flow-Scint (Packard Instruments) at a 1:4 ratio before detection.

Results

In Vitro Experiments. The role of DPC 333 as a P-gp substrate was suggested in verapamil-activated vanadate-sensitive human P-gp

![Fig. 2. Stimulation of human P-glycoprotein-ATPase activity by DPC 333, verapamil, and other molecules (20 mM).](image1)

![Fig. 3. Permeability of DPC 333 and other molecules in monolayers of MDCK II cells transfected with MDR1.](image2)
ATPase activity assays (Fig. 2). DPC 333 activity in this assay was similar to that of verapamil and vinblastine, two known P-gp substrates. In MDCK cells stably transfected with MDR1 and DPC 333, the transport from B→A reservoirs exceeded the transport from A→B by approximately 7-fold (Fig. 3). This ratio was reduced to 1 by addition of the P-gp inhibitor cyclosporin A.

To investigate the potential for intestinal efflux or elimination of DPC 333, [14C]DPC 333 was incubated against confluent Caco-2 monolayers. Initial concentrations of [14C]DPC 333 in either apical (A) or basolateral (B) donor reservoirs was 0 to 200 μM (0.5 μCi/incubation). After 2-h incubation, radiochemical content in receptor reservoirs was determined. In Caco-2 monolayers, DPC 333 was transported from A to B or B to A reservoirs in a concentration-dependent manner (Fig. 4). DPC 333 transport from B→A reservoirs was concentration-dependent and saturable, suggesting an active transport mechanism (Fig. 4). Transport from the basolateral to apical reservoir was partially blocked with GF120918, suggesting that P-gp or BCRP played a role in B→A efflux of DPC 333.

When DPC 333 was incubated with isolated rat ileum in Ussing chambers, B→A efflux greatly exceeded A→B (Fig. 5A). Furthermore, B→A efflux was nearly completely blocked by GF120918 (Fig. 5B). These in vitro data taken together suggest that DPC 333 is a P-gp and/or BCRP substrate and that these transporters may contribute to the basolateral to apical flux in the intestine.

Rat and Mouse Whole-Body Autoradiography. An autoradiograph (mouse at 2 min postdose) and mouse tissue concentration data...
The results of these studies suggest that the intestine is an organ of DPC 333 excretion in rodents. Additionally, our data suggest that the ATP-binding cassette protein P-gp or BCRP mediates this excretion in part or wholly. In mouse and rat QWBA distribution studies, significant portions of [14C]DPC 333-derived radioactivity administered i.v. were detected along the gut lumen within 2 to 5 min postdose, directly suggesting a role of the intestine in elimination of DPC 333 or its equivalents in vivo. By approximately 1 h, 15 and 17% of the administered radioactivity was detected in the intestinal contents of rats and mice, respectively.

In mice, by 2 min postadministration, radioactivity was distributed throughout the small intestine, and after 2 h, high concentrations of radioactivity were observed in the liver, gall bladder, and GI tract only. Because of the fasted state of the mice and the rapid appearance of radioactivity throughout the entire length of the intestine, the contribution of biliary excretion to the intestinal radioactivity measured initially was probably minimal. However, the presence of intact bile ducts in these animals suggests that the contribution of biliary excretion to intestinal radioactivity could not be entirely ruled out. Repetition of these results in the bile duct–cannulated rat QWBA studies was strong evidence to support the hypothesis of intestinal excretion because all the bile was diverted away from the bile duct and thus prevented from entering the intestine.

Discussion

The results of these studies suggest that the intestine served as an organ of excretion for DPC 333 and/or its equivalents. In the GF120918-pretreated animals, fecal radioactivity was reduced to approximately 2% of total dose. Biliary equivalents (~54%) were reduced relative to untreated animals. Urinary equivalents (~45%) were increased by an amount roughly concomitant to the combined reduction in fecal and biliary routes of elimination.

To investigate the role of P-gp as the principal efflux transporter of DPC 333, rats were pretreated with verapamil, which inhibits P-gp. Pretreatment of rats with verapamil resulted in a nearly 6-fold increase in DPC 333 C_{max} (Table 4). Overall exposure (area under the plasma concentration-time curve) increased 1.6-fold following verapamil pretreatment relative to saline controls. Together, these data suggest that intestine plays a role in the elimination of DPC 333 in rats and that P-gp may contribute predominantly to this phenomenon.
In separate studies, [14C]DPC 333-derived radioactivity was detected in the feces of bile duct–cannulated rats following i.v. administration of [14C]DPC 333, supporting the WBA results. In this study, 5% of the dose was recovered in the feces at 48 h compared with 15 to 17% measured in small intestine by in situ

In separate studies, [14C]DPC 333-derived radioactivity was detected in the feces of bile duct–cannulated rats following i.v. administration of [14C]DPC 333, supporting the WBA results. In this study, 5% of the dose was recovered in the feces at 48 h compared with 15 to 17% measured in small intestine by in situ
was nearly completely blocked with GF120918 and cyclosporin. Kinetic analysis of the Caco-2 and ileal section data gave \(K_{m} \) of 25 and 46 \(\mu \)M, respectively. These data suggested that the intestine may have a relatively high capacity for basolateral to apical clearance of DPC 333.

The contribution of the intestine to the total clearance of DPC 333 was estimated from data generated in the rat in situ perfused small intestine model. Approximately 17% of total radioactivity administered was excreted into the intestinal lumen within 3 h post-i.v. administration and 12% of the dose as parent. Intestinal clearance of approximately 0.21 l/h/kg suggested that the intestine contributed to approximately 10% of total systemic clearance (Table 5). However, a careful kinetic analysis of the data generated in this model suggests that DPC 333 clearance may exceed that measured in the in situ perfused intestine model. That is, the data support the possibility that nearly all the DPC 333-derived radioactivity measured was initially excreted as parent by P-gp or BCRP.

A plot of plasma DPC 333 concentration versus rate of luminal excretion of DPC 333 and equivalents yielded a hyperbolic curve, suggesting a saturable excretion mechanism (Fig. 7A). This would be expected, given the strong data supporting the transporter-mediated flux of DPC 333. This suggests that the rate of all the equivalents appearing in the lumen is dependent solely on plasma parent concentration. If metabolite were actively excreted into the lumen, then the rate of its appearance in the lumen would also be a function of plasma metabolite concentration, saturable, and therefore hyperbolic across a large concentration range. However, luminal appearance of “metabolite” was independent of plasma concentration (Fig. 7B).

The intestinal elimination rate data and plasma concentration data were fit to a combined pharmacokinetic/hyperbolic elimination model. This model accurately predicted intestinal excretion of parent and total equivalents (Fig. 8).

The above analysis suggests that DPC 333 equivalents in the lumen were initially excreted as parent via a transporter and then subsequently metabolized in the lumen, presumably by brush-border enzymes. This phenomenon is seen with \(p \)-aminobenzoic acid, \(p \)-aminosalicylic acid, and sulfanilic acid (Yasuhara et al., 1984), which are acetylated by intestinal acetyltransferases following luminal secretion. Pang et al. (1986) have also shown that acetaminophen is excreted into the intestine and then glucuronidated luminally. The data cannot rule out the possibility that excreted DPC 333 is reabsorbed into mucosal cells, metabolized, and then the metabolite re-excreted. This phenomenon has been shown with \(p \)-nitrophenol in the rat (Fischer et al., 1995; Rafiei et al., 1996).

To summarize, the above data taken in whole would suggest that in rodents DPC 333 is cleared via the intestine in part or in whole via the transporter P-gp or BCRP. In rats, DPC 333 intestinal clearance is estimated to be a minimum of 12% of systemic clearance (0.35 l/h/kg, based on luminal parent only) with a maximum of approximately 18%

\[
\text{Rate of Excretion into Lumen (nmol/min)} = \left(\frac{V_{\text{max}} \times C_{\text{plasma}}}{EC_{50} + C_{\text{plasma}}} \right) \Delta t \quad \text{where} \quad C_{\text{plasma}} = \frac{(\text{dose})}{15} (Ae^{-rt} + Be^{-rt})
\]

where \(V_{\text{max}} = 11.8 \text{ nmol/min}, EC_{50} = 2266 \text{ nM}, A = 163,399, \alpha = 0.21 \text{ h}^{-1}, B = 18,824, \beta = 0.020 \text{ h}^{-1}, \) and dose = 15 mg/kg.

Table 5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rat 1</th>
<th>Rat 2</th>
<th>Rat 3</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC, nM × h</td>
<td>10.029</td>
<td>26.060</td>
<td>15.442</td>
<td>17.177</td>
<td>8155</td>
</tr>
<tr>
<td>nmol Dosed</td>
<td>6565</td>
<td>5878</td>
<td>5290</td>
<td>5911</td>
<td>638</td>
</tr>
<tr>
<td>nmol Excreted</td>
<td>652</td>
<td>895</td>
<td>680</td>
<td>742</td>
<td>133</td>
</tr>
<tr>
<td>Rat weight, kg</td>
<td>0.20</td>
<td>0.21</td>
<td>0.19</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>(Cl_{\text{sys}}), l/h/kg</td>
<td>1.1</td>
<td>1.9</td>
<td>1.07</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>(Cl_{\text{int}}), l/h/kg</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.24</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Figure 7

A Effect of plasma concentration of DPC 333 (A) or metabolite (B) on the elimination of DPC 333 equivalents into intestinal lumen following i.v. administration of DPC 333 in the in situ perfused rat intestine model.

B Predicted versus measured luminal DPC 333 and equivalents following i.v. administration of \([^{14}\text{C}]\text{DPC 333} (15 \text{ mg/kg})\) in the in situ perfused rat intestine model. Luminal excretion predicted by the following expression:

\[
n\text{moles} = \left(\frac{V_{\text{max}} \times C_{\text{plasma}}}{EC_{50} + C_{\text{plasma}}} \right) \Delta t \quad \text{where} \quad C_{\text{plasma}} = \frac{(\text{dose})}{15} (Ae^{-rt} + Be^{-rt})
\]

and \(V_{\text{max}} = 11.8 \text{ nmol/min}, EC_{50} = 2266 \text{ nM}, A = 163,399, \alpha = 0.21 \text{ h}^{-1}, B = 18,824, \beta = 0.020 \text{ h}^{-1}, \) and dose = 15 mg/kg.
of rodents, then this suggests a potential impact on total clearance as a result of intestinal interactions with other P-gp or BCRP substrates.

References

GARNER ET AL.

