Mechanism of Vitamin D Receptor Inhibition of Cholesterol 7α-Hydroxylase Gene Transcription in Human Hepatocytes

Shuxin Han and John Y. L. Chiang

Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio

Received October 14, 2008; accepted December 22, 2008

ABSTRACT:
Lithocholic acid (LCA) is a potent endogenous vitamin D receptor (VDR) ligand. In cholestasis, LCA levels increase in the liver and intestine. The objective of this study is to test the hypothesis that VDR plays a role in inhibiting cholesterol 7α-hydroxylase (CYP7A1) gene expression and bile acid synthesis in human hepatocytes. Immunoblot analysis has detected VDR proteins in the nucleus of the human hepatoma cell line HepG2 and human primary hepatocytes. 1α, 25-Dihydroxy-vitamin D₃ or LCA acetate-activated VDR inhibited CYP7A1 mRNA expression and bile acid synthesis, whereas small interfering RNA to VDR completely abrogated VDR inhibition of CYP7A1 mRNA expression in HepG2 cells. Electrophoretic mobility shift assay and mutagenesis analyses have identified the negative VDR response elements that bind VDR/retinoid X receptor α in the human CYP7A1 promoter. Mammalian two-hybrid, coimmunoprecipitation, glutathione S-transferase pull-down, and chromatin immunoprecipitation assays show that ligand-activated VDR specifically interacts with hepatocyte nuclear factor 4α (HNF4α) to block HNF4α interaction with coactivators or to compete with HNF4α for coactivators or to compete for binding to CYP7A1 chromatin, which results in the inhibition of CYP7A1 gene transcription. This study shows that VDR is expressed in human hepatocytes and may play a critical role in the inhibition of bile acid synthesis, thus protecting liver cells during cholestasis.

Cholesterol 7α-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme in the bile acid synthesis pathway in the liver. Bile acids are metabolites of cholesterol and are required for intestinal absorption and transport of lipid-soluble vitamins, fats, and steroids and disposal of toxic metabolites, drugs, and xenobiotics. Recent studies have established the critical roles of bile acids in the regulation of lipid, glucose, and drug metabolism (Chiang, 2003). Bile acids are highly toxic molecules that cause cholestasis and colon cancer if accumulated in high amounts. Bile acid synthesis is regulated by the bile acid feedback mechanism that inhibits CYP7A1 gene transcription (Chiang, 2003). Recent studies have identified three bile acid-activated nuclear receptors: farnesoid X receptor (FXR, NR1H4), pregnane X receptor (PXR, NR1I2), and vitamin D receptor (VDR, NR1I1) (Chiang, 2005). Among all the bile acids tested, chenodeoxycholic acid is the most efficacious FXR ligand that induces a negative nuclear receptor, small heterodimer partner (SHP, NR0B2) to inhibit CYP7A1 gene transcription (Goodwin et al., 2000). More recent studies suggest that FXR induces fibroblast growth factor (FGF) 15 in intestine, which activates liver FGF receptor 4 signaling to inhibit CYP7A1 and bile acid synthesis (Holt et al., 2003; Inagaki et al., 2005; Kim et al., 2007). The xenobiotic receptor PXR is activated by the secondary bile acid, lithocholic acid (LCA), in the liver and intestine to induce phase I drug-metabolizing cytochrome P450 enzymes, phase II drug conjugation enzymes, and phase III drug transporters (Staudinger et al., 2001; Sonoda et al., 2002; Stedman et al., 2004; Zollner et al., 2006). LCA is also an efficacious VDR ligand (Makishima et al., 2002), which activates VDR at lower concentrations than PXR. VDR induces CYP3A4 (Drocourt et al., 2002) and sulfotransferase 2A1 (Echchgadda et al., 2004) in human hepatocytes and intestine cells. LCA is relatively nontoxic in rats and mice as the livers of these species are able to efficiently hydroxylate LCA for renal excretion (Hofmann, 2004). Detoxification of LCA in human livers is mainly through sulfoconjugation for biliary excretion. During cholestasis, sulfonation of LCA is impaired, and hepatic LCA levels are increased and may contribute to liver injury (Fischer et al., 1996).
VDR is activated by 1α, 25-dihydroxy-vitamin D₃ (1α, 25-(OH)₂-D₃), an active form of vitamin D₃, and plays critical roles not only in calcium and phosphate homeostasis and bone metabolism but also in other physiological functions, including immunomodulation, cell growth, and differentiation (Norman, 2006). VDR is located in the cytosol. On binding of a ligand, VDR is translocated from the cytosol into the nucleus (Michigami et al., 1999), where VDR forms a heterodimer with retinoid X receptor (RXR) α and binds to the response elements consisting of AGGTCA-like direct repeat sequences spaced by three or four nucleotides (DR3, DR4) or everted repeats with 6 nucleotide spacing (ER6) in the CYP3A4 gene promoters (Drocourt et al., 2002). VDR is abundantly expressed in kidney, intestine, and bone but expressed at low levels in most other tissues. It has been reported that VDR mRNA and protein are expressed in rat livers (Segura et al., 1999). In rat livers, VDR mRNA and protein are expressed mostly in nonparenchymal (Kupffer and stellate cell) and biliary epithelial cells (Gascon-Barré et al., 2003). Several studies show that mouse livers do not express VDR mRNA (McCarthy et al., 2005; Bookout et al., 2006). Expression of VDR in human livers has been reported only in one study (Berger et al., 1988).

Activation of vitamin D₃ (cholecalciferol) is initiated in the liver where 25-hydroxylase converts vitamin D₃ to 25-hydroxyvitamin D₃, which is then converted to the active form 1α, 25-(OH)₂-D₃ by sterol 1α-hydroxylase mainly in the kidney (Sakaki et al., 2005). Sterol 24-hydroxylase (CYP24A1) converts 1α, 25-(OH)₂-D₃ to 1α, 24, 25-trihydroxyvitamin D₃ in the kidney, which is inactive and is excreted into urine. VDR feedback inhibits sterol 1α-hydroxylase and feed-forwardly activates CYP24A1 gene transcription to maintain vitamin D₃ homeostasis (Lechner et al., 2007). In this study we identified VDR mRNA and protein in human hepatocytes and explored the potential role and mechanism of LCA-activated VDR in mediating bile acid feedback inhibition of CYP7A1 and bile synthesis in human hepatocytes.

Materials and Methods

Cell Culture. The human hepatoblastoma cell line HepG2, the human colon adenocarcinoma cell line Caco2, and the human embryonic kidney (HEK) cell line HEK293 were purchased from American Type Culture Collection (Manassas, VA). The cells were cultured as described previously (Li and Chiang, 2005). Primary human hepatocytes were isolated from human donors and were obtained through the Liver Tissue Procurement and Distribution System of the National Institutes of Health (Dr. S. Strom, University of Pittsburgh, Pittsburgh, PA). Cells were maintained in Hepatocyte Maintenance Medium as described previously (Li and Chiang, 2005).

Reporter and Expression Plasmids. Human CYP7A1-Luc reporters (p5xUAS-TK-Luc containing five copies of the upstream activating sequence (UAS) fused to the upstream of the TK promoter and the luciferase reporter gene was used for mammalian two-hybrid assays. GAL4-LVR was cotransfected with VP16-SRC-1, VP16-HNF4α, VP16-SMRT, or VP16-NCoR1 into HEK293 cells, and reporter activity was assayed as described above.

Bile Acid Assay. Primary human hepatocytes or HepG2 cells were maintained in serum-free media overnight followed by treatment with vehicle (ethanol [EtOH]) or 1α, 25-(OH)₂-D₃ (100 nM) for 24 h. Cell culture media were collected and slowly passed through a Sep-Pak C18 reversed-phase cartridge (Waters, Milford, MA), which were then washed with 8 ml of water and 2 ml of 1.5% EtOH. Bile acids were eluted from the Sep-Pak C18 with 4 ml of methanol. The solutions were evaporated to dryness at 37°C. Total bile acids were analyzed by 3-hydroxysteroid dehydrogenase method using the Total Bile Acid Assay Kit (Bio-Quant Inc., San Diego, CA) according to the manufacturer’s instructions.

Mammalian Two-Hybrid Assays. The reporter plasmid p5xUAS-TK-Luc containing five copies of the upstream activating sequence (UAS) fused to the upstream of the TK promoter and the luciferase reporter gene was used for mammalian two-hybrid assays. GAL4-LVR was cotransfected with VP16-SRC-1, VP16-HNF4α, VP16-SMRT, or VP16-NCoR1 into HEK293 cells, and reporter activity was assayed as described above.

RNA Isolation and Quantitative Real-Time PCR. Primary human hepatocytes were maintained in serum-free media overnight. Cells were treated with 1α, 25-(OH)₂-D₃ or LCA-acetate in the amounts and times indicated. Total RNA was isolated using Tri-Regent (Sigma-Aldrich, St. Louis, MO). Reverse-transcription reactions were performed using RETROscript kit (Ambion, Austin, TX). Quantitative real-time PCR (Q-PCR) assays of relative mRNA expression were performed as described previously (Li and Chiang, 2005) using an ABI PRISM 7500 sequence detector (Applied Biosystems, Foster City, CA). TaqMan PCR primers and probes were ordered from TaqMan Gene Expression Assays (Applied Biosystems): CYP7A1 (Hs01679982_m1), sterol 27-hydroxylase (CYP27A1) (Hs00168003_m1), CYP24A1 (Hs00167999_m1), VDR (Hs01721123_m1) and UBC (Hs900824723_m1), and mouse VDR (Mm00437597_m1) and UBC (Mm0396999_s1) (Applied Biosystems). Relative mRNA expression levels were calculated by the ΔΔCt method recommended by Applied Biosystems (User Bulletin 2, 1997). All the PCR reactions were done in duplicate, and each reaction was repeated at least four times.

Protein Extraction and Immunoblot Assay. Caco2, HepG2 cells, and primary human hepatocytes in T75 flasks were lysed in modified radioimmunoprecipitation assay buffer (50 mM Tris-HCl, 1% Nonidet P40, 0.25% deoxycholate, 150 mM NaCl, 1 mM EDTA) containing protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 μg/ml aprotinin, 1 μg/ml pepstatin; Sigma-Aldrich) for 30 min. Nuclear fractions were isolated and lysed using a Nuclear Extraction kit (Millipore Corporation, Billerica, MA). Total cell lysates or nucleus fractions were centrifuged at 10,000 g for 10 min, and the supernatants were then precleared with Protein A agarose beads. VDR was in vitro-synthesized using a transcription and translation (TNT) lysate system as a positive control for VDR (Promega). Nuclear extracts were subjected to SDS-polyacrylamide gel electrophoresis, and antibodies against VDR, β-actin, and lamin B (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) were used for immunoblotting and detected by enhanced chemiluminescence detection kit (GE Healthcare, Little Chalfont, Buckinghamshire, UK).

Coimmunoprecipitation Assay. Primary human hepatocytes or HepG2 cells in T75 flasks were maintained in serum-free media overnight followed by

David Moore (Baylor College of Medicine, Houston, TX). Expression plasmids for human VDR (pcDNA3.1/VDR) were provided by Y. C. Li (University of Chicago, Chicago, IL), human peroxisome proliferator activator receptor γ coactivator 1α (PGC-1α) (pcDNA3/HA-PGC-1α) by A. Kralli (The Scripps Research Institute, La Jolla, CA), and pCMV-HNF4α were described previously (Crestani et al., 1998).

Transient Transfection Assay. HepG2 cells were grown to approximately 80% confluence in 24-well tissue culture plates and treated with LCA-acetate (Steraloids, Newport, RI) or LCA, 25-(OH)₂-D₃ (Cayman Chemical, Ann Arbor, MI). LCA-acetate is a nontoxic LCA derivative, which activates VDR with 30-fold higher efficacy than LCA and does not activate PXR or FXR (Adachi et al., 2005). In this study we used LCA-acetate instead of LCA to activate VDR. Luciferase reporters and expression plasmids were transfected into HepG2 cells using TfX-20 reagent (Promega) following manufacturer’s instructions. Luciferase reporter assays were performed as described previously (Crestani et al., 1995). Assays were performed in duplicate, and each experiment was repeated at least four times. Data were plotted as mean ± S.D.
the treatment with vehicle (EtOH) or 1α, 25-(OH)2-VD3 (100 nM) for 24 h. Cells were incubated in modified radioimmunoprecipitation assay buffer containing protease inhibitors as described above for 30 min. Total cell lysates were centrifuged at 10,000 g at 4°C for 10 min and preincubated with protein G agarose beads. One milligram of cell protein extract was incubated with 20 µg of goat anti-HNF4α antibody (Santa Cruz Biotechnology, Inc.) at 4°C with rotation overnight, followed by an additional incubation for 2 h with protein G agarose beads. The beads were then washed three times with cold 1× phosphate-buffered saline, boiled in 2× protein loading buffer for 5 min, and then loaded on SDS-polyacrylamide gel electrophoresis gels for immunoblot analysis using rabbit antibody against VDR (Santa Cruz Biotechnology, Inc.). Thirty-five micrograms of cell protein extracts were loaded as input. Goat nonimmune IgG was used as a negative control.

Electrophoretic Mobility Shift Assay. VDR, PXR, HNF4α, and RXRα were in vitro-synthesized using the TNT lysate system (Promega). Double-stranded synthetic oligonucleotide probes (sequences in Fig. 4 A), a VDR binding site in human Cyp3a4 gene (ER6), and BARE-I and BARE-II of human CYP7A1, mutant BARE-I (M-I), and mutant BARE-II (M-II) were labeled with [γ-32P]ATP for electrophoretic mobility shift assay (EMSA) as described previously (Li and Chiang, 2005).

Glutathione S-Transferase Pull-Down Assay. Glutathione S-transferase (GST)-HNF4α was expressed in Escherichia coli BL21 cells. Cell extracts containing GST-HNF4α fusion proteins were immobilized with glutathione beads and incubated with HepG2 cell extracts. Rabbit anti-VDR was used to detect VDR by immunoblot analysis.

Small Interfering RNA. The Accell SMARTpool small interfering RNAs (siRNAs) for knockdown of VDR mRNA and control SMARTpool were purchased from Thermo Scientific Dharmacon (Lafayette, CO) and transfected into HepG2 cells using Accell siRNA delivery media for 27 h according to the manufacturer’s instructions. Cells were treated with vehicle, 100 nM, or LCA-acetate (20µM) for 24 h, and mRNA and proteins were extracted for analysis.

Chromatin Immunoprecipitation Assay. Primary human hepatocytes in T75 flasks or HepG2 cells in 100-mm tissue culture dishes were maintained in serum-free media overnight, followed by treatment of vehicle (EtOH), 1α, 25-(OH)2-VD3 (100 nM), or LCA-acetate (20 µM). Chromatin immunoprecipitation (ChIP) assays were performed using ChIP assay kit (Millipore Corporation) following the manufacturer’s protocol. Cells were cross-linked in 1% formaldehyde and sonicated. Protein-DNA complexes were precipitated using rabbit anti-HNF4α, rabbit anti-VDR, goat anti-PGC-1α, rabbit anti-glucoconorticoid receptor interacting protein-1 (GRIP-1), goat anti-NCoR-1, or rabbit anti-SMRT (Santa Cruz Biotechnology, Inc.). Rabbit nonimmune IgG was added as a control. The immunoprecipitated-CYP7A1 chromatin (nt −432 to −41 containing BARE-I and BARE-II) and intron 2 (nt 2485 to 2879, as a background) were amplified by PCR as described previously (Li and Chiang, 2007). The PCR primers used for CYP7A1 chromatin were as follows: forward primer, 5′-ATACCCGCTCTCTCTGCAAAGCAG and reverse primer, 5′-CCATTAACCTGAGCCTTTGACAAAG. The PCR primers used for intron 2 were as follows: forward primer, 5′-GTCGACAAATGGAACACAC and reverse primer, 5′-CTTGGAAACCGGAAATTTGG.

Q-PCR was used to quantify ChIP assays of the CYP7A1 chromatin (nt −180 to −111, BARE-II, HNF4α binding site) as described previously (Li and Chiang, 2007). The standard curves of Ct versus Log2 (nanogram of chromatin) for both CYP7A1 and intron 5 chromatin were established using sonicated and purified chromatin from the same ChIP assay sample. The amount of chromatin immunoprecipitated with each antibody was determined from the standard curves after subtracting the background (intron 5 chromatin) and expressed as arbitrary units with vehicle-treated control as “1.” TaqMan real-time PCR primers/probe sets were ordered from Applied Biosystems: BARE-I primer set (nt −180 to −111), forward primer, 5′-GGTCCTCTGTGCCTTGGAAACC; reverse primer, 5′-AAAAGTGGTAGTTAATGGCCTT; and the TaqMan probe: TTCTGATACCTGTGACCCTA; intron 5 primer set (nt 8127−8195), forward primer, 5′-TTCTTCTGAGAACCTCTTCTCTC; reverse primer, 5′-TCTATATCCCTTGGAAGCATGTTATG; and the TaqMan probe: CTAAGGCTTGGACGAT.

Statistical Analysis. All of the results were expressed as mean ± S.D. Data were analyzed with Student’s t test. The p values of <0.05 were considered as statistically significant difference between treated and untreated control.

TABLE 1

<table>
<thead>
<tr>
<th>mRNA Sample</th>
<th>C Value ± S.D.</th>
<th>ΔCt Value ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caco2</td>
<td>27.5 ± 0.13</td>
<td>7.8 ± 0.13</td>
</tr>
<tr>
<td>HEK293</td>
<td>34.7 ± 0.17</td>
<td>13.2 ± 0.17</td>
</tr>
<tr>
<td>HepG2</td>
<td>34.8 ± 0.05</td>
<td>13.9 ± 0.06</td>
</tr>
<tr>
<td>HH318</td>
<td>31.5 ± 0.14</td>
<td>10.9 ± 0.18</td>
</tr>
<tr>
<td>HH320</td>
<td>31.7 ± 0.13</td>
<td>12.3 ± 0.13</td>
</tr>
<tr>
<td>HH358</td>
<td>30.1 ± 0.07</td>
<td>10.8 ± 0.09</td>
</tr>
<tr>
<td>HH361</td>
<td>27.6 ± 0.06</td>
<td>7.8 ± 0.07</td>
</tr>
<tr>
<td>HH363</td>
<td>28.1 ± 0.11</td>
<td>9.0 ± 0.11</td>
</tr>
<tr>
<td>HH367</td>
<td>30.5 ± 0.06</td>
<td>8.4 ± 0.17</td>
</tr>
<tr>
<td>HH393</td>
<td>32.2 ± 0.01</td>
<td>11.9 ± 0.01</td>
</tr>
<tr>
<td>Average human hepatocytes</td>
<td>30.2 ± 1.79</td>
<td>10.2 ± 1.76</td>
</tr>
<tr>
<td>Mouse 1</td>
<td>38.5 ± 0.08</td>
<td>10.0 ± 0.09</td>
</tr>
<tr>
<td>Mouse 2</td>
<td>36.3 ± 0.1</td>
<td>18.1 ± 0.1</td>
</tr>
<tr>
<td>Average mouse livers</td>
<td>37.4 ± 1.56</td>
<td>18.6 ± 0.64</td>
</tr>
</tbody>
</table>
Results

VDR Is Expressed in Human Hepatocytes. We first used an antibody against human VDR to detect VDR protein expression in primary human hepatocytes and HepG2 cells. Figure 1A shows that immunoblot analysis detected VDR proteins in whole cell lysates isolated from these hepatocytes. Figure 1B shows that VDR proteins were detected in the nuclear extracts after treating primary human hepatocytes with 1α, 25-(OH)₂-VD₃ (50 nM). In HepG2 cells, VDR proteins were detected in the nuclei with or without 1α, 25-(OH)₂-VD₃ treatment. These data support the conclusion that VDR proteins are expressed in human hepatoma cells and in primary human hepatocytes.

Analysis of VDR mRNA Expression Levels in Human Hepatocytes. We used Q-PCR assays to identify and determine VDR mRNA expression levels in primary human hepatocytes. The comparative Ct method (ΔΔCt) is widely used to assay relative mRNA expression levels in the same cells treated with different reagents. However, this method cannot be used to compare mRNA expression levels in different types of cells or species. Thus, we used the Ct number as an indication of relative mRNA expression levels in different cells and species. The Ct values vary from 28.1 ± 0.11 to 32.2 ± 0.08 in seven donor hepatocytes (Table 1). The average Ct value of 30.2 ± 1.79 in primary human hepatocytes is much lower than that in HepG2 cells (34.8 ± 0.05), indicating much higher VDR mRNA expression levels.

Table 2

<table>
<thead>
<tr>
<th>Cells</th>
<th>Total Bile Acid Synthesis (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HepG2</td>
<td>67.3 ± 1.5</td>
</tr>
<tr>
<td>HH1393</td>
<td>51</td>
</tr>
<tr>
<td>HH1408</td>
<td>48</td>
</tr>
<tr>
<td>HH1393</td>
<td>59</td>
</tr>
<tr>
<td>Average human hepatocytes</td>
<td>52.7 ± 5.7</td>
</tr>
</tbody>
</table>

Fig. 2. Real-time PCR assays of the effects of LCA-acetate on CYP7A1 mRNA expression in primary human hepatocytes. Data were pooled from assays using three donor hepatocytes (#HH1403, #HH1410, #HH1412). A, time-dependent effects of LCA-acetate (20 μM) on CYP7A1 mRNA expression. B, dose-dependent effect of LCA-acetate on CYP7A1 mRNA expression. C, time-dependent effect of LCA-acetate on CYP24A1 mRNA expression. D, dose-dependent induction of CYP24A1 mRNA expression by LCA-acetate. In time course study, primary human hepatocytes were treated with 20 μM LCA-acetate for the time indicated. In dose-dependent study, primary human hepatocytes were treated with increasing doses of LCA-acetate for 24 h. CYP27A1 mRNA expression was assayed as a negative control (A and B). CYP24A1 mRNA expression was assayed as a positive control of VDR induced gene (C and D). Each experiment was done in duplicate, and same experiments were repeated at least five times in each donor hepatocytes.
in primary human hepatocytes than in HepG2 cells (Table 1). The Ct value for VDR mRNA expression is 27.9 ± 0.13 in a human colon carcinoma cell line Caco2 and 34.7 ± 0.17 in HEK293 cells. The Ct value for VDR in mouse livers is 37.4 ± 1.56, indicating extremely low levels of VDR mRNA in mouse livers as reported (Bookout et al., 2006). Table 1 also shows the ΔCt values (Ct of VDR – Ct of internal standard UBC), commonly used for calculation of relative mRNA expression levels by the ΔΔCt method. The ΔCt value for VDR mRNA expression in human primary hepatocytes is 10.2 ± 1.79, approximately 16-fold higher than that in HepG2 (ΔCt = 13.9 ± 0.06) and 250-fold higher than in mouse livers (ΔCt = 18.6 ± 0.64). It should be noted that comparison of relative mRNA expression levels in different types of cells or species is valid if amplification of the amplicons is linear in different cells.

VDR Ligand Inhibits Bile Acid Synthesis in Human Hepatocytes. We then assayed the effect of 1α, 25-(OH)2-VD3 on total bile acids synthesized in primary human hepatocytes and HepG2 cells. Table 2 shows that 1α, 25-(OH)2-VD3 (100 nM) inhibited the amount of bile acids synthesized in primary human hepatocytes and HepG2 cells by approximately 47 and 33%, respectively. LCA-acetate and 1α, 25-(OH)2-VD3 Inhibit Human CYP7A1 mRNA Expression in Human Hepatocytes. We used Q-PCR to analyze the effects of LCA-acetate on CYP7A1 mRNA expression in primary human hepatocytes. LCA-acetate is nontoxic and is 30-fold more efficacious in activation of VDR than LCA. LCA-acetate is specific in activation of VDR but not FXR and PXR (Adachi et al., 2005). Figure 2A shows that LCA-acetate at 20 μM markedly reduced CYP7A1 mRNA expression levels in a time-dependent manner. Figure 2B shows that LCA-acetate inhibits the relative CYP7A1 mRNA expression levels in a dose-dependent manner. Likewise, 1α, 25-(OH)2-VD3 also inhibited CYP7A1 mRNA expression in a dose-dependent manner (Supplemental Fig. S1). However, LCA-acetate did not affect CYP27A1 mRNA expression levels (Fig. 2, A and B). We also assayed the effect of 1α, 25(OH)2-VD3 on mRNA expression of
CYP24A1, which is a VDR up-regulated gene. Figure 2C shows that CYP24A1 mRNA expression levels in primary human hepatocytes were markedly induced by LCA-acetate (Fig. 3C) or 1α, 25(OH)2-VD3 (Supplemental Fig. S1) by 300- to 400-fold in 12 h. These data suggest that VDR specifically inhibits CYP7A1 expression in human hepatocytes and that CYP24A1 is highly induced by LCA-acetate and 1α, 25(OH)2-VD3 in human hepatocytes.

Knockdown of VDR by siRNA Increased CYP7A1 mRNA Expression. To further confirm that VDR plays a role in inhibiting CYP7A1 expression, SMARTpool siRNA to VDR was used to knock down VDR expression to assay its effect on CYP7A1 mRNA expression. The SMARTpool siRNA to VDR completely abolished VDR protein (Fig. 3A) and mRNA expression (Fig. 3B) in HepG2 cells. The SMARTpool siRNA to VDR prevented 1α, 25(OH)2-VD3 and LCA-acetate inhibition of CYP7A1 mRNA expression (Fig. 3C). The SMARTpool siRNA to VDR inhibited 1α, 25(OH)2-VD3 and LCA-acetate induction of CYP24A1 (Fig. 3D) and had no effect on CYP7A1 (Fig. 3E) mRNA expression. These data further support the finding that ligand-activated VDR specifically inhibited CYP7A1 expression in hepatocytes.

Negative VDR Response Elements Are Localized in the BARE-I and BARE-II of the Human CYP7A1 Gene Promoter. Previous studies from our laboratory have identified two bile acid response elements—BARE-I and BARE-II—that are essential for basal transcriptional activity and also for conferring bile acid feedback inhibition (Chiang, 2002). These elements contain several AGGTCA-like repeating sequences, which are potential binding sites for nuclear receptors. The BARE-II is a conserved 18-base pair sequence in all the species that contains a direct repeat with one-base spacing (DR1) sequence for HNF4α binding. We performed transient transfection assay using human CYP7A1 promoter/luciferase (Luc) reporter constructs. A series of 5′ deletion mutant constructs of CYP7A1/Luc reporter was cotransfected with VDR expression plasmid into HepG2 cells and treated with LCA-acetate (5 µM) or 1α, 25(OH)2-VD3 (5 nM), or LCA-acetate (5 µM) for 16 h before harvesting. The luciferase activity was normalized by β-galactosidase activity. Each experiment was done in duplicate, and the same experiment was repeated five times. An * indicates statistically significant difference, p < 0.05.

VDR Binds to Human CYP7A1 Promoter. To test whether VDR binds to the BARE-I and BARE-II sequences, we performed EMSA using oligonucleotide probes designed based on the BARE-I and BARE-II sequences of the human CYP7A1 gene (Fig. 5A). Figure 5A shows that TNT lysates programmed with both VDR and RXRα expression vectors shifted the BARE-I probe. When TNT lysates programmed with either VDR or RXRα were used for EMSA, no band shift was observed. A mutant BARE-I probe (M-I) did not bind VDR/RXRα. To study the specificity of VDR binding, an unlabeled BARE-I probe (B-I), but not mutant BARE-I probe (M-I), was able to compete out VDR/RXRα binding. An anti-VDR antibody partially competed out VDR/RXRα binding. An anti-VDR antibody partially bound to the BARE-I probe as we reported previously (Li and Chiang, 2005). As a positive control for VDR binding, an ER6 probe designed...
VDR REGULATION OF CYP7A1

Fig. 5. EMSA of VDR/RXRα binding to human CYP7A1. A, nucleotide sequences of the probes used in the EMSA. Arrows above sequences indicate hormone response element half-sites. Lowercase letters indicate mutations. I, BARE-I; M-I, mutant BARE-I; M-II, mutant BARE-II; DR, direct repeat; ER, everted repeat. B, EMSA of VDR/RXRα binding to human BARE-I probes. VDR/RXRα binding to CYP7A4 ER6 probe and PXR/RXRα binding to BARE-I were used as controls. Excess (50-fold) of unlabeled BARE-I (B-I) and mutant (M-I) probes were used as cold competitor. VDR antibody was used to form a super shift band with VDR/ RXRα and BARE-I complex as indicated by an arrow. C, EMSA of VDR/RXRα binding to human BARE II probe. VDR/RXRα binding to CYP7A4 ER6 probe and HNF4α binding to BARE-II were used as controls. Excess (50-fold) of unlabeled ER6 probes were used as cold competitor. Each EMSA binding reaction contained 2 μl of α-32P-labeled probes (2 × 10⁵ cpm) incubated with in vitro-synthesized proteins (TNT lysate) for 20 min before loaded into the gel.

according to a well characterized VDR response element in the CYP7A4 gene strongly bound VDR/RXRα. Figure 5C shows EMSA using the BARE-II sequence as a probe. VDR/RXRα was able to bind to the BARE-II probe but not the mutant BARE-II (M-II) probe. Addition of 50-fold excess of unlabeled ER6 probe could compete out VDR/RXRα binding to the BARE-II probe. These assays indicate that the VDR/RXRα heterodimer binds to both BARE-I and BARE-II of the human CYP7A1 promoter.

VDR Inhibits HNF4α and PGC-1α Coactivation of the Human CYP7A1 Gene. Previous studies have established that HNF4α binds to the BARE-II sequence and regulates CYP7A1 gene transcription and a coactivator PGC-1α stimulates HNF4α activity (Stroup and Chiang, 2000). Figure 6A shows that cotransfection with VDR/RXRα strongly inhibited CYP7A1 reporter activity in HepG2 cells only when 1α, 25-(OH)₂-VD₃ was added. We constructed a heterologous promotor luciferase construct (p3X-BARE-II-TK-Luc) that contains three copies of the human CYP7A1 BARE-II inserted upstream of the TK promoter for reporter assay. Figure 6B shows that the 1α, 25-(OH)₂-VD₃-activated VDR strongly inhibited the heterologous reporter activity stimulated by HNF4α and PGC-1α in HepG2 cells. These results suggest that the ligand-activated VDR may compete with HNF4α for PGC-1α (squeezing effect), interact with HNF4α to block HNF4α interaction with PGC-1α, or compete with HNF4α for binding to the BARE-II, which results in inhibition of CYP7A1 gene transcription.

VDR Interacts with HNF4α. To test the possibility that VDR may directly interact with HNF4α, we performed mammalian two-hybrid assay to study the interaction of VDR with HNF4α. Figure 7A shows that VP16-HNF4α interacts with GAL4-VDR and stimulates GAL4 reporter activity in HEK293 cells when 1α, 25-(OH)₂-VD₃ or LCA-acetate was added. As a positive control, VP-16-SRC-1 strongly interacts with GAL4-VDR and stimulates GAL4 reporter activity in the presence of 1α, 25-(OH)₂-VD₃ or LCA-acetate. The interaction of VP-16-NCoR-1 or VP16-SMRT fusion protein with GAL4-VDR was weak compared with VP16. We then performed a cell-based coimmunoprecipitation (CoIP) assay for the protein-protein interaction between HNF4α and VDR. The antibody against human HNF4α was added to the protein extracts from HepG2 or primary human hepatocytes treated with vehicle (EtOH) or 1α, 25-(OH)₂-VD₃ (100 nM). Figure 7B shows that VDR was coimmunoprecipitated from HepG2 and primary human hepatocytes with anti-HNF4α. We also performed non–cell-based GST pull-down assays for protein-protein interaction. Figure 7C shows that the GST-HNF4α fusion protein was able to pull down VDR from HepG2 cell extracts. All three protein-protein interaction assays support the specific interaction between VDR and HNF4α. The mammalian two-hybrid assay is a cell-based functional assay that shows a ligand-dependent interaction between VDR and HNF4α, whereas the physical interaction assays of CoIP and GST pull-down showed a ligand-independent interaction.

1α, 25-(OH)₂-VD₃ Increases VDR and Corepressors and Decreases Coactivators Recruitment to Human CYP7A1 Chromatin. We performed ChIP assays to study the effects of 1α, 25-(OH)₂-VD₃ on the association of VDR, HNF4α, PGC-1α, GRIP-1, NCoR-1, and SMRT to a human CYP7A1 chromatin containing both the BARE-I and BARE-II sequences (nt −432 to −41). Specific antibodies were used to immunoprecipitate chromatin from primary human hepatocytes for PCR amplification of DNA fragments. Figure 8A (left) shows that HNF4α, PGC-1α, and GRIP-1 were associated with CYP7A1 chromatin in vehicle-treated primary human hepatocytes. On treatment with 1α, 25-(OH)₂-VD₃, VDR binding was increased, whereas HNF4α, PGC-1α, and GRIP-1 binding to chromatin was strongly reduced. A negative control of intron 2 shows no binding of these factors (Fig. 8A, right).

We also used HepG2 cells for quantitative ChIP assays of a CYP7A1 chromatin containing the HNF4α binding site (nt −180 to −111, BARE-II). Results show that LCA-acetate or 1α, 25-(OH)₂-VD₃ treatment reduced HNF4α, PGC-1α, and GRIP-1 binding by 30 to 80% and...
increased NCoR-1 and SMRT binding to CYP7A1 chromatin by 2- to 3-fold (Fig. 8B). These results suggest that activation of VDR increased the recruitment of VDR and corepressors to replace coactivators, thus resulting in inhibition of CYP7A1 gene transcription.

Discussion

In this study we identified VDR protein and mRNA in primary human hepatocytes. LCA-acetate or 1α, 25-(OH)2-VD3-activated VDR strongly inhibited CYP7A1 mRNA expression and reduced bile
acid synthesis in human hepatocytes. Furthermore, siRNA knockdown of VDR completely abrogated VDR inhibition of CYP7A1 gene expression. Our results show that VDR specifically interacts with HNF4α, and the VDR/RXRα heterodimer binds to both the BARE-I and BARE-II sequences in the human CYP7A1 promoter. LCA and 1α, 25-(OH)2-VD3 increased VDR/RXRα, SMRT, and NCoR-1 binding and reduced HNF4α, PGC-1α, and GRIP-1 binding to CYP7A1 chromatin. The ligand-dependent recruitment of corepressors SMRT and NCoR-1 to CYP7A1 chromatin is consistent with a recent report that VDR ligands unmask the corepressor interaction surface of RXRα to allow SMRT and NCoR-1 binding to VDR/RXRα (Sánchez-Martínez et al., 2008). Based on these results, we propose three possible mechanisms for VDR inhibition of CYP7A1 gene transcription. First, the VDR bound to the BARE-I may interact with the HNF4α for binding to the BARE-II and result in inactivating the CYP7A1 gene. Second, VDR may compete with HNF4α for interacting with common coactivators (squelching effect). All these mechanisms may result in recruitment of corepressors to CYP7A1 chromatin to inhibit gene transcription.

VDR has been shown to inhibit LXR induction of the rat CYP7A1 gene (Jiang et al., 2006). VDR also interacts with FXR and inhibits the FXR target genes, SHP, bile salt export pump, and ileum bile acid binding protein (Honjo et al., 2006). These two mechanisms cannot be involved in regulating the human CYP7A1 gene because human CYP7A1 is not activated by LXR (Chiang et al., 2001) and FXR indirectly inhibits CYP7A1 via SHP or FGF15 mechanisms.

A recent study shows that VDR, rather than PXR, is activated by LCA to induce CYP3A4 in the liver and intestinal cells and suggests that LCA selectively activates VDR to induce human and mouse CYP3A4 in vivo (Matsubara et al., 2008). A recent evolutionary and functional study of NR1I family receptors (VDR, PXR, and constitutive androstane receptor) has found that PXR and VDR are coexpressed in diverse vertebrates from fish to mammals and suggests that these two xenobiotic receptors may arise from duplication of an ancestral gene (Reschly and Krasowski, 2006). It is interesting to note that these investigations find that sea lamprey hepatocytes only express VDR but not PXR, suggesting that VDR may be the original NR1I gene (Reschly et al., 2007). It is likely that VDR may play a role in detoxification of steroids and bile acids in addition to calcium metabolism.

In cholestasis, hepatic LCA concentrations may increase to a level that activates VDR to inhibit bile acid synthesis and to induce sulfotransferase 2A1 to conjugate LCA for biliary excretion. Primary biliary cirrhosis patients have a high prevalence for bone metabolic diseases (Pares et al., 2001). VDR polymorphisms have been linked to primary biliary cirrhosis and autoimmune hepatitis (Vogel et al., 2002). VDR may play a protective role in the hepatobiliary system. It was reported recently that LCA might substitute vitamin D in increasing serum calcium and mobilizing calcium from bone in vitamin D-deficient rats (Nehrung et al., 2007). LCA derivatives that specifically activate VDR without activating PXR and inducing hypercalcemia (Ishizawa et al., 2008) may be used for treating intrahepatic cholestasis and primary biliary cirrhosis.
Acknowledgments. We thank the Liver Tissue Procurement and Distribution System of the National Institutes of Health (Dr. S. Strom, University of Pittsburgh, Pittsburgh, PA) for the supply of primary human hepatocytes.

References

Address correspondence to: John Y. L. Chiang, Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272. E-mail: jchiang@neoucom.edu