Utility of MetaSite in Improving Metabolic Stability of the Neutral Indomethacin Amide Derivative and Selective Cyclooxygenase-2 Inhibitor 2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenethyl-acetamide

David Boyer, Jonathan N. Bauman, Daniel P. Walker, Brendon Kapinos, Kapil Karki, and Amit S. Kalgutkar

Pharmacokinetics, Dynamics and Metabolism Department and Discovery Chemistry, Pfizer Global Research and Development, Groton, Connecticut (D.B., J.N.B., B.K., K.K., A.S.K.); and Discovery Chemistry, Pfizer Global Research and Development, St. Louis Laboratories, Chesterfield, Missouri (D.P.W.)

Received December 9, 2008; accepted January 29, 2009

ABSTRACT:

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism. The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacological effects but are metabolically more stable in the presence of cytochrome P450 (P450) enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacological benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P4503A4/2D6-mediated metabolism on the phenethyl group, experimental observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.

In the early drug discovery phase, many compounds have high oxidative metabolic instability mediated by cytochrome P450 (P450) enzymes, which often results in poor oral pharmacokinetics in preclinical species. Whereas high-throughput in vitro microsomal assays that monitor metabolic stability provide a convenient means for “rank-ordering” large numbers of compounds, information pertaining to identification of “soft spots” for unstable compounds cannot be discerned from such analyses and requires separate metabolite identification studies. Unlike microsomal stability assays, metabolite identification experiments are low-throughput and cannot keep pace with high-speed chemistry efforts. In addition, there are scenarios in which metabolism studies will limit the labile site(s) to a certain region within the molecule. To guide chemists in the right direction, information on the exact metabolic site is often preferred. Therefore, in addition to existing in vitro assays, a value added proposition would be the use of in silico tools to precisely predict regiochemistry of metabolism for compounds (synthesized or only virtual), information that could be used for rational design of pharmacologically active compounds with improved metabolic properties.

MetaSite is an in silico tool that can identify the most likely sites of P450-mediated oxidative metabolism in a compound (Cruciani et al., 2005) and has produced some success in de novo design of pharmacological compounds with improved metabolic properties (Ahlstrom et al., 2007). MetaSite is based on two factors: chemical reactivity of the substrate and enzyme-substrate similarity analysis. MetaSite performs a similarity analysis of the protein-cavity interaction profile and the potential substrate. The chemical reactivity of fragments toward oxidation, representing the activation energy of the conversion of substrate to metabolite, is precomputed and stored within the program. Consequently, if the similarity search gives a high score for a fragment, the chemical reactivity of that fragment is included in the final “hot spot” prediction (Zamora et al., 2003; Cruciani et al., 2005).

In this article, we have explored the performance of MetaSite as a
tool to guide drug discovery efforts when prior information on metabolic fate does not exist. For this endeavor, we chose a series of selective cyclooxygenase (COX)-2 inhibitors comprising neutral amide derivatives of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin as target compounds for optimization (Remmel et al., 2004). In vitro metabolism studies in human liver microsomes identified indomethacin and 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenethyl-acetamide (1) as a prototypical compound (>1000-fold COX-2 selectivity) in the series that demonstrates in vivo anti-inflammatory activity comparable with that of indomethacin but is devoid of the ulcerogenic effects associated with the parent NSAID (Kalgutkar et al., 2000a). The attractive pharmacological and safety advantage of 1 over indomethacin, however, is offset by the metabolic instability of 1 in rat and human liver microsomes (t1/2 <5 min) compared with that of indomethacin (t1/2 >60 min) (Remmel et al., 2004; Obach et al., 2008). Consistent with the in vitro finding, 1 exhibited a very short t1/2 (<20 min) upon intravenous administration to rats (Remmel et al., 2004). In vitro metabolism studies in human liver microsomes identified oxidations on the pendant phenethyl substituent by P450 3A4 and O-demethylation by P450 2D6 as the principal metabolic routes (Remmel et al., 2004).

In the first set of experiments, we used MetaSite retrospectively to predict P450-derived metabolites of 1 and indomethacin (for comparative purposes). Predictions were then compared with experimental data. Next, we applied MetaSite to predict metabolites for virtual indomethacin amides (Fig. 2) for which no prior knowledge on their metabolic fate existed. In this exercise, appropriate structural modifications were included in the virtual structures to reduce P450 metabolism. The virtual compounds were synthesized, and experimental in vitro metabolism data (compound stability, metabolite identification, and P450 phenotyping) were generated for the analogs. The synthesized compounds along with 1 were administered to rats to examine whether the structural changes afforded overall improvements in clearance. The collective findings of these analyses are summarized herein.

Materials and Methods

Materials. Unless stated otherwise, all chemicals, reagents, and solvents used in organic synthesis were purchased from Sigma-Aldrich (St. Louis, MO) and were used without any further purification. Fluoro-pyridin-3-amine was purchased from Matrix Scientific (Columbia, SC). \(^1H\) NMR spectra were recorded on a Varian INOVA 400 MHz spectrometer. Chemical shifts are reported in parts per million (δ) relative DMSO-d\(_6\) (δ 2.50). Spin multiplicities are given as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), and m (multiplet). Low-resolution mass spectra were obtained on a 1946C Agilent MSD single quad mass spectrometer (Agilent Technologies, Santa Clara, CA) operating in a positive electrospray mode. Reactions were monitored by thin-layer chromatography using precoated silica gel GHLF plates (0.25-mm thickness) (Analtech, Newark, DE). The plates were visualized by a UV lamp. 2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indo-3-yl)-N-(phenethyl)acetamide (1) was synthesized as described previously (Kalgutkar et al., 2000b). Pooled human and rat liver microsomes and recombinant P450 isoforms were purchased from BD Gentest (Woburn, MA). Reduced NADPH, ketoconazole, and quinidine were purchased from Sigma-Aldrich.

2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(4-fluorophenyl)acetamide (2). To a stirred solution of indomethacin (1.6 g, 4.5 mmol) in methylene chloride (20 ml) at room temperature were added oxalyl chloride (0.42 ml, 4.9 mmol) and anhydrous dimethylformamide (35 μl, 0.45 mmol). The mixture was stirred for 2 h at room temperature. 4-Fluorophenylamine (990 mg, 9.0 mmol) was then added, and the mixture was stirred overnight at room temperature. The reaction mixture was diluted with water and methylene chloride. The organic layer was washed successively with 1.0 M aqueous hydrochloric acid solution, 1.0 M aqueous sodium hydroxide solution, and brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The residue was triturated in tert-butyl methyl ether, which caused a white precipitate to form. The precipitate was filtered and washed with tert-butyl methyl ether. The precipitate was dried in vacuo to afford 1.4 g (70%) of 2 as a white solid. \(^1H\) NMR (DMSO-d\(_6\)) δ 10.23 (br s, 1H), 7.65 (δ, 2H, J = 8.0 Hz), 7.61 (d, 2H, J = 8.0 Hz, 4.0 Hz), 7.14 (d, 1H, J = 4.0 Hz), 7.10 (t, 2H, J = 8.0 Hz, 6.89 (d, 1H, J = 8.0 Hz), 6.68 (d, 1H, J = 8.0 Hz), 3.71 (s, 3H), 3.70 (s, 2H), 2.24 (2H); low-resolution mass (ESI) m/z 450.9 [M + H].

2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(6-fluoropyridin-3-yl)acetamide (3). This compound was prepared from indomethacin (1.6 g, 4.5 mmol) and 6-fluoropyridin-3-amine (1.0 g, 9.0 mmol) in a manner similar to that described for compound 2 in 60% yield (1.2 g). The title compound was isolated as a white solid. \(^1H\) NMR (DMSO-d\(_6\)) δ 8.10 (br s, 1H), 8.40 (m, 1H), 8.13 (m, 1H), 7.67 (d, 2H, J = 8.0 Hz), 7.62 (d, 2H, J = 8.0 Hz), 7.14 (dd, 1H, J = 8.0 Hz, 4.0 Hz), 7.12 (dd, 1H, J = 8.0 Hz, 4.0 Hz), 6.91 (d, 1H,
Figure 2. Plots of MetaSite predictions for sites of metabolism of neutral indomethacin amide derivatives. The functional groups in both compounds that most likely will be metabolized are marked: the darker the color the higher the probability of metabolism to occur. Based on the available P450 phenotyping information for 1, we chose the software’s ability to predict metabolism by P450 3A4 and P450 2D6 for compounds 2 and 3 and by P450 3A4, 2D6, and 2C9 for compound 4. This in silico data were generated in a virtual fashion (i.e., before the actual synthesis of the compounds); MW, molecular weight.

The target molecule is recognized as one in the MetaSite database, all atoms in that fragment are assigned the corresponding reactivity value. The final ranking for potential metabolic sites is the product of the similarity analysis and the chemical reactivity. Once the structures of the compounds are provided, the semiempirical calculations, pharmacophore recognition, descriptor handling, similarity, and reactivity computation are all performed automatically.

Incubations with Liver Microsomes. Microsomal stability. Stock solutions of test substrates were prepared in methanol. The final concentration of methanol in the incubation media was 0.2% (v/v). tGLP assessments in microsomes were determined in duplicate after incubation of test substrates (1 μM) with rat or human liver microsomes (P450 concentration, 0.25 μM) in 0.1 M potassium phosphate buffer (pH 7.4) at 37°C. The total incubation volume was 0.6 ml. The reaction mixture was prewarmed at 37°C for 2 min before addition of NADPH (1.2 mM). Aliquots (75 μl) of the reaction mixture at 0, 5, 15, and 30 min (time period associated with reaction linearity) were added to acetonitrile (200 μl) containing diclofenac (0.05 μg/ml) as internal standard, and the samples were centrifuged at 2500g for 5 min before liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis of substrate disappearance. For control experiments, NADPH and or liver microsomes were omitted from these incubations. To assess the involvement of P450 3A4 and P450 2D6 isoforms in the metabolism of indomethacinamide derivatives, separate incubations were conducted wherein the P450 3A4-specific inhibitor ketoconazole (1 μM) or the P450 2D6 inhibitor quinidine (3 μM) was added to human liver microsomal incubations containing test substrate and NADPH, and the stability was reassessed in the presence of inhibitor.

Metabolite identification. For the purposes of metabolite identification studies, the concentration of test compound in the microsomal incubations was raised to 20 μM and that of P450 in rat and human liver microsomes was raised to 0.5 μM. The duration of the incubation time was increased from 30 to 45 min. After quenching the incubation mixtures with 2 volumes of acetonitrile, the solutions were centrifuged (3000g, 15 min), and the supernatants were dried under a steady nitrogen stream. The residue was reconstituted with the mobile phase and analyzed for metabolite formation by LC-MS/MS.

In Vivo Studies. Animal care and in vivo procedures were conducted according to guidelines of the Pfizer Animal Care and Use Committee. Jugular vein-cannulated male Sprague-Dawley rats (230–250 g), obtained from Charles River Laboratories (Wilmington, MA), were used for these studies. All animals were housed individually. All animals were fasted overnight before dosing, whereas access to water was provided ad libitum. Animals were fed after collection of the 4-h blood samples. Test compounds 1 to 4 were administered intravenously via the jugular vein of rats over 30 s at 1.0 mg/kg.
respectively, and serial blood samples were collected before dosing and at 0.083, 0.15, 0.5, 1, 2, 4, 6, 8, and 24 h after dosing. The vehicle used in intravenous administration was 95% glycerol formal containing 5% DMSO. Test compounds 1 to 4 were also administered orally at 5.0 mg/kg as solutions in polyethylene glycol 400. Blood samples were taken before oral administration, and then serial samples were collected at 0.15, 0.5, 1, 2, 4, 6, 8, and 24 h after dosing. Blood samples from the various pharmacokinetic studies were centrifuged at 3000 rpm for 10 min at 4°C to generate plasma. All plasma samples were kept frozen until analysis. Aliquots of plasma (100 μl) were transferred to 96-well blocks, and acetonitrile (200 μl) containing diclofenac as internal standard (50 ng/ml) was added to each well. Samples were prepared for analysis by solid-phase extraction using a Waters Oasis MAX (10 mg) extraction plate (Waters, Milford, MA), following the manufacturer’s directions. After extraction, the samples were then analyzed by LC-MS/MS, and concentrations of analyte in plasma were determined by interpolation from a standard curve.

Metabolite Identification Using Triple Quadrupole Linear Ion Trap LC-MS/MS. The LC system consisted of LC20AD pumps, a DGU20A5 degasser, and a VP Option box (Shimadzu, Columbia, MD), an HTC PAL autosampler (Leap Technologies, Cary, NC), and a Luna C8(2) (4.6 × 150 mm, 4 μm) high-performance liquid chromatography column (Phenomenex, Torrance, CA). LC mobile phase A was formic acid in water (0.1% v/v), and mobile phase B was formic acid in acetonitrile (0.1%). The flow rate was 0.7 ml/min. The LC gradient started at 5% B for 5 min, ramped linearly to 90% B over 30 min, held at 90% B over 5 min, and then returned to the initial condition over 1.0 min. Postcolumn flow was split such that the mobile phase was introduced into the mass spectrometer via an electrospray interface at a rate of 175 μl/min. The remaining flow was diverted to the photodiode array detector to provide simultaneous UV detection (λ = 254 nm) and a total ion chromatogram. The LC system was interfaced to an API 4000 Q-trap mass spectrometer (MDS Sciex, Toronto, ON, Canada) equipped with a TurboIonSpray interface temperature of 400°C, using nitrogen for the nebulizing and heating gas. The ion spray voltage was 5.0 kV, and the orifice voltage was optimized at 30 eV. Substrates and internal standard were analyzed in the MRM mode. For test compounds, diagnostic transitions were obtained via separate studies involving direct infusion of the compounds into the mass spectrometer. For t1/2 determinations in substrate depletion experiments in liver microsomes, substrate/internal standard peak height ratios were determined and normalized to the value obtained at time t = 0. The percentage of substrate remaining versus time was fitted to first-order decay functions to yield in vitro t1/2 values. If the test substrate demonstrated nonlinearity on log percentage remaining versus time curves, only those initial time points wherein log-linearity was observed were used to determine t1/2 values. For plasma samples from pharmacokinetic studies, calibration curves were prepared by plotting the appropriate peak area ratios against the concentrations of analyte in plasma using a weighting of analyte/internal standard peak height ratios. The concentration of the analytes in the plasma samples was determined by interpolation from the standard curve. The dynamic range of the assay was 3 to 2500 ng/ml.

Pharmacokinetic Data Analysis. Plasma concentration-time profiles were analyzed using the well established noncompartamental method in WinNonlin (version 2.1; Pharsight, Mountain View, CA). Plasma clearance (Cm) was calculated as the intravenous dose divided by the area under the plasma concentration-time curve (AUC) from zero to infinity (AUC0–∞). AUC0–∞ was calculated by the linear trapezoid rule. The terminal slope of the ln(concentration) versus time plot was calculated by linear least-squares regression and the half-life was calculated as 0.693 divided by the absolute value of the slope. The steady-state volume of distribution (Vdss) was determined using noncompartamental analysis as follows:

\[V_{dss} = \frac{\text{i.v. dose} \times \text{AUMC}}{\text{(AUC)}^2} \]

where AUMC is the total area under the first moment of the drug concentration-time curve from time 0 to infinity. The relative bioavailability (F) of the oral doses was calculated by using the following equation:

\[F = \frac{\text{AUC}_{\text{dosep.o.}}}{\text{AUC}_{\text{dosei.v.}}} \times \frac{\text{dosep.o.}}{\text{dosei.v.}} \]

Results

Chemistry. As depicted in Fig. 3, well established methodology was used in the synthesis of the amide derivatives of indomethacin. Indomethacin amides 1 to 3 were prepared by treatment with the appropriate amine (or hydroxyl amine) derivatives using oxalyl chloride as the carboxylic acid activator. Indomethacin glycine analog 4 was synthesized in two steps via initial coupling of indomethacin with tert-butylglycine ester in the presence of oxalyl chloride followed by
Prediction of the Metabolic Fate of Indomethacin and Indomethacin-N-phenethyl Amide (1) by MetaSite. The P450 2C9 homology model in the software was used to predict indomethacin metabolites because the isozyme is principally responsible for oxidative metabolism of the NSAID (Nakajima et al., 1998). Metabolism prediction for 1 was restricted to P450 3A4/P450 2D6, given the role these isoforms play in the biotransformation of 1 (Remmel et al., 2004). The predictions for both compounds were executed without any input of information of known metabolites. As shown in Fig. 1, MetaSite correctly predicted the P450 2C9-catalyzed O-demethylation of indomethacin as the most likely biotransformation pathway. In the case of 1, MetaSite predicted that P450 3A4- and P4502D6-mediated oxidations would occur principally on the phenethyl substituent (benzylic CH₂ and para-position on the phenyl ring); next in hierarchy was the prediction of O-demethylation by the two isozymes (Fig. 1). MetaSite prediction of benzylic oxidation by P4503A4 as the most plausible metabolic fate proved to be accurate because the principal metabolic fate of 1 in NADPH-supplemented human liver microsomes has been unambiguously shown to involve mono-hydroxylation on the benzylic carbon (metabolite M1) followed by further oxidation of this secondary alcohol metabolite to the ketone derivative M2. In addition to benzylic oxidation, MetaSite predicted para-aromatic hydroxylation on the phenethyl substituent as a very likely pathway. This prediction was incorrect because Remmel et al. (2004) have proven (using a synthetic standard of para-hydroxy-1) that 1 is not prone to aromatic ring hydroxylation. MetaSite predicted that the possibility of oxidation on the carbon α to the amide nitrogen yielding M3 and O-demethylation to M4 was low, and indeed this turned out to be the case. Interestingly, MetaSite indicated that O-demethylation in 1 to metabolite M4 was likely to be catalyzed by both P450 3A4 and P450 2D6, but in reality this metabolic sequence occurs only via P450 2D6 (Remmel et al., 2004). The metabolic profile of 1 in human liver microsomes is shown in Fig. 4 and is similar to that observed by Remmel et al. (2004).

Prediction of the Metabolic Fate of Novel Indomethacin Amide Derivatives by MetaSite. Considering that the N-linked substituent in 1 is the most prone to oxidative metabolism by P4503A4, we designed virtual compounds 2 to 4, in which we introduced electron-deficient (e.g., N-fluorophenyl and N-fluoropyridinyl) or polar (glycine derivative 4) N-substituents to reduce oxidative metabolic liability in this region. For the anilide analogs 2 and 3, the electron-deficient fluorophenyl and fluoropyridinyl ring systems were also chosen to avoid reactive metabolite formation via aromatic hydroxylation para to the acetanilide nitrogen followed by two-electron oxidation to the electrophilic quinone-imine in a manner similar to that observed with acetaminophen (Dahlin et al., 1984). Upon presentation of compounds 2 to 4 to MetaSite, the prediction in each case shifted from metabolism on the N-substituent to O-demethylation as the most likely route of metabolism mediated by P450 3A4 and P450 2D6 for compounds 2 and 3 and by P450 enzymes 3A4, 2D6, and 2C9 for carboxylic acid derivative 4 (Fig. 2). Indeed, this was a fairly precise prediction because upon synthesis of 2 to 4 and testing for metabolism in NADPH-supplemented human liver microsomes, O-demethylation was observed as an almost exclusive pathway for the three compounds.
As for I (Remmel et al., 2004), indomethacin, a potential metabolite arising from amidase-mediated hydrolysis of compounds 2 to 4, was not observed in these incubations.

Liver Microsomal Stability Assessments for Indomethacin Amide Derivatives and Identification of P450 Isozymes Responsible for Metabolism. The microsomal stability of indomethacin and...
its neutral amide derivatives (final concentration = 1 μM) was assessed by monitoring substrate consumption after incubation with human and rat liver microsomes in the presence of NADPH cofactor for 30 min at 37°C (Table 1). Also shown in Table 1 are the physiochemical parameters (molecular weight and logP) and the unbound fractions of the test compounds in rat plasma and rat liver microsomes that were predicted using the in silico methodology described previously (Gao et al., 2008). Consistent with previous results (Remmel et al., 2008), Fig. 7. CID spectrum of indomethacin-4-fluoropyridinyl amide (3) (A) and its O-demethylated metabolite (B). amu, atomic mass units.

Fig. 8. CID spectrum of indomethacin-glycine amide (4) (A) and its O-demethylated metabolite (B). amu, atomic mass units.
In contrast, the glycine amide derivative was highly unstable in both rat and human liver microsomes (Boy et al., 2004), indomethacin-N-demethylating P450 3A4, 2D6, and 2C9 isozymes revealed that only P450 2C9 was capable of catalyzing the metabolism of indomethacin amide derivatives. Although the P450 phenotyping using isozyme-specific inhibitors could not be conducted for amides 1 and 2, focused analysis of a small subset of compounds within a given chemical series revealed that only P450 2C9 was capable of metabolizing amide 4 (data not shown).

In Vivo Pharmacokinetics. To evaluate whether the increased metabolic resistance of amides 1, 2, and 4 (compared with 1) translates into improvements in clearance and oral bioavailability, we decided to examine the pharmacokinetics of amides 1 to 4 after intravenous administration in Sprague-Dawley rats at 1 and 5 mg/kg, respectively. Table 3 summarizes the values (mean ± S.D.) of the pharmacokinetic parameters for 1, 2, 3, and 4 after intravenous administration. Plasma concentrations after intravenous administration of indomethacin-N-phenethyl amide (1) declined very rapidly resulting in an estimated CLp value of 155 ± 41.5 ml/min/kg, which exceeded rat hepatic blood flow (70 ml/min/kg). In contrast, amide derivatives 2, 3, and 4 demonstrated significant attenuation in CLp values. After oral administration of 1, systemic exposure at all sampling points was below the limit of detection (5 ng/ml). In contrast, oral dosing of amides 2, 3, and 4 led to measurable systemic exposure, which allowed estimation of the corresponding Cmax and AUC0–∞ values. The oral bioavailabilities of amides 2, 3, and 4 in the rat were 20, 38.5, and 37.6%, respectively.

Discussion

Rather than using MetaSite to predict metabolism for a large number of structurally diverse substrates, our objective here was to build a focused analysis of a small subset of compounds within a given chemical series for the purposes of lead optimization. Comparison of the predictions for indomethacin and 1 with published experimental data showed a high degree of accuracy (>80% success rate), which is in good agreement with published prediction rates of MetaSite for a large number of heterogeneous substrates (Cruceanu et al., 2005; Zhou et al., 2006; Caron et al., 2007). Encouraged by these preliminary observations, we decided to test the accuracy of metabolite predictions for additional indomethacin amide derivatives for which no prior experimental knowledge on their metabolism was available. The overarching objective of this exercise was to evaluate whether the tool can be used in drug discovery to build metabolic resistance into metabolically labile compounds, a feature that could potentially translate into improvements in pharmacokinetic properties.

Given the knowledge that the metabolic instability of 1 was primarily derived from metabolism on the pendant phenethyl group, we...
selected virtual indomethacin analogs 2, 3, and 4, in which we resorted to introducing electron-deficient or polar amide substituents as standard tactics used in medicinal chemistry to build metabolic resistance around soft spots. For anilide analogs 2 and 3, the electron-deficient fluoroaryl and fluoroaryl ring systems were deliberately chosen to avoid the potential for acetaminophen-type bioactivation to electrophilic quinone-imine intermediates. When the structures were presented to MetaSite, the software predicted a metabolic shift and assigned O-demethylation as the highest priority site for oxidation, a prediction that was fairly accurate as determined from experimental metabolite identification studies on these analogs. It is noteworthy to point out that the predictions were restricted to metabolism of the neutral compounds in rat plasma is comparable (Table 1). Assuming that hepatic oxidative metabolism by P450 plays a major role in elimination, the clearance values for 2 and 3 (compared with 1) played a role in the diminished clearance can be ruled out given that the predicted unbound fraction of the neutral compounds in rat plasma is comparable (Table 1). The absence of any metabolites in rat plasma is consistent with the prediction of a lack of metabolic contribution (Table 1).

As the next step in our exercise, we were interested in seeing whether the decreases in free intrinsic clearance value half-lives of amides 2 to 4 in liver microsomes translated into a lower clearance and greater oral bioavailability in the rat. In contrast with the hepatic blood flow limited clearance observed with 1, neutral indomethacin amides 2 and 3 revealed moderate clearances in the range of 26 to 39 ml/min/kg. The possibility that higher protein binding of amides 2 and 3 (compared with 1) played a role in the diminished clearance can be ruled out given that the predicted unbound fraction of the neutral compounds in rat plasma is comparable (Table 1). Assuming that hepatic oxidative metabolism by P450 plays a major role in elimination, the clearance values for 2 and 3 will translate into hepatic extraction ratios of 0.37 to 0.55 (based on a rat hepatic blood flow of 70 ml/min/kg), respectively, and could result in maximum possible oral bioavailability ranging from 45 to 63%. The observed lower oral bioavailabilities for 2 (F = 20%) and 3 (F = 38.5%) suggest that solubility and/or gut extraction could play a role in limiting oral absorption for these compounds in the rat. The observed in vivo clearance and oral bioavailability of the glycine amide 4 was comparable with that estimated for the fluorophenyl and fluoropyridinyl amide derivatives 2 and 3, respectively, despite free intrinsic clearance and plasma protein binding values comparable with that for the parent NSAID indomethacin. Although the in vitro-in vivo disconnect into 4 was not tested directly, plausible reason(s) are the existence of non-P450 clearance mechanism(s) such as phase II acyl glucuronidation and/or nonmetabolic elimination pathway such as organic anion transporter-mediated renal excretion in a manner similar to that discerned with indomethacin and most other carboxylic acid-containing NSAIDs (Apiwattanakul et al., 1999; Kouzuki et al., 2000; Sabolovic et al., 2000). With respect to the higher in vivo clearance compared with indomethacin, it is possible that 4 possesses a significantly greater affinity for glucuronidation enzymes and/or organic anion transporters than the parent NSAID.

Often, chemical intervention strategies to optimize metabolic stability via modulation of physiochemical properties or soft spot blocking tactics can have an adverse effect on primary pharmacology, resulting in loss of potency against a biological target or a shift in isozyme/receptor subtype selectivity. In the present investigation, this phenomenon becomes evident with the glycine amide derivative 4.
Unlike the phenethyl amide derivative 1, compound 4 is stable to degradation in rat and human microsomes, indicative of a significant improvement in metabolic stability. However, this advantage is offset by the fact that unlike 1, 4 is not a selective COX-2 inhibitor; in fact the compound does not inhibit the activities of either COX enzymes (IC$_{50}$ >10 μM) (Bartolini et al., 2007). In contrast, the neutral 4-fluorophenyl amide derivative of indomethacin 2 has been reported to maintain the potent and selective COX-2 inhibitory attributes of 1 [phenethyl amide (1): COX-2 IC$_{50}$ 0.066 μM, COX-1 IC$_{50}$ >66 μM; 4-fluorophenyl amide (2): COX-2 IC$_{50}$ 0.066 μM; COX-1 IC$_{50}$ >66 μM] (Kalgutkar et al., 2000b), Likewise, a close-in analog of the 4-fluorophenyl amide derivative 3, in which the fluorine is replaced with a chlorine atom has been synthesized and shown to retain COX-2 potency and selectivity discerned with 1 (Kalgutkar et al., 2000b), suggesting that 3 would possess similar characteristics. Taken together, amides 2 and 3 represent a significant advantage over 1 in that they retain the primary pharmacology of 1 while offering a pharmacokinetic benefit due to improved metabolic stability.

In conclusion, MetaSite has not been designed to predict rates of oxidation (V_{max} and K_m) or to provide quantitative predictions, and furthermore its use is restricted to the major human P450 isoforms and their oxidative capacity. Nevertheless, as demonstrated in previous studies and in this work, the MetaSite methodology is automated and rapid and has reliably accurate predictions; consequently, it can be used as a metabolic site prediction tool at the early drug discovery stage in terms of both speed and accuracy. However, it is best to confirm the predictions with experimental data for a few compounds within a chemical series to ensure preciseness of the predictions. In addition, it is noteworthy to point out that the problem explored in our study was of relatively low complexity considering that the lead compounds possessed few metabolic soft spots. Consequently, the accuracy of MetaSite in predicting metabolism of complex molecules (with numerous options for metabolism) needs to be examined further. Finally, during the course of this investigation, we also realized that the integration of MetaSite predictions and experimental data, interpretation of the similarities and differences in metabolism, a priori knowledge on the P450 isoforms involved in metabolism, and other factors critically depend on the human expert.

References

