ABSTRACT:
Expression quantitative trait loci (eQTL) mapping can be used to identify the genetic variations that underlie inherited differences in gene transcription. We performed eQTL mapping by combining whole genome transcriptional data from the hypothalami of 33 strains of inbred mice with a detailed haplotype map of those same strains, revealing 10,655 trans associations and 31 cis eQTLs. One of the cis associations was found to be driven by strain-specific variation in the expression of Glutathione S-transferase, mu 5 (Gstm5). Gstm5 is one of seven members of the glutathione S-transferase, Mu family of genes. The glutathione S-transferases are phase II metabolic enzymes and are key regulators of drug and toxin clearance. In mouse, all seven family members are tightly clustered on mouse chromosome 3. Investigation of the Gstm5 cis association in multiple tissues types revealed that an 84-kilobase region on MMU3 acts as a haplotype-specific locus control region for the glutathione S-transferase, Mu cluster. In the strains that share the minor haplotype, drastic reductions in mRNA levels in multiple members of the Gst Mu family were observed. The strain-specific differences in Gst Mu transcription characterized here accurately model the human population, in which extreme variations in expression of GST Mu family members have been observed. Furthermore, the reduction in Gst Mu levels has important relevance for pharmacology and toxicology studies conducted in these strains. For instance, the reduced levels of Gst Mu in general and Gstm5 in particular have implications in models of dopamine metabolism, Parkinson’s disease, and chemical neurotoxicity.

A panel of common laboratory inbred mouse strains contains genetic and phenotypic diversity on par with that found in the human population. This diversity was recently exploited to provide new models of human metabolic syndrome (Svenson et al., 2007). Because of the unique features of the constituent strains of this inbred mouse panel, genetic and genomic methodologies can be applied to it as a means to conduct multilevel, systems biology-based investigations of complex phenotypes and diseases. For instance, because the inbred mouse strains were developed from a limited founder population, their genome consists of a mosaic structure that is more amenable to kinetic dissection than that of humans (Pletcher et al., 2004). By correlating phenotypic values from inbred strains with detailed single nucleotide polymorphism (SNP)-based maps of their genomes, a technique known as haplotype association mapping, genes regulating such phenotypes as drug metabolism, diet-induced obesity, tumor susceptibility, and liver fibrosis have been uncovered (Hillebrandt et al., 2005; Guo et al., 2006; Liu et al., 2006, 2007). This methodology can also identify regulators of transcriptional pathways, or expression quantitative trait loci (eQTL). eQTL analysis has been used to correlate genome-wide gene expression data with genetic variation to identify master-regulator transcription factors and their downstream targets in the brain and, in a different study, a novel component of the oxidative phosphorylation pathway (Lum et al., 2006; Wu et al., 2008).

Dense SNP-based haplotype maps have been generated for the purpose of conducting haplotype association and eQTL mapping using mouse inbred lines. One shortcoming of these maps and the haplotype association algorithms that use these maps is that they fail to consider a common form of genetic variation, copy number variations (CNVs). More recently, CNVs have generated significant interest as genetic markers of variability and disease. In fact, genetic investigations have linked drug sensitivity, cancer, mental retardation, autism, and schizophrenia with these microdeletions, insertions, and duplications (McLeod and Keith, 1996; de Vries et al., 2005; Frank et al., 2007; Szatmari et al., 2007; International Schizophrenia Consortium, 2008). Furthermore, CNVs have been shown to play a substantial role in the genetic regulation of transcription. In one study of human lymphoblastoid cell lines, it was established that CNVs underlie 17.7% of the variance observed in gene expression (Stranger et al., 2007). An initial characterization of CNVs in 21 inbred mouse strains indicates that CNVs probably play a role in the phenotypic diversity observed across the strains (Graubert et al., 2007). Ignoring

ABBREVIATIONS: SNP, single nucleotide polymorphism; eQTL, expression quantitative trait loci; CNV, copy number variation; MIP, molecular inversion probes; Gst/GST Mu, glutathione S-transferase, Mu; PCR, polymerase chain reaction; MMU, Mus musculus chromosome; Gstm5, Glutathione S-transferase, mu 5; bp, base pair; LCR, locus control region; GC-RMA, GeneChip-Robust Multichip Average.
the impact of CNVs in genetic studies risks missing biologically relevant associations.

Multiplexed molecular inversion probe (MIP) assays are a recent technology used to detect both nucleotide identity and allelic frequency at a single SNP (Hardenbol et al., 2005; Wang et al., 2007). The use of MIP-based microarray genotyping platforms provides the potential for including CNVs in transcriptional analyses using inbred mouse strain genomic methodologies. In addition to reporting categorical genotyping data, the microarrays also generate quantitative intensity values for each genotyping probe that is relatively proportional to the copy number of the target sequence. Simplistically, the experimental consequence of an SNP, CNV, or other haplotypic variation would be the aberration of signal generated from probes meant to genotype the region. Correlation of intensity values from genotyping arrays with intensity values from whole genome transcriptional analysis could potentially find haplotype-induced alterations in gene expression.

In this study, we describe the first use of quantitative genotype data generated from MIP-based genotyping technology to correlate genetic variability among inbred mouse strains with variations in gene expression data to identify eQTLs. By doing so, we provide, for the first time with haplotype association mapping, a method that allows for the potential inclusion of CNVs in the genetic analysis. Our investigation identified 10,655 trans eQTL associations between genotype intensity variation and expression data generated from hypotimalmic tissue along with 31 cis eQTL associations that met statistical significance. Further examination of one of the cis relationships confirmed a haplotype-specific regulation of a cluster of closely spaced and functionally related genes, the glutathione S-transferase, Mu (Gst Mu) family of drug metabolizers. The observation of genetically regulated transcriptional variation of the Gst Mu family members across inbred strains mirrors the extensive genetic and transcriptional variation of this gene cluster previously characterized in the human population. This result demonstrates the ability of inbred strain genomics to reveal biologically important alterations in transcriptional regulation and to identify new rodent models for the study of variable drug efficacy, metabolism, and toxicity in the human population.

Materials and Methods

Genotyping of Mouse Inbred Strains. Genotyping of inbred mouse DNA samples was conducted using the MegAllele mouse 5K SNP reagent kit and the GeneChip ParAllele TrueTag 5K microarrays from Affymetrix (Santa Clara, CA) according to the manufacturer’s instructions. In brief, the platform consists of small oligonucleotides capable of undergoing circularization. These oligonucleotides are complementary to a genomic sequence with a 1-base pair (bp) gap at the site of the SNP being interrogated. Genomic DNA is hybridized to the oligonucleotides in four separate reactions, one for each base. Only the reaction for the complementary nucleotide will complete the circularization. The DNA in each reaction is then enzymatically selected for circularization DNA, and the remaining “completed” probes are amplified and hybridized against a microarray for detection and quantification.

Genomic DNA samples (The Jackson Laboratory, Bar Harbor, ME) from 33 inbred mouse strains were normalized to 150 ng/μl using nuclease-free water, and 2 μg of total DNA was used for the labeling reaction. All reactions were performed on a GeneAmp PCR System 9700 Thermocycler (Applied Biosystems, Foster City, CA) according to the Affymetrix protocol. An aliquot of 4 μl of the first-stage PCR product was used as a template for a second round of PCR. After the second labeling reaction, a 2% agarose gel was run to ensure the successful amplification. The PCR products were digested using a restriction endonuclease treatment and checked on a second 2% agarose gel. The PCR product was then analyzed on a 2% agarose gel, with subsequent purification of PCR reactions using a DNeasy kit (QIAGEN). Purified reactions were sequenced by the University of Chicago DNA Sequencing Core Facility, and resulting data were analyzed using the LaserGene software package (DNASTAR, Madison, WI). Sequences were then aligned with the MegAlign function and analyzed for the presence of strain-specific polymorphisms.

Real-Time PCR Confirmation of Expression Variation. Male inbred mice, age 3 to 5 weeks, were obtained from The Jackson Laboratory and maintained on a 12:12 light/dark cycle with lights on at 7:00 AM for approximately 5 weeks before euthanasia and harvesting of tissue samples. Total RNA was isolated from liver samples from 30 inbred strains, with the liver homogenate extracted using the standard TRizol (Invitrogen, Carlsbad, CA) protocol and then further purified with the RNeasy kit (QIAGEN). Independent pools of three animals were constructed for each inbred strain. Reverse transcription was performed on each pool according to the manufacturer’s instructions using the SuperScript III kit (Invitrogen) with random hexamers in a 50-μl reaction volume. cDNA was then carried forward for analysis by real-time PCR. iTaqq supermix with Rox (Bio-Rad, Hercules, CA) was used with specific TaqMan probes from ABI for each gene target (Mm00656783_g1, Mm00725711_s1, Mm00833923_m1, Mm00728197_s1, Mm00515890_m1, Mm00656783_g1, Mm00499573_s1, and Mm00607939_g1) and 120 ng of cDNA per pool per reaction. Real-time reactions were carried out in triplicate on the ABI 7900HT system (Applied Biosystems) for 40 cycles under standard conditions. β-Actin was used as the internal control. The three replicates were averaged together to obtain an average Ct value, which was then compared with the β-actin average value. Average Ct values for each strain were subtracted from the β-actin control to obtain a fold change. All animals were handled according to The Scripps Research Institute Scripps Florida Institutional Animal Care and Use Committee approved protocols.

Microarray-Based Expression Analysis. Liver tissue was lysed using a TissueLyser (QIAGEN). Total RNA was isolated from each homogenate using the standard TRizol protocol and then further purified with an RNeasy kit (QIAGEN). Samples were quantified using the NanoDrop ND-1000 spectrophotometer. Double-stranded cDNA was prepared from 1 μg of total RNA using the SuperScript III kit (Invitrogen) with random hexamers in a 50-μl reaction volume. cDNA was then in vitro-transcribed using an iVT labeling kit (Affymetrix), with the cRNA product purified using a GeneChip Sample Cleanup Module (Affymetrix). Twenty micrograms of cDNA with a mean intensity of 500. Microarray data are available from the Gene Expression Omnibus under accession number GSE10377.

Sequenom Genotyping. All of the genotyping was accomplished by use of a single-base extension reaction using the Sequenom genotyping platform. This is a two-step process. First, the region containing the SNP is amplified. Then, a primer ending at the polymorphic site is used for the single-base extension reaction. The products are sorted by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Primers for PCR and single base extension reactions were designed by using the MassARRAY Assay Design 3.0 software package (Sequenom, Inc., San Diego, CA). One milliliter of 2.5
to 10 ng/ml genomic DNA was combined with 1.85 ml of water, 0.1 ml of 25 mM dNTPs (Invitrogen), 0.1 ml of 5 U/ml HotStarTaq, 0.625 ml of 10× HotStar PCR buffer containing 15 mM MgCl₂, 1 ml of PCR primers mixed together at a concentration of 500 nM for multiplexed reactions, and 0.325 ml of 25 mM MgCl₂. Reactions were heated at 95°C for 15 min followed by 45 cycles at 95°C for 20 s, 56°C for 30 s, and 72°C for 1 min and a final incubation at 72°C for 3 min. After PCR amplification, the remaining dNTPs were dephosphorylated by adding 1.5 ml of water, 0.17 ml of 10× SAP buffer (Sequenom), and 0.3 U of shrimp alkaline phosphatase (Sequenom). The reaction was placed at 37°C for 20 min, and the enzyme was deactivated by incubating at 85°C for 5 min. After shrimp alkaline phosphatase treatment, the genotyping reaction was combined with 0.76 ml of water, 0.2 ml of iPLEX Termination Mix (Sequenom), 0.04 ml of iPLEX Enzyme (Sequenom, Inc.), 0.2 ml of 10× iPLEX Buffer, and 0.81 ml of 7 to 14 mM multiplexed extension primers. The MassEXTEND reaction was carried out at 94°C for 2 min and then 99 cycles at 94°C for 5 s, 52°C for 5 s, and 72°C for 5 s. The reaction mix was desalted by adding 3 mg of a cationic resin, SpectroCLEAN (Sequenom), and resuspended in 30 ml of water. Completed genotyping reactions were spotted in nanoliter volumes onto a matrix arrayed into 384 elements on a silicon chip (SpectroCHIP; Sequenom), and the allele-specific mass of the extension products were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Data were analyzed using SpectroTyper software. Statistical Analysis. All statistical calculations were done in the R programming language (http://www.r-project.org). Genotype signals were generated with the Affymetrix GeneChip®Targeted Genotyping Expression Software. Values from each of the four nucleotide calls were summed to create a "SumSignal" for further analysis. Expression data for the Mouse Diversity Panel from the Genomics Institute of the Novartis Research Foundation was downloaded from the Gene Expression Omnibus (accession number GSE5961). Raw CEL files were processed in R using GC-RMA and culled for sampling 100,000 times, with replacement, creating an empirical cumulative distribution function for each probe that met criteria defined here as the SNP interrogated lying less than 5 megabases away from a probe with a Pearson coefficient of 0.7, and less than 8 that this would happen by random chance. Hence, cis QTLs were described as highly enriched for true positives with a relatively low false-positive rate (McClurg et al., 2007). We queried the significant data (Pearson >0.7, p < 0.05, Q < 0.02) to look for cis-acting regions, defined here as the SNP interrogated lying less than 5 megabases away from the expression probe. Thirty-one SumSignal-Expression pairs met these criteria (Table 1).
Gstm5 cis eQTL. A cis eQTL containing the Glutathione S-transferase, mu 5 (Gstm5) locus was selected as a top candidate for further studies because the variation in gene expression was observed across multiple strains. Gstm5 is a member of the Mu subfamily of glutathione S-transferases that is expressed in high levels in the brain, testis, and oocytes and at lower levels in the liver, kidney, bladder, and muscle (Fulcher et al., 1995; Listowsky, 2005). The genetic correlation was driven by six strains, NZW/LacI, RIHIS/J, MA/MjJ, F1/J/Ms, MOLF/EiJ, and MS/Ms, that showed a significant reduction in Gstm5 expression as represented by low signal intensity on the expression microarrays combined with a low SumSignal for a marker at the Gstm5 locus in those strains (Fig. 2).

To characterize the genetic variation that produced the association, an approximately 500-bp genomic region surrounding the genotyped nucleotide was amplified and sequenced in eight strains (Supplemental Table 1). The strains selected for sequencing represented both those showing a loss of signal (NZW/LacI, RIHIS/J, and MA/MjJ) and those showing wild-type signal levels (BALB/cByJ, BTBR T<−/−I/J, C57BL/6J, DBA/2J, and FVB/NJ). Those strains that produced a loss of probe signal all showed identical sequences but contained a number of polymorphisms that distinguished them from the wild-type strains and the mouse genome reference sequence (Supplemental Table 3). Although the nearest neighboring polymorphism to the SNP interrogated on the DNA chip was a BALB/cByJ-specific variation 24 bp away, multiple haplotype-defining sequence variants were located within 80 bp of the assayed site (Fig. 3). The reduced SumSignal of the outlier strains is probably explained by the presence of this unique haplotype interfering with either the amplification or hybridization steps of the genotyping methodology.

To more fully characterize the haplotype structure underlying the altered Gstm5 gene expression, an additional 153 SNP-based markers were selected for fine mapping of a panel of 50 inbred strains (Supplemental Table 1). These markers showed clear extension of the variant haplotype structure beyond the Gstm5 locus to include additional Gst Mu family members located on MMU3. NZO/HILJ also shared the variant haplotype pattern and would be predicted to have reduced Gstm5 expression (Fig. 4). Wild-derived PWK/PhJ, which produced a reduced SumSignal value, contained the haplotype that was associated with decreased expression over a portion of the Gst Mu family members, although not over Gstm5 (Fig. 4). At the Gstm5 locus, PWK/PhJ exhibited a third haplotype structure that could be traced to a Mus musculus musculus heritage. Additional rare haplotypes were identified at the Gstm5 locus including a SPRET/EiJ-only structure. Together, PWK/PhJ and SPRET/EiJ, both of which generated a greatly decreased SumSignal for the Gstm5-associated SNP, provide further strength to the argument that surrounding genetic diversity can significantly affect the performance of genotyping assays using the MIP format of detection.

Expansion of the cis Effect to the Gstm Mu Family. Gstm5 is part of a gene cluster containing all seven members of the Gstm Mu family, encompassing a region of 150 kilobases on MMU3. Because the functional haplotype was found to extend across most of the gene family members, examination of transcript levels for the other Gstm Mu family members was performed using microarray analysis on liver samples from two strains containing the functional haplotype, and three strains with the wild-type Gstm5 haplotype were assayed using the Affymetrix 430v2.0 microarray (Supplemental Table 1). The majority of Gstm Mu family members are highly expressed in the liver.
and exhibit the strain-specific variations in transcription. Using these data, we were also able to confirm that the transcriptional effects of the functional haplotype did not extend far beyond the Gst Mu cluster as the liver-expressed genes flanking the cluster, Ahcyll and GnaI3, did not show the same level of transcriptional variability (Fig. 5).

These changes were confirmed via quantitative real-time PCR on RNA obtained from the liver tissue of 30 inbred strains (Supplemental Table 1). The results showed that the members of the Gst Mu family exhibit a reduced expression from a small but statistically significant \(-1.5\)-fold (Gstm1) to a phenotypic null \(-50\)-fold (Gstm3). The pattern of expression across the family members followed the haplotypic structure over the locus. The relative amounts of each isoform also confer a genetic fingerprint, with similar patterns of expression evident among the haplotypic groups (Fig. 6). Haplotypic structure correctly predicted the reduced Gst Mu transcription pattern observed in NZO/HlLtJ. It is interesting to note that PWK/PhJ shares a haplotype structure with these strains over a more limited area and also clusters with other lower expressing strains. This minimal region of overlap appears as the causative factor for the altered expression (Fig. 6). This observation narrows the genomic sequence responsible for the observed effect. These data represent a multimember gene family eQTL, with clearly delineated borders distinguishing both the gene family and the eQTL.

Discussion

We have used gene expression and genotyping microarray data from multiple inbred mouse strains to inform genetic variation that affects gene expression. The particular design and methodology associated with this microarray analysis identified a unique haplotype structure. In addition to the Gstm5 eQTL that was examined in depth, our data contain other such haplotype structures, as well as potential CNVs, that significantly correlate with gene expression variation. These data provide a rich source of hypotheses for future examination. The successful identification of a true eQTL with confirmation and predictive biology, indicate the potential utility of the method.

Thirty-one associations were identified as having both a significant correlation and a colocalization of the probes for expression and SumSignal. Attempts to confirm these hits led to the identification of a haplotype structure that drastically alters the expression of the Gst Mu family of genes. This haplotype exists in eight laboratory mouse strains, NZO/HILtJ, PWK/PhJ, MSM/Ms, JF1/Ms, MOLF/EiJ, NZW/LacJ, RIIIS/J, and MA/MyJ. Seven of these eight strains share the same haplotype over the entire Gstm locus, whereas PWK/PhJ mice only share the functional haplotype between Gstm6 and Gstm1. Based on the genotyping of the wild-derived strains, the functional haplotype seems to be derived from the M. musculus molossinus and M. m. musculus lineages despite the fact that PWK was the only M. m. musculus strain whose expression was confirmed.

The Gst Mu eQTL encompasses multitissue alleles for Gstm2, Gstm3, Gstm5, and Gstm6 and, to a smaller extent, for Gstm1. Both liver and hypothalamus tissues exhibited significant reduction in expression. Because the relative amounts of GST Mu family members are consistent within haplotypic groups, we argue that the region is probably under the control of a locus control region (LCR). It is more likely that the controlling SNPs lay in one central region as opposed to individual changes in each of the Gst Mu family member promoters. Further experiments are needed to map the LCR and to determine which transcriptional factors are important for the control of Gst Mu expression. Based on the haplotype map presented here, we hypothesize that the LCR lies between Gstm6 and Gstm4, a distance of approximately 84 kilobases.

The reduction in expression of the Mu class is specific and not related to a general down-regulation of glutathione S-transferases. Members of the Alpha and Theta classes of glutathione S-transferase showed no difference between these strains in the liver microarray data. Other glutathione-dependent enzymes, such as glutathione peroxidase, also were unaffected. Thus, it follows that only those metabolic pathways that are mediated solely by the Gst Mu class are
affected. It remains to be determined whether free glutathione levels are changed because of the reduction in Gst Mu levels in the livers or brains of the underexpressing strains, but it has been previously demonstrated that changes in transcription of Gst Mu genes directly affect Gst Mu protein levels and glutathione S-transferase enzymatic activity (Shao et al., 2007).

The alleles for Gstm2 and Gstm3 (and to a smaller extent for Gstm1) could have drastic effects in hepatic models of pharmacology/toxicology. Drug disposition, metabolism, and clearance are all dependent on both phase I and phase II metabolic enzymes; glutathione S-transferases are phase II enzymes (Hayes et al., 2005). Reduced expression of Gst Mu family members could lead to significant changes in clearance of drugs and toxins. Many of the Gst Mu family members are induced in response to metabolic or xenobiotic clues, and it remains to be seen whether such induction is changed in the affected strains (Hayes et al., 2005). In addition, those strains may be sensitive to accumulation of reactive oxygen species and oxidative damage.

The variable expression of the Gst Mu genes in inbred strains might provide a better model of human biology. It has been estimated that more than 50% of certain human populations are null for the GSTM1 locus, but not for the other GST Mu family members (Hayes and Strange, 2000). The types of copy number variation at GSTM1 are not limited to deletions; GSTM1 has been shown to be duplicated in...
certain Middle Eastern populations (McLellan et al., 1997). In fact, other glutathione \(S \)-transferases have copy number variations in human populations that are not found in mice. \(\text{GSTT1} \) is also homozygous null in roughly 15% of white populations and more than 64% of certain Asian populations (Hayes and Strange, 2000).

The null effect of \(\text{GSTM1} \), the ortholog of \(\text{Gstm1} \), has physiologic consequences in human populations (Bolt and Thier, 2006). The null genotype has been associated with increased risks of cancer of the lung, breast, and urogenital tract (Helzlsouer et al., 1998; Ateş et al., 2005; Singh et al., 2008). In addition, it also has been linked to an increased risk for periodontitis, drug-induced hepatotoxicity, and atherosclerosis (de Waart et al., 2001; Concolino et al., 2007; Huang et al., 2007; Ueda et al., 2007). It is noteworthy that there have been associations drawn between the \(\text{GSTM1} \) null polymorphism and early onset Parkinson’s disease (Perez-Pastene et al., 2007). The high prevalence of the human null polymorphism, as well as a natural phenocopy in mice, lends support to possible benefits from lower GST Mu protein levels in addition to these clear deleterious consequences. These benefits could, in part, include longer half-lives of hormones and protein cofactors. Further characterization is needed to deduce both the beneficial and untoward effects of reduced GST Mu expression.

Dopamine and its metabolic products are proposed to play key roles in the etiology of Parkinson’s disease (Stokes et al., 1999). Dopamine produced by neural cells is either sequestered into synaptic vesicles by the vesicular monoamine transporters, undergoes oxidative deamination by monoamine oxidases, or undergoes auto-oxidation. Dopamine metabolism can produce free radicals, hydrogen peroxide, and reactive oxygen species such as quinones (Hastings et al., 1996). \(\text{Gst} \) enzymes are directly involved in the neutralization and excretion of these toxic compounds via their conjugation to glutathione, an important antioxidant. These species demonstrate cytotoxicity, with this toxicity being inhibited by antioxidant addition (Chiueh et al., 2000). In addition, MAO inhibitors are used as a monotherapy in the treatment of Parkinson’s disease (Fernandez and Chen, 2007). Glutathione levels in the substantia nigra are depleted in patients with Parkinson’s disease, strengthening the link between oxidative stress, GST activity, and Parkinson’s disease (Bharath et al., 2002).

It is interesting to note that the addition of \(\text{GSTM2} \) to neuronal cell culture models confers a significant resistance to the cytotoxic effects of dopamine (Dagnino-Subiabre et al., 2000). In our experiments in brain tissue, \(\text{Gst Mu} \) isoforms that are normally expressed at substantial levels are reduced in expression in animals containing the affected haplotype. The probable consequence is that the neurons of these...
brains are sensitive to oxidative damage not only from neurotoxins but also from increased neurodegeneration due to dopamine cytotoxicity. Expression of Gstm5 in the hypothalamus is essentially abolished in particular inbred strains. In a survey of all of the Gst isoforms (Alpha, Kappa, Mu, Omega, Pi, Sigma, Theta, and Zeta), Gstm5 was the only Gst highly expressed in the brain (Knight et al., 2007). Because it is the most prevalently expressed Gst isoform in brain tissues, it would follow that the consequences of Gstm5 ablation would be more severe. Because the Gstm5 transcript is reduced in approximately 90% in the strains with the affected haplotype, we propose that these strains will prove to be sensitive to l-DOPA toxicity. Furthermore, we hypothesize that these strains should be sensitive to chemically induced parkinsonism from compounds such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

We have identified haplotype structures associated with variable gene expression in inbred mouse strains using microarray-generated intensity values as the genotypic input. Furthermore, we identified several cis-acting QTLs affecting gene expression in inbred mouse hypothalamus. Further characterization was performed on one of these alleles, covering the entire glutathione S-transferase Mu family of phase II detoxification enzymes. The drastic reduction of levels of these enzymes, particularly in the liver and brain, could have profound effects on both pharmacology and toxicology in these animals. Furthermore, as segments of this gene family are deleted in large portions of the human population, these inbred strains provide new genetic models of human biology, particularly as it relates to Parkinson’s disease.

Acknowledgments. We acknowledge Elizabeth Dominguez for her assistance with the PCR confirmation studies and Cam Hoang and Brian Hayes for critical review of the manuscript.

References

