In Vitro Metabolism of Haloperidol and Sila-Haloperidol: New Metabolic Pathways Resulting from Carbon/Silicon Exchange

Tove Johansson, Lars Weidolf, Friedrich Popp, Reinhold Tacke, and Ulrik Jurva

Discovery DMPK (T.J.), Clinical Pharmacology and DMPK (L.W.), and Lead Generation (U.J.), AstraZeneca Research and Development, Mölndal, Sweden; Department of Chemistry, Medicinal Chemistry, University of Gothenburg, Gothenburg, Sweden (T.J.); and Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, Würzburg, Germany (F.P., R.T.)

Received May 8, 2009; accepted October 5, 2009

ABSTRACT:
The neurotoxic side effects observed for the neuroleptic agent haloperidol have been associated with its pyridinium metabolite. In a previous study, a silicon analog of haloperidol (sila-haloperidol) was synthesized, which contains a silicon atom instead of the carbon atom in the 4-position of the piperidine ring. In the present study, the phase I metabolism of sila-haloperidol and haloperidol was studied in rat and human liver microsomes. The phase II metabolism was studied in rat, dog, and human hepatocytes and also in liver microsomes supplemented with UDP-glucuronic acid (UDPGA). A major metabolite of haloperidol, the pyridinium metabolite, was not formed in the microsomal incubations with sila-haloperidol. For sila-haloperidol, three metabolites originating from opening of the piperidine ring were observed, a mechanism that has not been observed for haloperidol. One of the significant phase II metabolites of haloperidol was the glucuronide of the hydroxy group bound to the piperidine ring. For sila-haloperidol, the analogous metabolite was not observed in the hepatocytes or in the liver microsomal incubations containing UDPGA. If silanol (SiOH) groups are not glucuronidated, introducing silanol groups in drug molecules could provide an opportunity to enhance the hydrophilicity without allowing for direct phase II metabolism. To provide further support for the observed differences in metabolic pathways between haloperidol and sila-haloperidol, the metabolism of another pair of C/Si analogs was studied, namely, trifluperidol and sila-trifluoperidol. These studies showed the same differences in metabolic pathways as between sila-haloperidol and haloperidol.

Haloperidol was developed in the late 1950s and was found to be a potent neuroleptic agent (Janssen et al., 1959). Haloperidol is a dopamine (D2) receptor antagonist and is still used in the treatment of schizophrenia, although it may cause severe extrapyramidal side effects, including parkinsonism and tardive dyskinesia (Levinson, 1991; Casey, 1995). The pyridinium metabolite of haloperidol has been proposed to contribute to these neurotoxic side effects because it structurally resembles 1-methyl-4-phenylpyridinium (commonly referred to as MMP⁺), an inducer of Parkinson disease-like symptoms (Subramanyam et al., 1991a; Dauer and Przedborski, 2003).

In the search for analogs of haloperidol, a silicon analog (sila-haloperidol) was synthesized, where the quaternary R3COH carbon atom in the piperidine ring was replaced by a silicon atom (R3SiOH). The synthesis and the physicochemical and pharmacological properties of sila-haloperidol have been reported previously (Tacke et al., 2004a, 2008). As a minor part of an extensive study of sila-haloperidol, including synthesis and pharmacological properties, three major phase I metabolites in human liver microsomes (HLMs) were tentatively identified. One of these metabolites was proposed to be formed via N-dealkylation and the other two by opening of the piperidine ring (Tacke et al., 2008). The present study will focus on a thorough investigation of both phase I and II metabolism of sila-haloperidol compared with those of haloperidol.

The use of organosilicon chemistry in drug design has been reviewed previously (Tacke and Linoh, 1989; Bains and Tacke, 2003; Showell and Mills, 2003; Mills and Showell, 2004; Pooni and Showell, 2006; Gately and West, 2007). Carbon and silicon both are group 14 elements and are similar in that they form four covalent bonds with many other elements. However, there are also striking differences. Silicon (1.17 Å) has a larger covalent radius than carbon (0.77 Å), resulting in the formation of longer bonds and, therefore, in an increase of the size of the sila-analog and its conformational flexibility. In addition, in general, an increased lipophilicity is observed for silicon compounds compared with their corresponding carbon analogs. Silicon (1.74, Allred-Rochow scale) is less electronegative than carbon (2.50), leading to different polarizations of analogous carbon- and silicon-element bonds, manifested by, for example, an increased acidity of silanols compared with the analogous carbinols. These and other sila-replacement effects may affect the chemical and physicochemical properties and may also alter the biological properties. For example, altered bond lengths and angles may change the molecule’s interaction with a receptor and hence the pharmacological selectivity and/or potency. Replacing a carbon by a silicon atom

ABBREVIATIONS: HLM, human liver microsome; UDPGA, UDP-glucuronic acid; LC, liquid chromatography; UPLC, ultraperformance liquid chromatography; MS, mass spectrometry; m/z, mass-to-charge ratio; RLM, rat liver microsome.

The online version of this article (available at http://dmd.aspetjournals.org) contains supplemental material.
may increase the potency of a compound if the carbino1 serves as a hydrogen bond donor within the pharmacophore because a silanol is a better hydrogen bond donor than the corresponding carbino1 (Bains and Tacke, 2003; Showell and Mills, 2003; Mills and Showell, 2004; Pooni and Showell, 2006).

Silicon switches of marketed drugs have recently been reviewed (Pooni and Showell, 2006). The term carbon/silicon switch, also called sila-substitution, is used when a silicon analog of a known drug is synthesized where one carbon atom is replaced by a silicon atom, leaving the rest of the structure unchanged. Examples of silicon switches are (besides sila-haloperidol) sila-venlafaxine, sila-fexofenadine, and disila-bexarotene, studied in different in vitro systems (Pooni and Showell, 2006).

Venlafaxine is an antidepressant that blocks the reuptake of serotonin and noradrenaline. Venlafaxine and its silicon analog sila-venlafaxine displayed similar physical-chemical properties but different pharmacological selectivity profiles (Daiss et al., 2006). Fexofenadine is a histaminic H1 receptor antagonist used in the treatment of allergies. The sila analog of fexofenadine was synthesized to compare the pharmacological properties. Fexofenadine and sila-fexofenadine displayed similar receptor profiles when tested against a panel of histamine receptors (Tacke et al., 2004b). Bexarotene (a retinoid) was shown to be an equally potent retinoid substitution) was synthesized to test the hypothesis that introducing a silicon atom to the molecule could increase receptor binding affinity and pharmacological activity. Disila-bexarotene, studied in different in vitro systems (Pooni and Showell, 2006), was investigated, namely, trifluperidol and sila-trifluperidol. Structural and pharmacological properties suggest that introducing silicon in the drug molecule would change the molecular shape, lipophilicity, and electrostatic potential to alter the pharmacodynamic profile. Disila-bexarotene was shown to be an equally potent retinoid X receptor-selective agonist as the carbon analog (Daiss et al., 2005).

The aim of this study was to investigate the phase I and phase II metabolism of sila-haloperidol compared with that of haloperidol and to test the hypothesis that replacement of the quaternary R,C,OH carbon atom of haloperidol by a silicon atom may potentially change the metabolic pathways, for example, the pathway leading to the potential neurotoxic pyridinium metabolite (Tacke et al., 2004a). In addition, the aim was to provide a thorough metabolic investigation of a silicon-containing compound studied in different in vitro systems.

In addition to the metabolism studies of haloperidol and sila-haloperidol, another pair of structurally related carbon/silicon analogs was investigated, namely, trifluperidol and sila-trifluperidol. Structures of the test compounds used in this study are shown in Fig. 1.

Materials and Methods

Chemicals. β-NADPH (reduced form tetrasodium salt), leucine enkephalin acetate hydrate, trifluperidol, Williams’ E medium without phenol red, 5,5-diethyl-1,3-diphenyl-2-imino-barbituric acid, UDP-glucuronic acid (UDPGA) trisodium salt, and water-free dimethyl sulfoxide were purchased from Sigma-Aldrich (St. Louis, MO). Methanol was purchased from Rathburn Chemicals (Walkerburn, Scotland, UK). Formic acid, ammonium acetate, and ammonia solution (25% in water) were purchased from Merck (Darmstadt, Germany). Acetonitrile and haloperidol were purchased from Sigma-Aldrich (Carlsbad, CA), Gibco L-glutamine (200 mM) were purchased from Invitrogen (Carlsbad, CA). Percoll separating solution (1.124 g/ml) was purchased from Fluka Chemie AG (Buchs, Switzerland). All of the solvents were of analytical grade, and the water used in the experiments was obtained from a water purification system (Elgastat Maxima; Elga Process Water/ Veolia Water Solutions & Technologies, Lane End, Buckinghamshire, UK). Sila-haloperidol, sila-trifluperidol, and a synthetic reference compound of the N-dealkylated metabolite of sila-haloperidol were synthesized as their hydrochlorides (Popp, 2008; Nguyen, 2009). Synthetic reference compounds of reduced haloperidol (the secondary alcohol), the pyridinium ion metabolite, and N-oxide 1 of haloperidol were donated by Professor Neal Castagnoli, Jr. (Subramanyam et al., 1991b).

Liquid Chromatography/Mass Spectrometry Method. The samples were analyzed by liquid chromatography (LC) [Waters ACQUITY ultraperformance LC (UPLC), Milford, MA] on a Waters ACQUITY UPLC bridged ethyl hybrid (C18 2.1 × 50 mm, 1.7 μm) column at a flow rate of 750 μl/min (the column temperature was set at 40°C). Mobile phase A consisted of 5% acetonitrile and 0.1% formic acid in water, and mobile phase B was 100% acetonitrile. At the start of the gradient, the acetonitrile content was 1% and was linearly increased to 50% over 5 min. The acetonitrile content was then increased to 90% within 0.01 min. This condition was held for 0.69 min, and finally the initial mobile phase composition was restored within 0.01 min. The UPLC system was coupled to a Waters quadrupole/time-of-flight Premier instrument equipped with an electrospray ionization source. Leucine-enkephalin was used as the lock mass (m/z 556.2771) for accurate mass calibration and introduced using the lock spray interface at 20 μl/min (500 pg/μl). Unless stated elsewhere, the injection volume was 20 μl, and a dilution of 1:2 in mobile phase A, and aliquots of 5 μl were injected into the LC/mass spectrometry (MS) system. Full-scan spectra were acquired in the positive ionization mode. For acquisition of tandem MS spectra, the injection volume was 20 μl, and generally a collision energy ramp (10−30 eV) was used. The software programs used to process the data were MassLynx (version 4.1) and Metabol Lynx (Waters). The mass-to-charge ratios (m/z) of all the relevant ions in the MS mode were determined within 5 ppm from the exact mass of the proposed structure.

Liver Microsomal Incubations. HLMs were purchased from BD Biosciences (San Jose, CA). The rat liver microsomes (RLMs) were purchased from CellzDirect/Invitrogen (Carlsbad, CA). In addition to being characterized by the manufacturers, the enzyme activities of the microsomes were confirmed against a panel of common substrates and in-house compounds. The incubation mixtures, containing 1.0 mg/ml liver microsomal protein and 10 μM substrate in 0.1 M phosphate buffer, pH 7.4, were preincubated for 5 min at 37°C. The reaction was initiated by adding NADPH at a final concentration of 1 mM, and the reaction mixtures were incubated for 60 min at 37°C. Control incubations were conducted in the absence of NADPH and in the absence of substrate. The reactions were quenched with an equal volume of ice-cold acetonitrile. The samples were vortexed for 10 s and then centrifuged for 10 min at 4°C, 4000 rpm (−2750g).

For the liver microsomal incubations with UDPGA, the incubation mixtures, containing 1.0 mg/ml liver microsomal protein (HLM or RLM), 0.5 mg/ml Brij-58, and 100 μM substrate in 0.1 M phosphate buffer, pH 7.4, were preincubated for 5 min at 37°C. The reaction was initiated by adding UDPGA at a final concentration of 3 mM, and the reaction mixtures were incubated for 0 or 60 min at 37°C. The reactions were quenched with two parts ice-cold acetonitrile. The samples were vortexed for 10 s and then centrifuged for 20

![Fig. 1. Structures of the test compounds.](image-url)
In the present study, the phase I and II metabolism of haloperidol was examined to compare the metabolic pathways with those of silica-haloperidol. Relative metabolite amounts of the fraction metabolized of haloperidol, estimated from integration of extracted ion chromatograms, are shown in Table 1. The cross-species metabolite scheme obtained from microsomal and hepatocyte incubations of haloperidol is shown in Fig. 2. The pyridinium metabolite was identified as a major metabolite in the microsomal incubations. Other metabolites formed were tentatively assigned as two separate hydroxylated products (OH1 and OH2), two diasteromeric N-oxides (N-oxide1 and N-oxide2), reduced haloperidol (red), and an N-alkylated metabolite (N-dealk). The pyridinium ion metabolite, reduced haloperidol, and the first eluting N-oxide diastereomer (N-oxide1) were identified using synthetic reference compounds.

The major metabolites in hepatocytes were tentatively assigned to be reduced haloperidol, the N-dealkylated metabolite, the pyridinium metabolite, and a direct glucuronidation metabolite (Gluc). The direct glucuronidation metabolite (glucuronidation of hydroxy group bound to the piperidine ring) was formed by rat and human hepatocytes but was not observed in dog hepatocytes. In humans the direct glucuronidation metabolite of haloperidol has been shown to be a major metabolite (Oida et al., 1989; Someya et al., 1992), and direct glucuronidation is also a major metabolic pathway in rats (Miyazaki et al., 1986). Minor metabolites in the hepatocytes were tentatively assigned as hydroxylations, N-oxides and another, earlier eluting, glucuronidation metabolite (+OH+Gluc). No product ion spectrum of this latter metabolite was obtained, but because the mass corresponds to a hydroxylation and a glucuronidation, these reactions may occur in the same or two separate positions of the molecule. Also in the hepatocyte incubations, the pyridinium ion metabolite, reduced haloperidol, and the first eluting N-oxide diastereomer (N-oxide1) were identified using the synthetic reference compounds.

The reduction of the carbonyl function of haloperidol to a secondary alcohol was observed in rat, dog, and human hepatocytes. The reduction was also observed in RLMs and HLMs but to a much smaller extent. Carboxylic reduction in liver microsomes has been reported previously (Beulz-Riche et al., 2001). It should be noted that estimation of the amounts of reduced metabolites formed in liver microsomes may be difficult because the metabolites may be subject to redox cycling.

Incubations with RLMs and HLMs containing UDPGA, the cofactor necessary for glucuronidation, were performed. The direct glucuronidation metabolite of haloperidol was observed also in these incubations. Extracted ion chromatograms of the direct glucuronidation metabolites from the liver microsomal incubations with UDPGA are included in the supplemental data. Because haloperidol and its major metabolites are well characterized by MS and synthetic standard compounds (Fang et al., 1992; Gorrod and Fang, 1993; Narayanan et

Table 1

<table>
<thead>
<tr>
<th>Relative metabolite amounts of the fraction metabolized of haloperidol</th>
<th>RLM</th>
<th>HLM</th>
<th>Rat Heps</th>
<th>Dog Heps</th>
<th>Human Heps</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Dealk</td>
<td>212</td>
<td>1.06</td>
<td>7</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>+OH+Gluc</td>
<td>568</td>
<td>1.43</td>
<td>N.D.</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Gluc</td>
<td>552</td>
<td>1.62</td>
<td>N.D.</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>OH1</td>
<td>392</td>
<td>1.71</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>OH2</td>
<td>392</td>
<td>1.78</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Red</td>
<td>378</td>
<td>1.84</td>
<td>9</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>N-Oxide1</td>
<td>392</td>
<td>2.08</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pyridinium</td>
<td>354</td>
<td>2.18</td>
<td>73</td>
<td>83</td>
<td>39</td>
</tr>
<tr>
<td>N-Oxide2</td>
<td>392</td>
<td>2.23</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Fraction of parent drug remaining after incubation (%)</td>
<td>Haloperidol</td>
<td>376</td>
<td>1.97</td>
<td>55</td>
<td>59</td>
</tr>
</tbody>
</table>

Heps, hepatocytes; N.D., not determined (no addition of UDPGA in this experiment).
Relative quantities of formed metabolites and remaining sila-haloperidol in microsomal and hepatocyte incubations, estimated from integration of extracted ion chromatograms, are summarized in Table 2. The cross-species metabolite scheme obtained from microsomal and hepatocyte incubations of sila-haloperidol is shown in Fig. 3. The product ion spectra and proposed fragmentation pathways of sila-haloperidol metabolites are shown in the supplemental data.

The metabolism of sila-haloperidol in RLMs and HLMs differs from that of haloperidol. No sila-pyridinium metabolite was formed in the liver microsomes for sila-haloperidol. Instead, two ring-opened metabolites with $[M+H]^+$ ions at m/z 364 and 382, respectively, were formed (ring-opened1 and ring-opened2). These two metabolites were the major metabolites in the HLMs, whereas other metabolites were tentatively assigned to be the N-dealkylated metabolite (N-dealk), hydroxylation product of ring-opened1 (ring-opened1 + OH), reduced sila-haloperidol (red), and a hydroxylated metabolite (OH). In the RLMs, the hydroxylated and the N-dealkylated metabolites were the major metabolites, whereas minor metabolites were tentatively assigned as reduced sila-haloperidol, the two ring-opened metabolites, and the hydroxylation product of ring-opened1. The structure of the N-dealkylated metabolite of sila-haloperidol was confirmed by comparing the retention time and the product ion spectrum with those of the synthetic reference compound, whereas the proposed structures for the other metabolites of sila-haloperidol are tentative assignments based on interpretation of product ion spectra.

The fragment ions of sila-haloperidol and its metabolites are shown in Table 3. The product ion spectrum of sila-haloperidol, shown in Fig. 4, revealed three major fragment ions at m/z 165, 164, and 123. These three fragment ions all originate from the left side of the molecule and include the fluorophenyl group as shown by the proposed fragmentation pathways in Fig. 5. The proposed fragments for sila-haloperidol were used for tentative identification of the metabo-
lites of sila-haloperidol. For example, the addition of 16 Da to the fragment at m/z 123 in the product ion spectrum of a metabolite indicates a hydroxylation on the fluorophenyl moiety. Following the same line of reasoning, the presence of the fragment at m/z 165 indicates that the left side of the molecule is intact and that the modification has occurred somewhere in the remaining part of the molecule.

One metabolite (OH) with a [M+H]$^+$ ion at m/z 408, corresponding to an addition of 16 Da to sila-haloperidol, was observed in the incubations with RLMs, HLMs, and rat hepatocytes. As this metabolite eluted earlier than sila-haloperidol in the chromatogram, it was tentatively assigned as a hydroxylated rather than an N-oxide. The pK$_a$ of the protonated amine is significantly higher than that of the corresponding N-oxide. Thus, under the acidic conditions used, the N-oxide is assumed to behave as being more lipophilic, whereas the hydroxylated metabolite would be expected to behave as more polar than the parent compound, based on their chromatographic retention times. Based on the product ion spectrum (shown in the supplemental data), it is proposed that the hydroxylation occurs on the chlorophenyl ring of sila-haloperidol. The presence of the fragments at m/z 165, 164, and 123 in the product ion spectrum indicates that the left side of the molecule is unchanged. A hydroxylation on the piperidine ring would most likely give a major fragment corresponding to the loss of water in the product ion spectrum (Ramanathan et al., 2000). The absence of such a fragment suggests the chlorophenyl moiety of sila-haloperidol as the most likely site for the hydroxylation.

The first eluting ring-opened metabolite gave a [M+H]$^+$ ion at m/z 364 and behaved as being more polar than the parent compound and the ring-opened2 metabolite, based on their chromatographic retention times as shown in Table 2. The product ion spectrum of the ring-opened1 metabolite, shown in Fig. 6, revealed two major fragment ions at m/z 172 and 164. The proposed fragmentation pathways of this metabolite are shown in Fig. 7. A neutral loss of chlorophenyl vinyl silylated oligo (200 Da) from m/z 364 is proposed to give the fragment ion at m/z 164, which is also a major fragment ion in the product ion spectrum of sila-haloperidol. A neutral loss of chlorophenyl dihydro-pyrrole (163 Da) and ethene (28 Da) from m/z 364 is proposed to give
FIG. 4. Product ion spectrum of sila-haloperidol.

FIG. 5. Proposed fragmentation pathways of sila-haloperidol.
the fragment ion at \(m/z \) 172, retaining the chlorine atom. The absence of the fragment ions at \(m/z \) 165 and 123 implies that the carbonyl group is not present in the metabolite.

The second eluting ring-opened metabolite with a \([M+H]^{+}\) ion at \(m/z \) 382 behaved as being more polar than the parent compound and less polar than the ring-opened metabolite 1, based on their chromatographic retention times as shown in Table 2. The proposed structure of the ring-opened metabolite 2 is given in Fig. 3. The product ion spectrum is given in the supplemental data along with a proposed fragmentation pathway.

The metabolite with a \([M+H]^{+}\) ion at \(m/z \) 380 (ring-opened1 + OH) corresponds to an addition of 16 Da to the ring-opened1 metabolite 1. In the product ion spectrum, the fragment ion at \(m/z \) 172 was replaced by a fragment ion at \(m/z \) 188. Consequently, this metabolite was tentatively assigned as being hydroxylated on the chlorophenyl substituent (Fig. 3).

Sila-haloperidol was also incubated with rat, dog, and human hepatocytes. Reduced sila-haloperidol was the major metabolite in the dog and human hepatocytes, whereas the \(N\)-dealkylated metabolite and a metabolite originating from hydroxylation and glucuronidation (\(+\text{OH} + \text{Gluc} \)) were the major metabolites in rat hepatocytes.

Two metabolites, with \([M+H]^{+}\) ions at \(m/z \) 488 and 584, respectively, appeared in the rat hepatocyte incubations but not in dog and human hepatocyte incubations. The metabolite with a \([M+H]^{+}\) ion at \(m/z \) 488 corresponds to an addition of 96 Da to sila-haloperidol, corresponding to a hydroxylation and a sulfate conjugation (\(+\text{OH} + \text{Sulfate} \)). The product ion spectrum displayed an initial loss of 80 Da to form the fragment ion at \(m/z \) 408. Because no loss of water is seen from the fragment at \(m/z \) 408, the hydroxylation does not likely occur on an aliphatic carbon atom. Because the fragments at \(m/z \) 165
and 123 are retained, the left side of the molecule is unchanged. Hence the most likely route of formation for this metabolite is hydroxylation on the chlorophenyl moiety followed by a sulfate conjugation of that hydroxyl group, as proposed in Fig. 3.

The metabolite with a [M+H]⁺ ion at m/z 584 corresponds to an addition of 192 Da to sila-haloperidol, corresponding to a hydroxylation and glucuronide conjugation. Except for an initial neutral loss of 176 Da instead of 80 Da, the product ion spectrum of m/z 584 is very similar to that of m/z 488 (+OH+Sulfate). Hence the most likely route of formation for this metabolite is hydroxylation on the chlorophenyl moiety followed by a glucuronide conjugation of that hydroxyl group, as proposed in Fig. 3.

Noteworthy is that the hydroxylated metabolite of sila-haloperidol was the major metabolite in the RLMs, whereas it was a minor metabolite in the rat hepatocytes, as illustrated in Table 2. Presumably, this metabolite was further metabolized by glucronide conjugation and also sulfate conjugation. Any metabolite resulting from a direct glucuronidation of the SiOH group was not observed for sila-haloperidol. In the incubations with activated RLMs and HLMs supplemented with UDPGA, no direct glucuronidation of the SiOH group of sila-haloperidol was observed.

The identified metabolites were well separated using the liquid chromatographic method developed for these studies. Extracted ion chromatograms of the metabolites of haloperidol and sila-haloperidol, after incubation with human hepatocytes, are shown in Fig. 8. Sila-haloperidol is more lipophilic than haloperidol, and this is manifested by a shift in retention times of approximately 0.2 min. N-Dealkylation and reduction occurs for both analogs in human hepatocytes. The differences in metabolism of the piperidine ring are obvious; haloperidol was metabolized to the pyridinium metabolite, and sila-haloperidol formed the two ring-opened metabolites. In addition, sila-haloperidol did not form the corresponding direct glucuronidation metabolite observed for haloperidol.

It is clear that a substitution of the carbon atom in the 4-position of the piperidine ring of haloperidol by a silicon atom resulted in significant differences in the metabolic pathways of the molecule. To provide further support for the observed differences, the metabolism of another structurally related carbon/silicon pair was studied, namely, trifluperidol and sila-trifluperidol, shown in Fig. 1. Like haloperidol, trifluperidol is a neuroleptic agent that has been used in the treatment of schizophrenia (Gallant et al., 1963). The distribution, metabolism, and excretion of trifluperidol in the rat have been published previously (Souijn et al., 1967; Lewi et al., 1970). The phase I metabolism of trifluperidol and sila-trifluperidol was studied in RLMs and HLMs, whereas the phase II metabolism was studied in rat and human hepatocytes. In addition, liver microsomal incubations supplemented with UDPGA were performed. In general, both the phase I and phase II metabolism of trifluperidol/sila-trifluperidol were analogous to those of haloperidol/sila-haloperidol. The corresponding metabolites were observed for trifluperidol/sila-trifluperidol that were observed for haloperidol/sila-haloperidol, as shown in Table 4. The product ion spectra of trifluperidol and sila-trifluperidol, parent drugs and metabolites, are shown in the supplemental data.

Discussion

Replacement of the quaternary R₃COH carbon atom of haloperidol by a silicon atom significantly altered its metabolic fate. For haloperidol, the pyridinium metabolite is formed via dehydration and oxidation of the piperidine ring to the pyridinium ion. For sila-haloperidol, the analogous sila-pyridinium ion was not formed, and new metabolic pathways originating from opening of the piperidine ring were observed.
A speculation would be that the direct glucuronidation of the glucuronidation was observed on the piperidine-bound hydroxyl for sila-haloperidol. With glucuronic acid resulted in a significant metabolite in rat and peridol, the direct conjugation of the piperidine-bound hydroxyl group silicon analog is the difference in glucuronide formation. For halo-hepatocytes, the most striking difference between haloperidol and its cleavage of the Si-C bond (Larson, 1996). The proposed cyclization aldehyde and a secondary amine functionality. This intermediate, an nitrogen), followed by a ring opening to form an intermediate with an dropyridinium intermediate. The dihydropyridinium ion is then converted to a dihydropyridinium intermediate. The second pathway is initiated by a hydroxylation at the haloperidol, the metabolism of the piperidine ring of sila-haloperidol bond, which is required for the formation of a sila-pyridinium metab-

In the rat and human microsomal incubations with UDPGA, glucuronidation was observed on the piperidine-bound hydroxyl group of haloperidol but not on the SiOH group of sila-haloperidol. A speculation would be that the direct glucuronidation of the silanol (SiOH) group occurs, but that the resulting conjugate with its hydrolytically sensitive Si-OC bond then undergoes hydrolysis to give the corresponding silanol and free glucuronic acid. In this context it is important to note that the chemical reactivity of thermodynamically very stable (but against water kinetically labile) Si-OC bond of alkoxysilanes (alkyl silyl ethers) differs significantly compared with that of the C-OC bond of analogous dialkyl ethers (Colvin, 1981; Osterholtz and Pohl, 1992). An alternative explanation for the absence of glucuronidation in the case of sila-haloperidol might be that the silanol is a poor substrate for the UDP-glucuronosyltransferases. Further studies are necessary to clarify this issue.

Decreased lipophilicity of drug molecules may be desirable because it may improve drug metabolism, pharmacokinetics and physicochemical properties, for example, increased solubility and decreased hepatic clearance by cytochrome P450 (Smith, 2001). A means to modify lipophilicity while retaining the major structural properties of the molecule is to introduce hydroxyl groups. However, a common drawback of this strategy is high clearance originating from phase II metabolism, for example, glucuronidation. Hence, if silanol (SiOH) groups do not form stable glucuronide conjugates, this process would provide a possibility to introduce hydrophilicity in drug molecules without allowing for direct phase II metabolism. Although this is an attractive hypothesis favoring silanol analogs of drug candidates, further evaluation is needed, for example, more structurally diverse silanol-containing compounds should be investigated. In addition, if an unstable glucuronide actually is formed, studies on its potential reactivity toward biological nucleophiles must be considered.

Noteworthy is that the direct glucuronidation metabolite of trifluoperidol was only formed in small amounts by human hepatocytes and not by rat hepatocytes. For haloperidol, the corresponding metabolite was observed in substantial amounts in both rat and human hepatocyte incubations. The same differences were observed in the rat and human microsomal incubations containing UDPGA. This result might be explained by the fact that the chlorine atom is in the para-position of the phenyl ring of halo-peridol and the trifluoromethyl group is in the meta-position of the

TABLE 4

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>m/z</th>
<th>t_R (min)</th>
<th>RLM</th>
<th>HLM</th>
<th>Rat Heps</th>
<th>Human Heps</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Dealk</td>
<td>246</td>
<td>1.19</td>
<td>42</td>
<td>35</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>+ OH + Gluc</td>
<td>602</td>
<td>1.58</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Gluc</td>
<td>586</td>
<td>1.65</td>
<td>N.D.</td>
<td>N.D.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OH</td>
<td>426</td>
<td>1.81</td>
<td>3</td>
<td><1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OH2</td>
<td>426</td>
<td>1.86</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Red</td>
<td>412</td>
<td>1.90</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>N-Oxide1</td>
<td>426</td>
<td>2.10</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td>Pyridinium</td>
<td>388</td>
<td>2.17</td>
<td>43</td>
<td>60</td>
<td>35</td>
<td>55</td>
</tr>
<tr>
<td>N-Oxide2</td>
<td>426</td>
<td>2.23</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td>Fraction of parent drug remaining after incubation (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluoperidol</td>
<td>410</td>
<td>2.03</td>
<td>59</td>
<td>34</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>Sila-trifluoperidol</td>
<td>262</td>
<td>1.32</td>
<td>55</td>
<td>40</td>
<td>34</td>
<td>41</td>
</tr>
<tr>
<td>N-Dealk</td>
<td>414</td>
<td>1.59</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ OH + Gluc</td>
<td>618</td>
<td>1.65</td>
<td>N.D.</td>
<td>N.D.</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Ring-opened1 + OH</td>
<td>398</td>
<td>1.80</td>
<td>9</td>
<td>46</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Ring-opened1</td>
<td>416</td>
<td>1.98</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Ring-opened2</td>
<td>442</td>
<td>2.01</td>
<td>18</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>OH</td>
<td>428</td>
<td>2.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Fraction of parent drug remaining after incubation (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sila-trifluoperidol</td>
<td>426</td>
<td>2.18</td>
<td>21</td>
<td>62</td>
<td>56</td>
<td>79</td>
</tr>
</tbody>
</table>

Heps, hepatocytes; N.D., not determined (no addition of UDPGA in this experiment).
phenyl ring of trifluoperidol. Thus, the direct glucuronidation might occur to a less extent for trifluoperidol as a result of a larger steric hindrance from the trifluoromethyl group in the meta-position.

Silicon analogs of known drugs might be interesting from several points of view. Replacement of a carbon atom by a silicon atom in a known drug changes the geometric and electronic properties and thereby the size, shape, conformational behavior, chemical reactivity, and lipophilicity of the molecule. This effect might in turn alter the interaction with a receptor and hence change the pharmacodynamics of the drug. The metabolism of the drug may change and therefore also metabolism-related toxicity. This study has shown major differences in metabolic pathways between two different pairs of carbon/silicon analogs. Another important issue is that of intellectual property; silicon analogs of known drugs may open up for a new type of drug development process. Because the original carbon-based drug has been tested thoroughly, the corresponding silicon analog may be able to shortcut the discovery part of drug development. Some silicon-containing drugs are currently being evaluated in clinical trials (Bains and Tacke, 2003; Gately and West, 2007), and it will be interesting to follow the outcome of those studies with respect to pharmacodynamic properties and safety compared with the original molecule.

In conclusion, structures of three major phase I metabolites of sila-haloperidol formed in HLMs were proposed in a previous study (Tacke et al., 2008). The present study builds further on those data in that a comprehensive comparison between the metabolism of haloperidol and trifluoperidol and their sila-analogs has been performed in several in vitro systems, including liver microsomes from rats and humans with and without activation for glucuronidation and hepatocytes from humans, rats, and dogs to cover phase I and phase II metabolism. As a result, in addition to the three metabolites of the previous study, at least five additional phase I and phase II metabolites for each compound have been characterized and mechanisms for their formation rationalized. One major difference was the absence of the pyridinium ion metabolite, a major metabolite for haloperidol and trifluoperidol, in the incubations with the silicon analogs. Instead, the piperidine ring of both silicon analogs opens metabolically, and different ring opening metabolites were observed. Another important difference was that direct glucuronidation did not occur for sila-haloperidol as it did for haloperidol. This difference was not as obvious for trifluoperidol and sila-trifluoperidol possibly because the trifluoromethyl group in the meta-position may hinder direct glucuronidation for both compounds.

Acknowledgments. We thank Dr. Binh Nguyen (University of Würzburg) for providing a sample of sila-trifluoperidol. We also thank Sara Leandersson, Petter Svanberg, Susanne Ekehed, and Anna Abrahamsson for conducting the hepatocyte experiments. We thank Professor Neal Castagnoli, Jr. for donating synthetic metabolite reference compounds of haloperidol.

References

Wu Würzburg, Germany.

Address correspondence to: Tove Johansson, Discovery DMPK, AstraZeneca R&D Mölndal, SE-43183 Mölndal, Sweden. E-mail: tovijoh@chem.gu.se