Induction of CYP4F3 by Benzene Metabolites in Human White Blood Cells in Vivo in Human Promyelocytic Leukemic Cell Lines and ex Vivo in Human Blood Neutrophils

Zhiwei Zhao, Xiaqiong He, Yongyi Bi, YINGC Xia, Ning Tao, Li Li, and Qiang Ma

Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China (Z.Z., Y.B., Y.X., N.T., L.L.); and Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia (Z.Z., X.H., Q.M.)

ABSTRACT:

Exposure to benzene elicits a spectrum of hematotoxicity ranging from reduction of peripheral blood cell counts to aplastic anemia and leukemia. The molecular mechanism by which benzene damages hematopoietic cells is unclear; in particular, benzene-induced aberrant gene expression has not been addressed. We analyzed differential gene expression in the peripheral white blood cells from seven female patients with occupational benzene poisoning and seven matched control subjects. In this study, we report altered expression of cytochrome P450 in the patients. All patients exhibited elevated expression of CYP4F3A encoding the leukotriene B4 \((\text{LTB}_4)\) \(\omega\)-hydroxylase critical in the inactivation of \(\text{LTB}_4\) in polymorphonuclear leukocytes with a -fold induction between 3 and 71. Four patients had high expression of CYP1A1, and two patients with elevated expression of \(\text{CYP1B1}\). Expressions of CYP2B6, CYP51, and CYP27A1 were also altered in certain patients. Mechanistic analysis revealed that phenol, a major metabolite of benzene, significantly induced the expression of CYP4F3A at both mRNA and protein levels in cultured promyelocytic leukemia cells (HL-60), similarly to all-trans retinoic acid. Induction of CYP4F3 by phenol was also observed in differentiated HL-60 cells, in the proerythroid cell line K562, and ex vivo in human neutrophils. On the other hand, hydroquinone induced extensive apoptosis of the cells. The findings demonstrated, for the first time, that benzene and metabolites induce CYP4F3 in human blood cells both in vivo and in vitro. Induction of CYP4F3 may play a role in the development of benzene hematotoxicity and serve as a biomarker of benzene exposure.

Benzene is widely used in industries as a general purpose solvent and in the synthesis of other chemicals. Exposure to benzene occurs worldwide to workers in shoe making, automobile repair, the oil industry, shipping, and chemical manufacture and to the general population from cigarette smoking, gasoline vapor, and automobile exhaust (Wallace, 1996; Agency for Toxic Substances and Disease Registry, 1997). Chronic exposure to benzene typically leads to bone marrow toxicity, which often initially manifests by decreased peripheral blood cell counts (anemia, leukopenia, or thrombocytopenia) but may progress to pancytopenia, aplastic anemia, myelodysplasia, and ultimately myelogenous leukemia (Aksoy, 1989; Snyder et al., 1993b). The possibility that exposure to benzene at or below 1 ppm, which is the current occupational standard in the United States, may still cause toxicity to hematopoietic cells is an ongoing concern (Lan et al., 2004).

Benzene undergoes metabolic activation in the liver to form multiple metabolites that exhibit biological activities (Parke and Williams, 1953; Snyder and Hedli, 1996). Cytochrome P450 2E1, which metabolizes a large group of small molecular weight chemicals, plays a critical role in the initial and subsequent oxygenation of benzene, giving rise to benzene oxide, phenol, hydroquinone, catechol, \(E,E\)-muconic acid, and other metabolites (Chepiga et al., 1991; Snyder et al., 1993a). Consistent with this notion, mice lacking CYP2E1 had relatively low levels of benzene metabolites and were resistant to benzene hematotoxicity compared with the wild type (Valentine et al., 1996). Other enzymes, including microsomal epoxide hydrolase, NAD(P)H:quinone oxidoreductase 1, and glutathione-S-transferases participate in the formation of catechol, benzoquinone, and \(S\)-phenylmercapturic acid. In humans, polymorphisms of these enzymes were found to associate with the urine levels of the metabolites from benzene. Glutathione oxidoreductase affects the production of \(S\)-phenylmercapturic acid, and genetic polymorphisms in NAD(P)H:

ABBREVIATIONS: P450, cytochrome P450; WBC, white blood cell; \(\text{LTB}_4\), leukotriene \(\text{B}_4\); PMN, polymorphonuclear leukocyte; IMDM, Iscove’s modified Dulbecco’s medium; FBS, fetal bovine serum; ATRA, all-trans retinoic acid; DMSO, dimethyl sulfoxide; \(C_r\), threshold cycle; PCR, polymerase chain reaction; FACS, fluorescence-activated cell sorting; NBT, nitroblue tetrazolium; PMA, phorbol myristate acetate; AML, acute myelogenous leukemia.

Received July 1, 2008; accepted November 20, 2008
quinoxaline oxidoreductase 1*2, CYP2E1, and microsomal epoxide hydroxylase influence the hepatic metabolism of benzene in workers exposed to benzene (Kim et al., 2007). Metabolites of benzene, such as phenol, hydroquinone, and muconaldehyde produced in the liver, may be transported to bone marrow via an as-yet unclear mechanism to produce toxic effects in hematopoietic cells. Alternatively, metabolism of benzene and metabolites may occur in the marrow cells locally and contribute to its toxicity. For instance, production of semiquinones and quinones and subsequently oxidative stress via myeloperoxidase in bone marrow cells has been proposed (Ross et al., 1996). It has been posited that benzene metabolites rather than benzene itself mediate the multiple biological effects of benzene on the hematopoietic cells to give rise to bone marrow toxicity.

The molecular targets of benzene metabolites and the signaling events governing the development of benzene-induced toxicity and cancer are not well understood. Protein and DNA adduct formation from benzene metabolites as well as oxidative stress due to the redox cycling potentials of quinone derivatives can potentially damage bone marrow cells. On the other hand, the chronic and progressive nature of benzene hematotoxicity and tumorigenicity suggests genomic programming that would result in aberrant gene expression during the development of myelotoxicity and leukemia by benzene. However, few studies have been conducted to address this issue. We have used a cDNA microarray to analyze gene expression profiles in peripheral white blood cells (WBCs) from seven female workers in whom occupational benzene poisoning was diagnosed in comparison with those from seven matched control subjects who did not have histories of occupational benzene exposure. The results revealed altered expression of a number of P450 genes. In particular, the expression of CYP4F3A, which encodes the leuoketidre B₂ (LTB₄) ω-hydroxylase in WBCs, was elevated in all patients with -fold increases from 3 to 71. Mechanistic analysis demonstrated that the benzene metabolite, phenol, but not benzene itself, induced CYP4F3 mRNA and protein expression in cultured promyelocytic leukemia cells (HL-60), proerythroid cells (K562), and ex vivo human neutrophils. Induction correlated with increased production of PMA-stimulated superoxide anion. Hydroquinone, on the other hand, induced extensive apoptosis in the cells. The findings implicate induction of CYP4F3 in the development of benzene hematotoxicity and suggest it as a potential biomarker for occupational benzene poisoning.

Materials and Methods

Human Subjects. Seven female workers who had histories of occupational benzene exposure from a shoe manufacturing factory and a chemical production company in Xinxing City, Henan Province, China, were diagnosed with various degrees of benzene poisoning by the Xinxing City Institute for Occupational Disease Control and Prevention (Tables 1 and 2). Diagnosis was made according to the “Diagnostic Criteria of Occupational Benzene Poisoning” (GBZ-2002, Department of Health, China; http://www.niohp.net.cn/Contents/Channel_100/2007/1105/12734/content_12734.htm). Among the patients, six had a diagnosis of “occupational chronic benzene poisoning,” including two with moderate, two with medium, and one with severe benzene poisoning, and one with aplastic anemia; one patient had “suspicious benzene poisoning.” All patients exhibited reduction of peripheral blood cell counts; the severity of hematocytopenia paralleled the degrees of benzene poisoning (Table 2). The concentrations of benzene that these patients were exposed to at the workplace ranged from 10 to 210 μg/m³ at the time of diagnosis. Seven local workers who did not have histories of occupational benzene exposure and were matched with the patients on age (with variations of <3 years of age), gender (female), geographical location, years of working experience, educational level, and history of smoking and alcoholic drinking were chosen as control subjects (Table 1). The control subjects were shown to be healthy upon physical examination (Table 2). Normal blood cell count values in adult Chinese are as follows (Wang, 2004): red blood cells, 5 × 10¹²/l (male) and 4.2 × 10¹²/l (female); hematocrit, 120 to 160 g/l (male) and 110 to 150 g/l (female); WBCs, 4.0 to 10.0 × 10⁹/l; neutrophils, 50 to 70%; eosinophils, 0.5 to 5%; basophils, 0 to 1%; lymphocytes, 20 to 40%; monocytes, 3 to 8%; and platelets, 100 to 300 × 10⁹/l. No patients or control subjects had occupational histories of exposure to other hematotoxic chemicals or radiation and were not

TABLE 1

Age and benzene-exposure time of workers with chronic benzene poisoning and age and working duration of matched control subjects

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age</th>
<th>Exposure Time</th>
<th>Matched Control Subjects</th>
<th>Age</th>
<th>Exposure Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>years</td>
<td></td>
<td></td>
<td>years</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>7</td>
<td>36</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>14</td>
<td>46</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>12</td>
<td>46</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>7</td>
<td>44</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>13</td>
<td>36</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>18</td>
<td>56</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

Diagnosis and peripheral blood cell counts

Diagnosis was made according to the “Diagnostic Criteria of Occupational Benzene Poisoning.” Normal blood cell count values in adult Chinese are as follows (Wang, 2004): red blood cells, 5 × 10¹²/l (male) and 4.2 × 10¹²/l (female); hematocrit, 120 to 160 g/l (male) and 110 to 150 g/l (female); WBCs, 4.0 to 10.0 × 10⁹/l; neutrophils, 50 to 70%; eosinophils, 0.5 to 5%; basophils, 0 to 1%; lymphocytes, 20 to 40%; monocytes, 3 to 8%; and platelets, 100 to 300 × 10⁹/l. Numbers represent peripheral blood cell counts at the time of sample collection or diagnosis (in parentheses).
exposed to radiation therapy or chemotherapy within 15 days before the study. All procedures involving human subjects including information and sample collection, sample analysis, and informed consent were approved by the institutional review board of Wuhan University Medical Center and by the National Nature Science Foundation, China, and the Hubei Provincial Nature Science Foundation, Hubei, China.

Blood Sample Preparation and Microarray Analysis. Ten milliliters of peripheral blood were collected from the patients and control subjects. White blood cells were prepared from fresh blood samples by using Polymorph Prep solution (Axis-Shield; PoC AS, Oslo, Norway) following the instruction from the manufacturer. Total RNA was prepared using TRIzol reagents (Invitrogen, Carlsbad, CA) per the manufacturer’s instruction. A cDNA microarray was performed using a CSC-GE-80 microarray chip with cDNAs representing 8064 human expressed genes, following the procedures provided by the chip manufacturer (Shenzhen Chipsscreen Biosciences Ltd., Shenzhen, Guangdong, China). In brief, cDNA probes were prepared from total RNA samples from individual patients and matched control subjects by reverse transcription and were labeled with Cy3 (green, for the patient group) or Cy5 (red, for the control group), respectively. Seven chips and seven patient-control matched probes were denatured for 5 min at 95°C, separately. The probes were applied to the surface of the chips. Hybridization was performed at 42°C for 16 h, followed by washing once with 0.2× standard saline citrate containing 0.2% SDS and once with 0.2× standard saline citrate without SDS. The chips were scanned using the Generation III Array Scanner from GE Healthcare Bio-Science Corp. (Piscataway, NJ) to detect fluorescent signals. To ensure the quality of microarray, each chip contained a total of 384 genes as positive and negative controls, which assess the interference from nonspecific hybridization signals, and internal standards (housekeeping genes), which measure the repeatability and stability of the results, as well as external standards, which measure the dose-response relationship and ratio quantification to reflect the reliability and sensitivity of the hybridization. Each control was repeated for 12 times on the same chip to assess variability of hybridization. A Cy3/Cy5 ratio larger than 2 or less than 0.5 was considered significantly different between the experiments.

Cell Culture and Treatment. The HL-60 cell line derived from the peripheral blood leukocytes of a patient with acute promyelocytic leukemia was obtained from American Type Culture Collection (Manassas, VA). The cells were cultured in Iscove’s modified Dulbecco’s medium (IMDM) (Invitrogen) supplemented with 10% fetal bovine serum (FBS) at 37°C and 5% CO2. For a typical treatment, HL-60 cells were seeded in a six-well plate at a density of 1 × 105 cells/ml and were treated with benzene, phenol, and hydroquinone for 4 days at the concentrations indicated in the figure legends. All-trans-retinoic acid (ATRA) (1 μM, 4 days) was used as a positive control. Benzene, phenol, and hydroquinone were dissolved in 70% ethanol and ATRA in dimethyl sulfoxide (DMSO). All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO). The proerythroid cell line, K562, was purchased from American Type Culture Collection and cultured in IMDM with 10% FBS similarly to HL-60 cells.

Ex Vivo Induction in Human Blood Neutrophils. Whole blood from a healthy male adult was purchased from AllCells, LLC (Emeryville, CA). Neutrophils were isolated according a protocol provided by AllCells, LLC. In brief, whole blood was diluted with a washing buffer (Dulbecco’s phosphate-buffered saline without calcium and magnesium but with 10% FBS and 2 mM EDTA). Lymphocyte Separation Medium (Stem Cell Technologies, Vancouver, BC, Canada) was laid on top. The tube was centrifuged at 400g for 20 min at 18°C. The interface contains the lymphocyte fraction, whereas the bottom contains mostly red blood cells and neutrophils. Red blood cells were lysed with a cold ammonium chloride solution, and the remaining cells (neutrophils) were washed several times. Cell purity and viability were examined and were approximately 90 to 97% and 85 to 95%, respectively. The neutrophils were cultured in IMDM with 10% FBS at 37°C and 5% CO2 and were treated with 100 μM or 1 mM phenol for 2 days. Total protein was prepared and analyzed by immunoblotting.

RNA Measurement. Total RNA was prepared from cells using the QIA-GEN total RNA isolation kit (QIAGEN, Valencia, CA), and mRNA was reverse-transcribed into cDNA with RNA reverse transcriptase. The cDNA samples were analyzed by real-time PCR performed on a Bio-Rad iCycler (Bio-Rad, Hercules, CA) using SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA) following standard procedures. In brief, for each reaction, DNA template, forward and reverse primers (10 μM each), PCR Master Mix, and water were added to make a final volume of 50 μl. Thermal cycling was performed as follows: 95°C for 3 min as initial denaturing, followed by 45 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 2 min, and a final extension at 72°C for 2 min. Threshold cycles (Ct values) were determined using iCycler IQ software (Bio-Rad). Relative DNA amounts were calculated from Ct values for each sample by interpolating into the standard curve obtained using a series of dilution of standard DNA samples run under the same conditions. The sequences of the primer sets used for real-time PCR are as follows: CYP4F3, forward 5′-GGAGGGTTGTGGGACAAAGG and reverse 5′-GTGGAAGATCGGACGTATTGCC; and CYP4F3B, forward 5′-TCTTCGCTGGTTCTTGGCCA and reverse 5′-TGGGGTGCCAAA AACCGGATGAC. To visualize results, real-time PCR was stopped at cycles at which differences between treatments and controls became apparent, and the cDNAs amplified were then fractionated on a 1% agarose gel and were stained with ethidium bromide for detection under UV light.

Multiparameter Flow Cytometry for Apoptosis. Apoptosis was analyzed with multiparameter flow cytometry as described previously (Telford et al., 2004; Hu et al., 2006). The assay measures three characteristic features of apoptosis: caspase activation, plasma membrane phosphatidylserine “flipping,” and an increase in cell membrane permeability. Phospholipid G1D2 (PhosphG1D2; OncolImmunin, Inc., Gaitersburg, MD) is a fluorogenic substrate of caspase 3 and 7. 7-aminomethylcoumarin D (BD Biosciences, San Diego, CA) was used as an indicator of plasma membrane permeability. Annexin V-PE (BD Biosciences) binds to flipped phosphatidylserine of plasma membrane. In brief, HL-60 cells were treated for 4 days as indicated in the figure legends. Cadmium (10 or 40 μM, 16 h) was used as a positive control for apoptosis. Cells were collected by centrifugation at 1500 rpm for 5 min. The supernatant was centrifuged at 2500 rpm for 5 min to collect apoptotic cells that were not collected during the first centrifugation. The cell pellets were combined and were resuspended in the medium at a density of ~3 × 106 cells/ml. Fifty microliters of the cell suspension were mixed with 50 μl of 10 μM PhosphG1D2, followed by incubation at 37°C for 60 min. Incubation was continued with 1.25 μl of annexin V-PE at room temperature for 15 min. The cells were washed with 1 ml of ice-cold FACs buffer (0.2% bovine serum albumin and 0.09% NaN3 in phosphate-buffered saline), collected by centrifugation at 800g for 5 min, and resuspended in 250 μl of the FACs buffer. The cells were incubated with 7-aminomethylcoumarin D (0.06 mg/l 25.5 ml/tube) at room temperature for 10 min, and 200 μl of the FACs buffer was added to the tube immediately before measurement with a FACSCalibur flow cytometer (BD Biosciences).

Detection of CYP4F3 Protein. Cells were treated as indicated in the figure legends. For immunofluorescent labeling and flow cytometry of the CYP4F3 protein, the cells were labeled with polyclonal antibody to CYP4F3 antibodies (Abnova, Taipei, Taiwan) followed by fluorescence-labeled second antibodies. Fluorescent signals were measured as described above. For immunoblotting, total cell extracts were fractionated in SDS-polyacrylamide gel, transferred to a Nitran membrane, and stained with the anti-CYP4F3 antibodies followed by horseradish peroxidase-conjugated secondary antibodies and chemiluminescence detection. Quantification of protein bands was performed with the ImageQuant program (GE Healthcare Bio-Science Corp.).

NBT Reduction Assay. HL-60 cells stimulated with phorbol myristate acetate (PMA) generate superoxide anion; production of this anion was measured by reduction of NBT to form intracellular reduced blue-black formazan deposits (Collins et al., 1979). In brief, cells were seeded at a density of 1 × 105 cells/ml in six-well plates. Three untreated plates, three plates treated with 0.1% DMSO, and three plates treated with 0.1% ethanol were used as negative controls. ATRA at 1 μM was used as a positive control. The cells were treated with benzene, phenol, or hydroquinone as indicated. After 6 days of treatment, the cells were collected by centrifugation at 1000 rpm for 5 min. Cell pellets were resuspended with 1 ml of a freshly prepared mixture containing 0.1% NBT and 1 μg/ml PMA in the medium and were incubated at 37°C for 1 h. Slides containing cell smears were stained with May-Grünwald-Giemsa (Sigma-Aldrich). The percentage of cells containing intracellular dark blue-black
formazan deposits were counted under a light microscope at 40× magnification for at least 200 cells/sample.

Benzidine Staining. Cell hemoglobinization was analyzed by benzidine staining (Belhacene et al., 1998). K562 cells (American Type Culture Collection) were cultured in IMDM with 10% FBS and 5% CO2. Fifty microliters of cells at 1 × 106 cells/ml was mixed with 10 µl of a benzidine reagent consisting of 0.6% H2O2, 0.5 M acetic acid, and 0.2% benzidine dihydrochloride (Sigma-Aldrich). The percentage of benzidine-positive cells (blue cells) was determined by light microscopic examination of 100 cells/sample. Each experiment was performed in triplicate, and the results were averaged.

Statistical Analysis. Means and SDs were calculated, and statistical analyses were performed using one-way analysis of variance followed by a t test with GraphPad PRISM (GraphPad Software, Inc., San Diego, CA).

Results

Elevated Expression of CYP4F3A in the Peripheral WBCs from Patients Diagnosed with Occupational Benzene Poisoning. To analyze aberrant gene expression and its role in the development of benzene hematotoxicity, we performed a cDNA microarray to compare the gene expression profiles of peripheral WBCs from patients with occupational benzene poisoning and matched control subjects. The patient group included seven female workers with occupational benzene exposure histories ranging from 7 to 20 years while working in a shoe manufacturing factory or a chemical production company. The workers were diagnosed with various degrees of occupational benzene poisoning (Tables 1 and 2), including suspicious benzene poisoning (1 patient), moderate chronic benzene poisoning (2 patients), severe chronic benzene poisoning (2 patients), aplastic anemia (1 patient), and aplastic anemia (1 patient) (Table 2). The WBC, neutrophil, lymphocyte, and platelet counts and hematocrit of the patients at the time of blood sampling or diagnosis are shown in Table 2. All patients showed a reduction in WBC counts at the time of diagnosis and blood collection. The patients with aplastic anemia and severe level benzene poisoning also exhibited anemia and thrombocytopenia. The control subjects consisted of seven local healthy female workers, who did not have occupational benzene exposure histories but were matched with the patients for age, geographical location, years of work, educational level, and histories of smoking and alcoholic drinking. The blood cell counts of the matched controls are shown in Table 2.

The results from the matched cDNA microarray revealed altered expressions of multiple genes that are involved in apoptosis, DNA repair, immune function, and drug metabolism in the peripheral WBCs of patients with benzene poisoning compared with those of healthy control subjects. Because metabolism plays an important role in benzene toxicity, we analyzed the expression profiles of P450s in this study. We found that the expression of CYP4F3A, which encodes LTB4 ω-hydroxylase, was elevated in all patients (Table 3). The -fold induction varied from 3 to 71 with a geometric mean of 9-fold (Table 4). Induction of CYP4F3A was also confirmed by real-time PCR (data not shown). Induction of CYP4F3A mRNA did not seem to correlate with the severity of hematotoxicity in the patients in either microarray or real-time PCR assays. CYP1A1 and CYP1B1, two polycyclic aromatic hydrocarbon-inducible forms of P450s, were elevated in four and two patients, respectively. CYP2B6 and CYP51 were down-regulated in one patient, whereas CYP27A1 was up-regulated in one patient but was down-regulated in three patients. CYP4F3A catalyzes the conversion of LTB4, a potent endogenous chemotactic and chemokinetic signaling molecule, to less active products in PMN cells. Induction of CYP4F3A enhances the inactivation of LTB4. The consistent elevation of CYP4F3A in all patients with benzene poisoning suggests a regulatory mechanism by which benzene or its metabolites induce the gene in WBCs, which may contribute to the pathogenesis of hematotoxicity in humans.

Induction of the CYP4F3 Subfamily in HL-60 Cells. The findings that CYP4F3A expression was significantly elevated in all patients and yet the -fold induction did not seem to correlate with the severity of the diagnosis suggest that induction is a common feature of benzene poisoning rather than a result of hematocytopenia. Moreover, because CYP4F3A is expressed mostly in neutrophils and yet all patients had normal or reduced differential neutrophil counts, it is unlikely that induction of CYP4F3A was a result of an increase in the relative amounts of neutrophils in the blood but rather was due to increased expression of the gene. To further examine this point, we analyzed the effect of benzene and its metabolites on CYP4F3A gene expression in HL-60 cells, a cell line derived from human acute promyelocytic leukemia; this cell line has previously been shown to exhibit elevated expression of CYP4F3A upon exposure to chemicals.

Table 3

Differential expression of P450 genes in workers with chronic benzene poisoning workers and matched control subjects

<table>
<thead>
<tr>
<th>GenBank</th>
<th>GeneTag</th>
<th>Gene Function</th>
<th>Up-Regulation</th>
<th>Down-Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1927693</td>
<td>CYP4F3A</td>
<td>CYP450, subfamily IVF, polypeptide 3 (leukotriene B4 ω-hydroxylase)</td>
<td>7/7</td>
<td></td>
</tr>
<tr>
<td>AA418907</td>
<td>CYP1A1</td>
<td>CYP450, subfamily I (aromatic compound-inducible), polypeptide 1</td>
<td>4/7 (2, 5, 6, 7)</td>
<td></td>
</tr>
<tr>
<td>N66957</td>
<td>CYP27A1</td>
<td>CYP450, subfamily XXVIIA (steroid 27-hydroxylase, cerebroside inductive), polypeptide 1</td>
<td>1/7 (1)</td>
<td>3/7 (2, 5, 6)</td>
</tr>
<tr>
<td>AA448157</td>
<td>CYP1B1</td>
<td>CYP450, subfamily I (dioxin-inducible), polypeptide 1 (glaucoma 3, primary infantile)</td>
<td>2/7 (4, 6)</td>
<td></td>
</tr>
<tr>
<td>T68287</td>
<td>CYP2B6</td>
<td>CYP450, subfamily IIb (phenobarbital-inducible), polypeptide 6</td>
<td>1/7 (1)</td>
<td></td>
</tr>
<tr>
<td>AA477781</td>
<td>CYP51</td>
<td>CYP450, 51 (lanosterol 14α-demethylase)</td>
<td>1/7 (1)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

-Fold of induction of CYP4F3A mRNA expression in workers with chronic benzene poisoning relative to that of matched control subjects

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Diagnosis</th>
<th>-Fold of Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suspicious benzene poisoning</td>
<td>2.96</td>
</tr>
<tr>
<td>2</td>
<td>Moderate level benzene poisoning</td>
<td>11.8</td>
</tr>
<tr>
<td>3</td>
<td>Aplastic anemia</td>
<td>3.92</td>
</tr>
<tr>
<td>4</td>
<td>Medium level benzene poisoning</td>
<td>22.2</td>
</tr>
<tr>
<td>5</td>
<td>Medium level benzene poisoning</td>
<td>3.94</td>
</tr>
<tr>
<td>6</td>
<td>Severe level benzene poisoning</td>
<td>2.96</td>
</tr>
<tr>
<td>7</td>
<td>Moderate level benzene poisoning</td>
<td>70.6</td>
</tr>
</tbody>
</table>

*Represents geometric mean (S.D.).
such as ATRA (Kikuta et al., 2004). A time course study of CYP4F3A mRNA induction indicated a slow process requiring longer than 2 days of exposure for apparent induction (data not shown). Both CYP4F3A and CYP4F3B (a splice variant of CYP4F3A) mRNAs were expressed in HL-60 cells at low, but detectable, levels by reverse transcriptase-PCR (Fig. 1A, lane 1). ATRA, which is known to induce CYP4F3A in HL-60 cells, was used as a positive control. ATRA at 1 μM with a 4-day treatment induced the mRNA expression of CYP4F3A significantly and CYP4F3B to a much lesser extent (Fig. 1A, lane 2). Benzene at a high concentration (10 mM, 4 days) only modestly induced CYP4F3A (lane 4), whereas phenol at 1 mM and 100 μM (4 days) induced both genes significantly (lanes 5 and 6). Treatment with hydroquinone at 100 μM for 4 days dramatically
reduced the cell number of HL-60 cells, yielding an insufficient amount of mRNA for the analysis of CYP4F3 expression (see data below). Quantification of CYP4F3A and CYP4F3B mRNA expression by real-time quantitative PCR revealed that benzene at 10 mM induced CYP4F3 by 2-fold; phenol at 1 mM and 100 μM induced CYP4F3 by 4- and 3.5-fold, comparable to the induction by ATRA (~5 fold) (Fig. 1B). In addition, phenol at both concentrations induced CYP4F3B by ~9- and 6-fold, respectively, but ATRA induced CYP4F3B only slightly (~2-fold) (Fig. 1C). Benzene had no apparent inductive effect on CYP4F3B mRNA expression.

Induction of the CYP4F3 protein in HL-60 cells was performed using immunofluorescent flow cytometry. ATRA induced the CYP4F3 protein at 1 μM as expected. Phenol induced CYP4F3 protein in a concentration-dependent manner at 10 and 100 μM, but induction was reduced at higher concentrations of phenol (10 mM) (Fig. 2A). Induction by phenol was also time-dependent with high inductions between 4 and 6 days of treatment (Fig. 2B). Immunoblotting confirmed that ATRA and phenol indeed induced the CYP4F3 protein that was recognized by the anti-4F3 antibodies as a protein band of ~55 kDa (Fig. 2, C and D). CYP4F3 proteins were nearly undetectable in untreated HL-60 cells by immunoblotting. Induction is ~5-fold for both inducers. The findings suggest that the benzene metabolite, phenol, induced CYP4F3A at both mRNA and protein levels in human leukocytes during benzene poisoning.

Induction of CYP4F3 Correlates with Induction of Differentiation but Not Apoptosis by Benzene Metabolites. Expression of CYP4F3 in peripheral leukocytes can be influenced by the differentiation and functional status of the cells. Therefore, the effects of benzene and its metabolites on the growth and differentiation of HL-60 cells were analyzed to elucidate the mechanism of CYP4F3 induction by benzene. ATRA affected HL-60 growth only after 4 days of treatment, suggesting a slow effect of ATRA on HL-60 growth (Figs. 3 and 4). Benzene and phenol at high concentrations (10 and 1 mM, respectively) had only modest effects on the growth of the cells. On the other hand, hydroquinone at 100 μM induced a dramatic reduction in the cell numbers after 1 day of treatment, which continued to decrease throughout the treatment, resulting in >85% reduction in cell number after 4 days of treatment (Figs. 3 and 4).

The dramatic and progressive reduction in cell numbers by hydroquinone can be attributed to inhibition of cell growth or induction of apoptosis and/or necrosis in HL-60 cells. The apoptotic effect of hydroquinone on the cells was examined using a multiparameter flow cytometric approach. Treatment with hydroquinone at 100 μM and 1 mM for 4 days caused apoptosis in ~75 and 70% of the cells, respectively, which was comparable to the apoptotic effects of treatment with cadmium at 10 or 40 μM for 16 h (positive controls for apoptosis) (Fig. 5). Treatment with ATRA (1 μM), benzene (1 and 10 mM), or phenol (100 μM and 1 mM) for 4 days did not cause significant increases in apoptosis compared with the control. Thus, hydroquinone, but not benzene or phenol, caused apparent apoptosis in HL-60 cells.

Induction of differentiation of HL-60 cells by benzene and metabolites was analyzed by measuring PMA-stimulated production of superoxide anion, which reduces NBT to insoluble colored formazan deposits in cells quantitatively. As expected, upon treatment with ATRA (1 μM for 6 days; positive control for differentiation), 94.3% of the HL-60 cells were converted to NBT-positive cells, indicating induction of differentiation of most cells toward mature mononucleocytes or PMNs (Fig. 6, A and B). Benzene at 10 mM caused a slight increase in NBT-positive cells from 13% (control) to 32% (benzene), whereas phenol at 1 mM caused a significant increase to 65%. On the other hand, cells treated with hydroquinone at 100 μM and 1 mM all appeared apoptotic with small and shrunken nuclei as revealed under
a light microscope. Figure 6C shows the morphology of untreated and ATRA- or phenol-treated HL-60 cells, indicating that both ATRA and phenol induced differentiation of HL-60 cells from promyelocytic cells into mononucleocyte and PMN-like cells; consistent with this observation, no basophils or eosinophils were found with or without ATRA or phenol. The findings revealed that benzene induces the CYP4F3 subfamily through its metabolite, phenol, and that induction of the P450 genes correlates with the ability of benzene metabolites to induce differentiation of HL-60 cells.

Ex Vivo Induction in Human Blood Neutrophils. The correlation between induction of CYP4F3A in HL-60 cells and differentiation of the cells by phenol raised the possibility of whether phenol induces the gene indirectly through induction of HL-60 differentiation. To test the possibility, we measured induction in differentiated HL-60 cells. The cells were treated with 1.3% DMSO for 4 days to induce differentiation, followed by treatment with phenol at 100 μM for additional 4 days. Whereas CYP4F3 was nearly undetectable in undifferentiated HL-60 cells by immunoblotting (Fig. 2, C and D), the protein level
was elevated in differentiated cells induced by 1.3% DMSO; thus, differentiation indeed induces CYP4F3 protein expression (Fig. 7, A and B, lane 1). Phenol at 100 μM further increased CYP4F3 protein expression (Fig. 7, A and B, lane 2). The result supports the notion that phenol is capable of inducing CYP4F3 independently of differentiation in HL-60 cells.

We also examined whether phenol induces differentiation and CYP4F3 induction in K562, an erythroleukemic cell line. Whereas hemin, a known inducer of K562 for differentiation, induced K562 into erythroid cells as indicated by induced synthesis of hemoglobin, phenol did not affect the amount of hemoglobin or induce morphology changes in K562 cells compared with untreated controls (Fig. 8A; data not shown). However, under the same conditions phenol, but not hermin, induced CYP4F3 protein expression (Fig. 8, B and C).

Finally, we performed ex vivo induction of CYP4F3 in human blood neutrophil cells. Human neutrophils were isolated from blood from a healthy adult male and were treated with phenol at 100 μM and 1 mM in culture for 2 days (the life span of PMNs in peripheral blood is ~2–3 days). CYP4F3 proteins were low in untreated cells; phenol treatment at both concentrations for 2 days induced protein expression by nearly 6-fold (Fig. 9, A and B). The ex vivo findings provided direct evidence demonstrating that phenol induces CYP4F3 in human neutrophils and induction does not require cell differentiation.

Discussion

Chronic exposure to benzene characteristically causes hematotoxicity and myelogenous leukemia in humans. Given the high specificity and a chronic and progressive course of damage to bone marrow cells by benzene, we posit that exposure to benzene elicits genomic reprogramming to result in large-scale aberrant gene expression in hematopoietic cells that in turn contributes to the development of hematotoxicity and leukemia. Indeed, microarray analysis of the gene expression profiles in the peripheral WBCs from patients with occupational benzene poisoning in comparison with those of healthy control subjects have uncovered altered expressions of a broad range of genes. Aberrant gene expressions were found in a number of pathways that have been implicated in hematopoietic functions and cancer, including DNA damage repair, immune function, apoptosis, and drug metabolism (Chen et al., 2005; Xia et al., 2005; Zhao et al., 2005). In a recent study, a separate group of researchers reported altered expressions of a set of genes, in particular CXCL16, ZNF331, JUN, and PF4, in the peripheral mononucleocytes from workers who were exposed to benzene (but not diagnosed with benzene poisoning), compared with control subjects who did not have histories of occupational benzene exposure (Forrest et al., 2005). It was suggested that these genes can potentially be used as biomarkers for benzene exposure in humans. Taken together, these findings underpin the potential role of gene regulation by benzene in benzene-induced hematotoxicity and leukemia.

Although benzene metabolism by P450s has long been recognized as being required for benzene toxicity and was extensively studied in various systems including reconstituted P450 reactions, cultured cells, whole animals, or benzene-exposed human populations (Parke and Williams, 1953; Snyder, 2002; Kim et al., 2007), few studies have been conducted to examine the effects of benzene exposure on the expression of P450s and whether these effects contribute to benzene hematotoxicity. To address this issue, we focused on the analysis of altered expression of P450s in workers with chronic occupational benzene poisoning using a cDNA microarray. The data revealed differential expressions of a number of P450 genes, including...
CYP4F3A, 1A1, 1B1, 27A1, 2B6, and 51, in the peripheral white blood cells of the patients in comparison with matched control subjects. In particular, the expression of CYP4F3A was consistently elevated in all patients with folds of induction from 3 to 71. Because these P450s participate in the metabolism of a broad range of endogenous and foreign chemicals including benzene, the results suggest that exposure to benzene affects the metabolism of its own as well as that of many other endogenous substrates or coexposed toxicants by way of modulating the expression of P450s, which potentially contributes to the development of benzene hematotoxicity.

CYP4F3A encodes the LTB4 ω-hydroxylase in human peripheral leukocytes, mostly PMNs that converts LTB4, a potent and critical chemotactic agent for PMN, to less active molecules (Samuelsson, 1983; Shak and Goldstein, 1984; Kikuta et al., 1993; Christians et al., 1999). Induction of the enzyme would increase the inactivation of LTB4 and consequently inhibits the chemotaxis and infiltration of PMN and macrophages into tissues during inflammation. In the case of benzene-induced hematotoxicity, induction of CYP4F3 in peripheral white blood cells potentially contributes to the pathological development in two ways. First, induction of CYP4F3 reduces chemotaxis and the migration of white blood cells from the circulating blood into tissues, resulting in an inhibition of inflammatory responses and, consequently, contributing to increased susceptibility to microbe infections—a complication commonly seen in patients with benzene hematotoxicity, although leucopenia may be the main cause of increased infections in the patients. Second, reduced tissue infiltration of blood cells would extend the lifespan and promote the proliferation of benzene-transformed cells or leukemia cells within blood vessels. Further studies are needed to support these notions.

Several potential mechanisms may account for the induction of CYP4F3A in the WBCs of patients with benzene poisoning. First, induction can be a result of neutrophile expansion that may occur in patients with benzene poisoning; in this scenario, an increase in CYP4F3A in the peripheral blood cells reflects an increased relative amount of neutrophils that express CYP4F3A. However, the fact that all patients have normal or reduced neutrophile counts negates this possibility. Second, induction can be secondary to hematocytopenia in the patients. This is unlikely, because CYP4F3A expression was elevated in all patients, but the -fold induction did not correlate with the severity of leukopenia of the patients, indicating that reduction of blood cells per se was not sufficient for inducing the gene. Third, induction is a direct result of exposure to benzene and/or its metabolites. In vitro induction of CYP4F3 at both mRNA and protein levels by the benzene metabolite, phenol, in cultured human promyelocytic leukemia cells, similarly to ATRA, a known CYP4F3A inducer, strongly supports this notion. Moreover, induction was specific in that only phenol but not benzene or hydroquinone induced the gene. The observation that phenol induces CYP4F3 protein expression in differentiated HL-60 cells and in K562 cells indicates that induction is independent of cell differentiation. Finally, our ex vivo experiment with human blood neutrophils provided direct evidence demonstrating that phenol induces CYP4F3 protein expression in neutrophils. To our knowledge, this is the first evidence of induction of CYP4F3 in human blood cells by chemicals.

The molecular target of phenol for the induction of the CYP4F3 subfamily remains to be identified. The observation that phenol induced both CYP4F3A and CYP4F3B, whereas ATRA induced only CYP4F3A, suggests that induction by the two chemicals may be mediated via overlapping but not identical pathways. CYP4F3A is normally expressed in PMNs, whereas CYP4F3B is believed to be detected mainly in the liver as a splice variant of CYP4F3A (Christmas et al., 1999). The finding that both CYP4F3A and CYP4F3B are induced by phenol in cultured HL-60 cells indicates that the two members of the CYP4F3 subfamily share a common mechanism of regulation in HL-60 cells despite the preferential expression of CYP4F3A in WBCs and CYP4F3B in the liver in vivo.

In contrast to phenol, hydroquinone induced rapid and extensive apoptosis of the cells. Because the reduction of cell counts in both bone marrow and peripheral blood is a hallmark of clinical signs in the early stages of benzene hematotoxicity, the results suggest that hydroquinone contributes significantly to the development of benzene myelotoxicity, in particular, leucopenia. Taken together, these findings are consistent with the notion that multiple metabolites of benzene mediate the diverse biological effects of benzene in bone marrow and peripheral blood cells, leading to progressive hematotoxicity and leukemia.

The widespread exposure to benzene worldwide from a broad range of occupational and environmental sources and the possibility that low-dose exposure to benzene (≤1 ppm) can still damage bone marrow cells raise health concerns for benzene-exposed workers as well as the general population. Moreover, because of the lack of knowledge on the mechanism of benzene action on hematopoietic cells at molecular levels, mechanism-based measures for the prevention and treatment of benzene hematotoxicity are lacking. Our findings of large-scale alterations of gene expression in the peripheral white blood cells of workers with chronic benzene poisoning provide not only new mechanistic insights into the pathogenesis of benzene hematotoxicity and leukemia but also opportunities for developing novel strategies for the diagnosis, prevention, and therapy of benzene-induced bone marrow diseases. In this regard, the consistent elevation of CYP4F3A in WBCs of patients with benzene poisoning suggests that it may be used as a biomarker for benzene exposure and benzene hematotoxicity in human populations in the future.

Acknowledgments. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.
References

Address correspondence to: Dr. Qiang Ma, Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Rd., Morgantown, WV 26505. E-mail: qam1@cdc.gov