Structural Modulation of Oxidative Metabolism in Design of Improved Benzothiophene Selective Estrogen Receptor Modulators

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois

Received July 15, 2008; accepted October 14, 2008

ABSTRACT:

Raloxifene and arzoxifene are benzothiophene selective estrogen receptor modulators (SERMs) of clinical use in postmenopausal osteoporosis and treatment of breast cancer and potentially in hormone replacement therapy. The benefits of arzoxifene are attributed to improved bioavailability over raloxifene, whereas the arzoxifene metabolite, desmethylarzoxifene (DMA) is a more potent antiestrogen. As polyaromatic phenolics, benzothiophene SERMs undergo oxidative metabolism to electrophilic quinoids. The long-term clinical use of SERMs demands increased understanding of correlations between structure and toxicity, with metabolism being a key component. A homologous series of 4'-substituted 4'-desmethoxyarzoxifene derivatives was developed, and metabolism was studied in liver and intestinal microsomes. Formation of glutathione conjugates was assayed in rat liver microsomes and novel adducts were characterized by liquid chromatography-tandem mass spectrometry.

Formation of glucuronide conjugates was assayed in human intestine and liver microsomes, demonstrating formation of glucuronides ranging from 5 to 100% for the benzothiophene SERMs; this trend was inversely correlated with the loss of parent SERM in rat liver microsomal incubations. Molecular orbital calculations generated thermodynamic parameters for oxidation that correlated with Hammett substituent constants; however, metabolism in liver microsomes correlated with a combination of both Hammett and Hansch lipophilicity parameters. The results demonstrate a rich oxidative chemistry for the benzothiophene SERMs, the amplitude of which can be powerfully modulated, in a predictable manner, by structural tuning of the 4'-substituent. The predicted extensive metabolism of DMA was confirmed in vivo and compared with the relatively stable arzoxifene and F-DMA.

Hormone replacement therapy (HRT) remains a cornerstone of contemporary women’s health care, despite recent outcomes from the Women’s Health Initiative clinical trials that illustrated the elevated risks of breast cancer and stroke associated with HRT (Rossouw et al., 2002; Beral, 2003). These trials also confirmed the benefits of HRT, including reductions in the incidence of colon cancer, osteoporotic fractures, and postmenopausal symptoms, highlighting the need for new HRT agents with minimized risk factors. The central role of estrogens in female reproduction and beneficial effects on the skeletal, cardiovascular, and central nervous systems results in clinical observations in postmenopausal women of a higher incidence of osteoporotic fractures, coronary heart disease, and hot flashes and a lower reported quality of life. Selective estrogen receptor modulators (SERMs) that elicit the beneficial effects of estrogens but either do not elicit or antagonize the detrimental effects of estrogens hold promise as HRT agents.

SERMs as a class of therapeutic agents are thought to evoke their actions through selective agonist and antagonist action at the estrogen receptor (ER). An ideal SERM would be tissue-selective having proestrogenic or agonist activity in bone, the cardiovascular system, and the central nervous system, while exerting antagonist or antiestrogenic activity in the breast and uterus (Conzen, 2003). Tamoxifen is the prototype SERM and is in use for the treatment and prevention of hormone-dependent breast cancer; raloxifene (Evista) is a benzothiophene SERM with improved tissue selectivity that is approved for the treatment and prevention of postmenopausal osteoporosis (Fig. 1) (Delmas et al., 1997). The Study of Tamoxifen and Raloxifene compared the safety and effectiveness of these two agents for the prevention of breast cancer in postmenopausal women (Kelminski, 2002). The Study of Tamoxifen and Raloxifene trial recently reported out that raloxifene is as effective as tamoxifen in reducing the risk of...
invasive breast cancer and has a lower risk of thromboembolic events (Vogel et al., 2006). In search of an ideal SERM, newer generations of SERMs, such as arzoxifene, acolbifene, and lasofoxifene have been developed (Fig. 1). Arzoxifene is a next-generation benzothiophene SERM reported to have better bioavailability than raloxifene, resulting in a more favorable therapeutic and safety profile.

ER ligands, including SERMs, are generally polyaromatic phenols susceptible to oxidative metabolism. A contribution to the well known carcinogenic potential of tamoxifen has been proposed to result from oxidative metabolism to reactive metabolites including quinones (van Leeuwen et al., 1994). The detection of DNA adducts in women receiving tamoxifen therapy supports a genotoxic pathway resulting from oxidative bioactivation (Shibutani et al., 2000). The facile oxidation of raloxifene, desmethylarzoxifene (DMA), and acolbifene to electrophilic quinones has also been reported (Yu et al., 2004; Liu et al., 2005a,b).

It has long been recognized that a contribution to the carcinogenic actions of endogenous estrogens results from chemical mechanisms (Yager and Liehr, 1996), including oxidative metabolism to catechol and quinoid reactive metabolites (Bolton et al., 2000). The development of fluoroestradiol by Liehr (1983, 1984) was aimed to block the and quinoid reactive metabolites (Bolton et al., 2000). The development of fluoroestradiol by Liehr (1983, 1984) was aimed to block the carcinogenic potential of tamoxifen has been proposed to result from oxidative metabolism to reactive metabolites including quinones (van Leeuwen et al., 1994). The detection of DNA adducts in women receiving tamoxifen therapy supports a genotoxic pathway resulting from oxidative bioactivation (Shibutani et al., 2000). The facile oxidation of raloxifene, desmethylarzoxifene (DMA), and acolbifene to electrophilic quinones has also been reported (Yu et al., 2004; Liu et al., 2005a,b).

To elaborate a more complete correlation of structure with activity (Liu et al., 2005a, 2006). In this study were synthesized as reported previously (Liu et al., 2005a; Qin et al., 2007). All of the SERM molecules used in this study were synthesized as reported previously (Liu et al., 2005a; Qin et al., 2007).

Materials and Methods

Materials. Optima grade acetonitrile and methanol were purchased from Thermo Fisher Scientific (Waltham, MA), other chemicals were purchased from Aldrich Chemical Co. (Milwaukee, WI). Alamethicin and UDPGA were purchased from Sigma-Aldrich (St. Louis, MO). Pooled human intestine microsomes and pooled human liver microsomes were obtained from In Vitro Technologies (Baltimore, MD). Rat liver microsomes were prepared according to an existing procedure (Yu et al., 2007). All of the SERM molecules used in this study were synthesized as reported previously (Liu et al., 2005a; Qin et al., 2007).

Instrumentation. LC-MS/MS was performed using an ion trap mass spectrometer (Agilent Technologies, Santa Clara, CA) equipped with a model 1100 HPLC system and electrospray ionization source. The analytical HPLC analysis of the incubations of SERMs with microsomes was performed using an Agilent Eclipse XDB-C18 column (4.6 × 250 mm, 5 μm) with UV absorbance detection at 316 nm and MS/MS analysis. MS/MS was performed using an LCQ Advantage Max (Thermo Fisher Scientific, Waltham, MA), and the mobile phase consisted of acetonitrile, methanol, and formic acid.

Calculations. Geometry optimizations were performed at the (U)B3LYP/6-31+G(d) level using Gaussian 03 (Gaussian Inc., Wallingford, CT). These structures were fully characterized as energy minima by harmonic vibrational frequency analysis and were confirmed to have adequate convergence and zero imaginary vibrational frequencies. For the radical species, spin determinant parameters obtained using these density functional theory calculations were used to obtain O–H bond dissociation energies (BDE). The calculations were performed using Gaussian 03 (Gaussian Inc., Wallingford, CT). These structures were fully characterized as energy minima by harmonic vibrational frequency analysis and were confirmed to have adequate convergence and zero imaginary vibrational frequencies. For the radical species, spin determinant parameters obtained using these density functional theory calculations were used to obtain O–H bond dissociation energies (BDE).
was incubated for 30 min at 37°C. For control incubations, NADPH or GSH was omitted. The reactions were terminated by chilling in an ice bath followed by the addition of a mixture of methanol-acetonitrile (100 μl, 1:1 v/v) and perchloric acid (50 μl/ml). The reaction mixtures were centrifuged at 13,000 rpm for 10 min, and aliquots (80 μl) of supernatant were analyzed using LC-MS with the HPLC method described above.

Microsomal Stabilities in Rat Liver Microsomes

A solution containing the SERM substrate (1 μM), rat liver microsomes (0.5 mg/ml), and NADPH (1 mM) in 50 mM phosphate buffer (pH 7.4, 300 μl total volume) was incubated for 30 min at 37°C. The reactions were terminated by chilling in an ice bath followed by the addition of a mixture of methanol-acetonitrile (300 μl, 1:1 v/v) containing perchloric acid (50 μl/ml) and internal standard (azido raloxifene or raloxifene; 1 μM). The reaction mixtures were centrifuged at 13,000 rpm for 10 min, and aliquots (100 μl) of supernatant were analyzed using LC-MS with the HPLC method described above. For control incubations, a mixture of methanol/acetonitrile (300 μl, 1:1 v/v), aqueous perchloric acid (50 μl/ml), and internal standard (1 μM) was added to a solution containing the SERM substrate (1 μM) and rat liver microsomes (0.5 mg/ml). NADPH was then added (as above) to give a total volume of 600 μl. The control mixture was centrifuged at 13,000 rpm for 10 min, and aliquots (100 μl) of supernatant were analyzed using LC-MS with the HPLC method described above. Azido raloxifene was used as internal standard for quantification of all SERMs except MeSO₂-DMA and DMA, for which raloxifene (Ral) was used as an internal standard, because retention times of azido raloxifene, MeSO₂-DMA, and DMA were too similar for reliable quantification.

Glucuronidation in Human Liver and Human Intestine Microsomes

A solution containing the SERM substrate (30 μM), human liver microsomes, or human intestine microsomes (0.5 mg/ml), alamethicin (50 μg/ml), MgCl₂ (8 mM), and UDPGA (1 mM) in 50 mM phosphate buffer (pH 7.4, 300 μl total volume) was incubated for 30 min at 37°C. The reactions were terminated by chilling in an ice bath followed by the addition of a mixture of methanol-acetonitrile (300 μl, 1:1 v/v) and internal standard (30 μM). The reaction mixtures were centrifuged at 13,000 rpm for 10 min, and aliquots (100 μl) of supernatant were analyzed using LC-MS with the HPLC method described above. For control incubations, a mixture of methanol-acetonitrile (300 μl, 1:1 v/v), perchloric acid (50 μl/ml), and internal standard (30 μM) was added to a solution containing the SERM substrate (30 μM) and human liver microsomes or human intestine microsomes (0.5 mg/ml). Similar to the 30-min incubation, the same amounts of UDPGA, alamethicin, and MgCl₂ were then added. The control mixture was also centrifuged at 13,000 rpm for 10 min, and aliquots (100 μl) of supernatant were analyzed using LC-MS with the HPLC method described above.

In Vivo Plasma Metabolite Quantitation

Several biomarkers were studied in female juvenile Sprague-Dawley rats as described previously (Overk et al., 2007) in experiments approved by the University of Illinois at Chicago Animal Care and Use Committee in accordance with the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, 1996) as adopted and promulgated by the National Institutes of Health. In brief, animals received at 12 days of age from Harlan (Indianapolis, IN) were acclimatized for 1 week with access to water and rat chow ad libitum. Animals received daily either arzoxifene (Arz), DMA, or F-DMA (10 mg/kg s.c.), with or without estradiol (E₂) (E₂ benzoate; 0.1 mg/kg s.c.), for 3 days. Twenty-four hours after the last injection, animals were sacrificed by cervical dislocation at 5°C. Blood was collected, and serum was stored at −80°C. Aliquots (60 μl) of pooled sera were diluted in acetonitrile (180 μl) and centrifuged to precipitate proteins at 10,000g and 4°C for 5 min; supernatant was dried in vacuo and dissolved in methanol (50%; 90 μl) for analysis. LC-MS analysis was performed by separation with a Shimadzu LC-10D VP HPLC system (Shimadzu, Kyoto, Japan) on a Waters XTerra MS C18 column (Waters, Milford, MA) (2.1 mm × 100 mm, 3.5 μm) using collision-induced dissociation and multiple reaction monitoring (MRM): capillary voltage, 4500 V; ion source, 450°C; collision energy, 41 V; and dwell time, 350 ms/MRM transition. MRM transitions of mz462 to 112, 464 to 112, 476 to 112, and 474 to 112 were used for DMA, F-DMA, Arz, and Ral, respectively.

Results

Calculated Oxidative Lability of X-DMA SERMs. DMA and NH₂-DMA can form a diquinone methide and a quinone-imine methide, respectively, whereas all other X-DMA SERMs are blocked from oxidation beyond the phenoxyl radical (Fig. 2). Computer calculations were performed on the substituted 2-phenylbenzothiophene core to allow a higher level of calculation. The calculated first electron oxidation energies (or O–H BDE) for DMA and NH₂-DMA were very similar and at the low level expected for good phenolic antioxidants: 73 to 74 kcal/mol. However, the second electron oxidation was substantially lower in energy for DMA and substantially higher for NH₂-DMA (Fig. 2A). The expectation from these calculations is that DMA will not form a phenoxyl radical but will undergo direct two-electron oxidation to the quinone, whereas NH₂-DMA will form a phenoxyl (or semiquinone-imine) radical as product or as a discrete intermediate in oxidation to the quinone-imine.

For the entire X-DMA series, the free energy and BDE for O–H bond homolysis were calculated and correlated with Hammett substituent parameters, generating an excellent correlation with σₚ and yielding a ρ value of 1.9, reflecting the strong stabilization of the electron-deficient phenoxyl radical by more electron-donating 4° substituents, despite the remoteness of this substituent from the radical center (Fig. 2B).

Identification of Metabolites of X-DMA SERMs and Raloxifene in Rat Liver Microsomes. Incubations of SERMs in liver microsomes from rats treated with dexamethasone to induce cytochrome 450 (P450) CYP3A4 were performed for 30 min in the presence of NADPH and GSH. We have previously reported the formation of GSH conjugates under such conditions for both Ral and DMA (Yu et al., 2004; Liu et al., 2005a). Accordingly, raloxifene was readily oxidized to a diquinone methide (DiQM), which was trapped by GSH to give a mono-GSH conjugate as the major metabolite (DiQMGS), with subsequent peptide cleavage yielding DiQMCGys-Gly and DiQM-Cys (Fig. 3). As reported previously, a minor flux of oxidative bioactivation leads to the benzothiophene o-quinone, which is trapped by GSH to yield o-QGSH. DMA was also readily oxidized to a diquinone methide, leading to a series of conjugates (DiQMGS), several of which we have previously rigorously identified (Liu et al., 2005a). N-Dealkylation, a well known P450-catalyzed reaction for SERMs was also observed for DMA in these incubations and characterized by LC-MS/MS (Figs. 3 and 4B).

The formation of a quinone-imine from NH₂-DMA is theoretically possible, but molecular orbital calculations indicated that this reactive metabolite is less energetically accessible than the corresponding diquinone methide (vide supra). A GSH conjugate was observed (quinoneimine-GSH) (Fig. 3), but this was a minor metabolite. In the rat liver microsome incubations, NH₂-DMA produced an N-dealkylation and a dehydrogenation product. Investigation by LC-MS/MS analysis of the metabolites formed from NH₂-DMA yielded a surprise in the observation of a GSH conjugate derived from displacement at the 3-position of the benzothiophene ring, similar to previous observations with DMA (Figs. 3 and 4A) (Liu et al., 2005a). The proposed mechanism for formation of this conjugate is a Michael-type addition at the 3-position of the quinone imine methide, followed by collapse of the intermediate to expel the 3-phenoxy leaving group. MeSO₂-DMA was not expected to be susceptible to bioactivation, because diquinone methide formation is blocked, and the electron-withdrawing substituent diminishes the potential for one-electron oxidation. Nevertheless, a GSH-conjugated metabolite was observed and...
characterized by LC-MS/MS as the di-GSH adduct of the \(\alpha \)-quinone (\(\alpha \)-quinoneDiGSH; Figs. 3 and 4C). Likewise, F-DMA and Br-DMA were both expected not to be oxidatively labile. In this case, in accord with expectations, little metabolism of F-DMA and Br-DMA was observed in rat liver microsomes (Fig. 5), and attempts were not made to identify the very minor amounts of these metabolites.

Arz may function in large part as a DMA prodrug, but in rat liver microsomes, after incubation of Arz for 30 min, only minor demethylation was observed. It is interesting to note that in these experiments, oxidation of H-DMA gave a higher yield of DMA than Arz, showing that H-DMA can function as a DMA prodrug (Fig. 5). Oxidation of Arz to an \(\alpha \)-quinone was shown by the detection and characterization by LC-MS/MS of a GSH adduct (Fig. 5). In several microsomal incubations, minor products were observed and identified by LC-MS as probable products of ring hydroxylation mediated by P450.

Quantification of Metabolism in Rat Liver Microsomes. The quantities of SERMs required in experiments designed to identify metabolites (10 \(\mu \)M) is greater than the pharmacologically relevant concentrations of SERMs; therefore, the extent of metabolism of the X-DMA SERMs in induced rat liver microsomes was quantified at a 10-fold lower concentration (Fig. 6). Under these conditions, the parent SERM remaining after a 30-min incubation was quantified by HPLC/UV. Authentic standards assayed in identical reaction media were used to provide calibration. The quinone-forming SERMs, Ral, DMA, and NH\(_2\)-DMA, were highly metabolized under these conditions; only 10 to 22% parent drug remained. It is interesting to note that H-DMA was also metabolically labile under these conditions, compatible with the oxidation of H-DMA to the oxidatively active DMA, consistent with observations on H-DMA described above (Fig. 5). In contrast, F-DMA and Br-DMA were observed substantially intact in rat liver microsome incubations, compatible with the observation of only minor metabolites at higher concentrations of these X-SERMs.

The only X-SERM for which the disappearance of the parent molecule at a lower concentration (Fig. 6) appeared strongly at odds

Fig. 2. A, calculated BDE for one- and two-electron oxidations of benzothiophenes in formation of semiquinone radicals, a diquinone methide, and a quinone imine. B, substituent effects for benzothiophene derivatives on OH bond homolysis: top left, \(\sigma_p \) versus \(\Delta G \) (\(r = 1.89 \), \(r^2 = 0.97 \)); top right, \(\sigma_p^+ \) versus BDE (\(r = 2.01 \), \(r^2 = 0.97 \)); bottom left, \(\sigma_p \) versus \(G \) (\(r = 0.93 \)); and bottom right, \(\sigma_{p^+} \) versus BDE (\(r^2 = 0.93 \)).
with the identification of metabolites at higher concentrations (Fig. 5) was MeSO2-DMA. Therefore, the metabolic depletion of MeSO2-DMA was further examined by using alternative extraction protocols to rule against this observation being caused by inefficient extraction and recovery. However, the observed substantial loss of parent MeSO2-DMA did not vary when different protocols were used. A second route to examine the apparent anomaly of MeSO2-DMA was the study of this X-DMA SERM in P450 Supersomes. Metabolites were identified in incubations with human P450 CYP3A4 Supersomes: the action of CYP3A 3A4 gave an o-quinone monoGSH conjugate (o-QGSH) of MeSO2-DMA, in addition to substantial N-dealkylation, with the latter occurring both in the absence and presence of GSH (data not shown).

Quantification of Phase II Metabolism in Human Intestinal and Liver Microsomes. To assess phase II conjugative metabolism and draw comparisons with data generated in rat liver microsomes, human microsomal liver and small intestine fractions, both obtained from commercial sources, were studied. In the presence of UDPGA, glucurononide conjugates were anticipated. In a previous study, in cryopreserved rat hepatocyte incubations, two DMA glucurononide conjugates were observed, which fragmented to produce the protonated aglycon formed from cleavage of the glycosidic bond (M7H-) (Liu et al., 2006). In incubations of F-DMA with rat hepatocytes, only one glucurononide conjugate was detected, giving the characteristic fragment (M7H-) at 316 nm and all annotated peaks were characterized by LC-MS/MS analysis.

Correlation of Metabolic Stability with in Silico Stability. Unexpected toxicity and drug-drug interactions have been blamed for large-scale failure of drug candidates, prompting the widespread use of in silico pharmacokinetic algorithms. VolSurf is a computational algorithm that produces two-dimensional molecular descriptors from three-dimensional molecular interaction energy grid maps. Most of the 94 molecular descriptors are physicochemical descriptors quantifying size, shape, polarity, hydrophobicity, and combinations thereof. To predict metabolic stability toward CYP3A4, the developers used quantitative structure-activity relationship analysis of 1800 compounds from Pharmacia, reporting an optimal distance of ~9 to 18 Å separating the aromatic interacting regions of CYP3A4 substrates. This geometric arrangement suggests that the methodology should be applicable to benzothiophene SERMs. Therefore, VolSurf molecular descriptors were generated for the X-DMA series, giving five different sets of predicted CYP3A4 susceptibility values (derived from each of five PCAs). Correlation with observed metabolic liability in induced rat liver microsomes was superior with PCA1 and PCA2 as two-dimensional descriptors; however, in both cases, F-DMA was an outlier (Fig. 7D): PCA1 score R² = 0.29 (or 0.91 without F-DMA); and PCA2 score R² = 0.34 (or 0.91 without F-DMA). The rationale for this discrepancy may lie with the low-level, semi-empirical AM1 calculations used in this methodology to derive three-dimensional descriptors or the overestimation of defluorination rates from the training set compounds; however, the fit is sufficiently good to encourage cautious use in SERM development.

Metabolism of X-DMA SERMs in Vivo. As part of a comparative study of biological activity of DMA, Arz, and F-DMA in juvenile female rats, metabolism was assessed by quantification of remaining drug in plasma after 3 days of drug administration (Overk et al., 2007; Yu et al., 2007). Because this animal study was in part designed to assess the estrogenic and antiestrogenic activity of these SERMs, arms were included in which estradiol (as the benzoate) was coadministered to animals. Although the bioavailability component of the juvenile rat study was confined to measurement of remaining unmodified drug,
the results both provide a useful correlation with the in vitro measures of drug metabolism, described above, and indicate an unexpected avenue for future study. The observed effect of estradiol coadministration was significantly to attenuate the metabolism of Arz (Fig. 8); this effect, which may operate via estrogenic P450 regulation, is worthy of further study.

The bioavailability data show extensive metabolic depletion of DMA, contrasted with the relative stability of Arz and F-DMA. In 60 μL of rat plasma in the absence of estradiol, these parent SERMs were measured at levels of 5.5 and 5.3 ng, respectively. The absolute bioavailability of Ral in humans is only 2%, argued to result from extensive glucuronidation (Hochner-Celnikier, 1999), which is reported to occur preferentially at the 4-position in vivo (Kemp et al., 2002). DMA is anticipated to have equally poor bioavailability, which is confirmed in rats by the results shown in Fig. 8 and is probably also due to extensive glucuronidation on the basis of the comparison of Ral with DMA shown in Fig. 6.

Discussion

In a previous study, the comparative metabolism of F-DMA, DMA, and Ral was reported in rat liver microsomes, hepatocytes, and intestinal epithelial cells. The pattern of metabolism, including formation of GSH conjugates, glucuronides, and sulfates and the relative metabolic lability, confirmed the strong influence of oxidative bioactivation to a diquinone methide (Liu et al., 2005a, 2006). Complementary to the observed patterns of metabolism, depletion of cellular GSH was observed to be attenuated in the presence of F-DMA relative to Ral and DMA, and DNA damage by F-DMA was negligible in contrast with significant single strand breaks caused by DMA. Given this demonstration of the ability of 4'-modification to modulate reactivity and metabolism, an extended family of 4'-substituted benzothiophene (X-DMA) SERMs was developed, and the biological activity was reported in cell culture and in the juvenile rat model (Overk et al., 2007; Qin et al., 2007; Yu et al., 2007).

Ral continues to find widespread use in postmenopausal osteopo-
rosis, and recent clinical trial data in cancer chemoprevention have permitted use in an additional therapeutic indication (Vogel et al., 2006). The wealth of data on cardiovascular and other secondary end points from the large-scale Raloxifene Use for The Heart clinical trial (Barrett-Connor et al., 2006), combined with the continued development of Arz as an improved benzothiophene SERM, supports the selection of the X-DMA SERMs for detailed structure-activity studies. Furthermore, there remains more to learn about this extended drug class, as we and others have shown that the benzothiophene SERMs possess chemopreventive actions not associated with classic estrogenic activity (Liby et al., 2006; Yu et al., 2007).

The family of Arz analogs selected possesses a range of structural modifications at the 4'-position that are predicted to strongly influence bioactivation and metabolism and to provide a wide range of electronic contributions that may be quantified by substituent parameters. The selection of halogen ring substituents is a standard approach to metabolic stabilization in medicinal chemistry. Of special note is the use of fluoro-substituted estrogens to block or inhibit oxidative bioactivation to estrogen o-quinones: estrogenic carcinogenicity was absent or reduced in fluoroestriadiols, although these compounds showed comparable estrogenic potency to estradiol (Liehr, 1983). Observations on fluoroestriadiols support the hypothesis that toxicity and activity are not intrinsically coupled but are dependent on the chemical structure, which dictates the metabolic profile and characteristics of reactive metabolites. The selection of a 4'-amino substituent is interesting mechanistically, because of the likely formation of a quinone imine oxidative metabolite, and a methanesulfonyl group was recently used in a new SERM to limit blood-brain barrier penetration (Hummel et al., 2005).

Metabolism is central to the design of Arz as an evolution from Ral. Orally administered Ral in humans has shown absolute bioavailability of 2% and apparent oral clearance of 44 l/kg/h (Hochner-Celniker, 1999; Snyder et al., 2000). Intestinal glucuronidation of Ral is reported to be the major contributor to the presystemic clearance of Ral (Kemp et al., 2002). DMA, “the most potent estrogen antagonist described to date that maintains estrogen agonist actions on bone and lipids,” was first reported in 1997 (Palkowitz et al., 1997); however, the higher potency of DMA in vitro was lost in vivo because of poor bioavailability, again due probably to extensive first-pass glucuronidation. Indeed, orally delivered DMA was only equipotent with Ral, despite Ral itself being known to have poor bioavailability and lower potency. The low bioavailability and rapid clearance of DMA is illustrated in this present study by the very low plasma levels in juvenile female rats, whereas both Arz and F-DMA have comparably high bioavailability (Fig. 8). Because 4'-glucuronidation is blocked in Arz, this modification of DMA was incorporated simply to increase bioavailability, a strategy that seems to be borne out by published data (Suh et al., 2001; Burke and Walker, 2003). Replacement of the 4'-hydroxyl group of DMA by the 4'-methoxy of Arz reduces first-pass glucuronidation and increases ClogP by approximately 0.6 unit (Sato et al., 1998). Arz is observed to be metabolically desmethylated to yield DMA, both in vitro and in clinical samples after Arz treatment (Buzdar et al., 2003; Liu et al., 2005a). Because DMA is markedly more potent, Arz could be seen as a DMA produg. It is interesting to note that in rat liver microsomes, H-DMA was seen to be metabolized efficiently to DMA (Fig. 5), suggesting that H-DMA would provide therapeutic opportunities very similar to those of Arz itself.

Metabolically, the X-DMA SERMs can be categorized into two
chemical classes: class 1, those that form quinone methides or imines without the need for ring hydroxylation and that can be glucuronidated at the 4'-position (X = OH, NH₂, and Ral); and class 2, those for which quinone methide/imine formation is blocked (X = H, F, Br, SO₂Me, and OMe/Arz). Theoretically, members of the second subclass are less likely to form a suitable 4'-quinone, even if diquinone methide formation is blocked; the MeSO₂-DMA GSH conjugate was indeed identified as being derived from an o-quinone. As discussed above, o-quinone oxidative metabolites have been implicated in the genotoxicity and carcinogenicity of tamoxifen, endogenous estrogens, and equine estrogens. In contrast, to date, carcinogenicity has not been observed for diquinone methide-forming SERMs. It can be postulated that ready oxidation to a diquinone methide may provide an oxidative "safety valve," avoiding o-quinone formation and resultant toxicity, albeit at the expense of reduced bioavailability. Testing this postulate will be important for drug discovery of polycyclic aromatic drugs beyond SERMs.

In contrast to MeSO₂-DMA, the effect of blocking the 4'-position with an electron-withdrawing group in F-DMA and Br-DMA was to give a robust inhibition of oxidative metabolism as observed both by loss of parent SERM and formation of GSH and glucuronide conjugates. The metabolic stability of F-DMA was reflected in vivo after administration to juvenile rats.

The rich oxidative metabolism of most SERM families controls aspects of biological activity, bioavailability, and toxicity. The X-DMA SERMs represent an homologous series for exploring the relationship of structure to activity/reactivity. Herein, the relationship with oxidative metabolism has been quantitatively defined and shown to be highly responsive to structural tuning of the 4'-substituent, adding to previous correlations of structure with ER-dependent and ER-independent activity (Overk et al., 2007; Qin et al., 2007; Yu et al., 2007).

The use of substituent parameters to explain metabolism and predict bioavailability would represent a powerful tool for further development of benzothiophene SERMs. The simple correlation of in vitro metabolism with redox reactivity was poor, despite reactivity correlating well with electronic substituent parameters. Use of a classic Hansch correlation adds the lipophilicity contributions to substrate binding to enzymes and other biomolecules to simple chemical reactivity. An excellent coefficient was derived for observed liver microsomal metabolism correlated with a Hansch equation containing 4'-substituent lipophilicity and electronic parameters; this observation is compatible with reported correlations for substrate binding to P450 isomers. Benzothiophene SERMs are likely to be important clinical therapeutic agents for the next decade and beyond; therefore, understanding of structural correlations is important both for current clinical SERMs and for extension to new therapeutic indications.
Acknowledgments. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

References

Address correspondence to: Dr. Gregory R. J. Thatcher, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., M/C 781, Chicago, IL 60612. E-mail: thatcher@uic.edu

copyright 2017 American Society for Pharmacology and Experimental Therapeutics