Hepatobiliary Toxicity of Furan: Identification of Furan Metabolites in Bile of Male F344/N Rats

Carolin Hamberger, Marco Kellert, Ute M. Schauer, Wolfgang Dekant, and Angela Mally

Department of Toxicology, University of Würzburg, Würzburg, Germany

Received December 17, 2009; accepted July 16, 2010

ABSTRACT:

Furan, which occurs in a wide variety of heat-treated foods, is a potent hepatotoxicant and liver carcinogen in rodents. In a 2-year bioassay, furan caused hepatocellular adenomas and carcinomas in mice and rats but also high incidences of bile duct tumors in rats. Furan is bioactivated by cytochrome P450 enzymes to cis-2-butene-1,4-dial, an α,β-unsaturated dialdehyde, which readily reacts with tissue nucleophiles. The objective of this study was to structurally characterize furan metabolites excreted with bile to better understand the potential role of reactive furan intermediates in the biliary toxicity of furan. Bile duct-cannulated F344/N rats (n = 3) were administered a single oral dose of 5 mg/kg b.wt. [12C4]furan or stable isotope-labeled [3,4-13C]furan, and bile samples collected at 30-min intervals for 4 h were analyzed by liquid chromatography-tandem mass spectrometry. A total of eight furan metabolites derived from reaction of cis-2-butene-1,4-dial with GSH and/or amino acids and subsequent enzymatic degradation were detected in bile. The main metabolite was a cyclic monogluta-thione conjugate of cis-2-butene-1,4-dial, which was previously detected in urine of furan-treated rats. Furthermore, a N-acetylcysteine-N-acyllylsine conjugate, previously observed in rat urine, and a cysteinylglycine-glutathione conjugate were identified as major metabolites. These data suggest that degraded protein adducts are in vivo metabolites of furan, consistent with the hypothesis that cytotoxicity mediated through binding of cis-2-butene-1,4-dial to critical target proteins is likely to play a key role in furan toxicity and carcinogenicity.

Introduction

Furan, which occurs in a variety of heated foods and beverages (European Food Safety Authority, 2004), is a potent hepatotoxicant and liver carcinogen in rodents (National Toxicology Program, 1993). A 2-year carcinogenesis study on furan conducted by the National Toxicology Program revealed significant increases in the combined incidence of hepatocellular adenomas and carcinomas in male and female B6C3F1 mice and in male F344/N rats. Moreover, high incidences of cholangiocarcinomas were reported to occur in F344/N rats of both sexes after 2 years of furan administration (males: control, 33/50; 0 mg/kg b.wt., 33/50; 2 mg/kg b.wt., 33/50; 4 mg/kg b.wt., 15/50; and 8 mg/kg b.wt., 5/50; females: control, 0 mg/kg b.wt., 33/50; 2 mg/kg b.wt., 33/50; 4 mg/kg b.wt., 5/50; and 8 mg/kg b.wt., 5/50; and 8 mg/kg b.wt., 5/50) and were also observed at the 9- or 15-month interim evaluations (National Toxicology Program, 1993). In addition to tumors, furan administration for 2 years resulted in numerous non-neoplastic hepatic lesions, including bile duct hyperplasia, cholangiofibrosis, necrosis, chronic inflammation, biliary cell proliferation and cytomegaly, degeneration, and nodular hyperplasia of hepatocytes. These toxic liver lesions were also present in rats given furan at 0, 4, 8, 15, 30, or 60 mg/kg b.wt. for 90 days, with increasing severity related to dose (National Toxicology Program, 1993). The molecular mechanism(s) underlying the hepatobiliary toxicity of furan are still poorly understood. A recent histological and immunocytochemical investigation provided evidence to suggest that cholangiofibrosis as a precursor lesion of cholangiocarcinoma arises from perturbation of a portal bile ductular hepatocyte repair process after irretrievable hepatocyte loss (Hickling et al., 2010). On the other hand, a study on the disposition of [13C]furan in male F344 rats demonstrated that biliary excretion is a major route of elimination of furan (Burka et al., 1991), suggesting that damage to the bile duct epithelium may occur as a result of high concentrations of toxic furan metabolites in bile.

Bioactivation of furan to the α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), by cytochrome P450 enzymes, mainly CYP2E1, is thought to be the initiating step in furan toxicity (Kedderis et al., 1993; Chen et al., 1995). In contrast to furan, BDA has been shown to be mutagenic in L5178Y tk(+/−) mouse lymphoma cells (Kellert et al., 2008a) and in the Ames test in a strain sensitive to aldehydes (Peterson et al., 2000) and to cause DNA single-strand

ABBREVIATIONS: BDA, cis-2-butene-1,4-dial; LC, liquid chromatography; MS/MS, mass spectrometry; cyclic-GSH-BDA, N-[4-carboxy-4-[2-mercapto-1H-pyrryl-1-yl]-1-oxobutyl]-L-cysteinyglycine cyclic sulfide; EPI, enhanced product ion; GSH-BDA-GSH, L-γ-glutamyl-L-cysteinyglycine (2−1)-sulfide with N-[4-carboxy-4-[2-mercapto-1H-pyrryl-1-yl]-1-oxobutyl]-L-cysteinyglycine; COSY, correlation spectroscopy; HMBC, heteronuclear multiple quantum coherence; HSQC, heteronuclear single quantum correlation; DMSO, dimethyl sulfoxide; amu, atomic mass units; EMS-IDA-EPI, enhanced mass spectrometry with information-dependent acquisition of enhanced product ion; MRM-IDA-EPI, multiple reaction monitoring with information-dependent acquisition of enhanced product ion.
breaks and cross-links in Chinese hamster ovary cells (Marinari et al., 1984). BDA has been demonstrated to covalently bind to nucleosides (Byrns et al., 2002), GSH, and amino acids in vitro (Chen et al., 1997; Peterson et al., 2005). Because of the bifunctionality of BDA, intermediates formed by conjugation of BDA with GSH or amino acids still remain chemically reactive and may rapidly alkylate free or protein-bound amino groups to form pyrrole derivatives.

Several metabolites derived from conjugation of BDA with GSH and amino acids and downstream processing have recently been identified in primary rat hepatocytes and in urine of rats treated with furan (Scheme 1). These include a cyclic mono-GSH conjugate, a glutamic acid methanethiol conjugate, a N-acetyllysine conjugate, and a N-acetylcysteine-N-acetyllysine conjugate and its sulfoxide, which were detected in urine of rats exposed to furan (Peterson et al., 2006; Kellert et al., 2008b; Lu et al., 2009). In addition, the mono-GSH conjugate, the N-acetylcysteine-N-acetyllysine conjugate, a N-acetylcysteine-lysine conjugate, and metabolites in which the thiol group of GSH is cross-linked by BDA with an amino group of glutamine, lysine, or N-acetyllysine were found in culture media of primary rat hepatocytes treated with furan in vitro (Lu et al., 2009). Moreover,

GSH and glutamic acid BDA conjugates with N-acetylcysteine were previously identified in in vitro reaction mixtures (Peterson et al., 2006).

The objective of this study was to structurally characterize furan metabolites excreted with bile after oral administration of furan to rats to better understand the potential role of reactive furan intermediates in the biliary toxicity of furan. Bile duct-cannulated rats were administered a single oral dose of 5 mg/kg b.wt. [14C]furan or [3,4,13C]furan and bile samples collected at 30-min intervals for 4 h were analyzed by LC-MS/MS. Chemical characterization of furan-derived metabolites was based on mass spectral data and coelution with reference compounds obtained by in vitro incubation of cis-2-butene-1,4-diol with GSH and amino acids.

Materials and Methods

Chemicals. Unless otherwise indicated, all chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany). The BDA precursor 2,5-diacetoxy-2,5-dihydrofurran (purity ≥99%) was prepared as described elsewhere (Holzapfel and Williams, 1995). [3,4,13C]Furan (chemical purity ≥99.6%; isotopic purity ≥96%) was purchased from Tjarden Biosciences (Burlington, IA). Isoflurane was obtained from Abbott (Wiesbaden, Germany). Solvents for HPLC were purchased from Bio-Rad Laboratories (Hercules, CA) and were used as obtained. Solvents for reversed-phase HPLC were purchased from Merck (Darmstadt, Germany). F344/N rats (180–220 g) were purchased from Harlan Winkelmann (Borchen, Germany), and tap water ad libitum. Bile duct cannulation was performed under isoflurane anesthesia. After laparotomy, a flexible polyethylene tube (i.d. 0.28–0.40 mm, o.d. 0.33–0.45 mm) was inserted into the common bile duct and fixed by placing a ligature around it to prevent bile leakage during bile sampling period. Blank bile samples were collected on ice for 30 min before administration of 5 mg/kg b.wt. furan or [3,4,13C]furan in corn oil by oral gavage (n = 3/group). This dose was chosen to obtain sufficient amounts of furan metabolites in bile to facilitate metabolite identification but was not expected to result in liver damage or irritation of the gastrointestinal tract. The control group received corn oil only. After furan administration, bile was collected at 30-min intervals for 4 h, and aliquots of bile were stored at −20°C.

Synthesis of Reference Compounds. Reference compounds were prepared by in vitro incubations of BDA with the respective thiols and amines in 0.1 M potassium phosphate (pH 7.4) at 37°C for 15 min (total volume 1 ml). The objective of this study was to structurally characterize furan metabolites excreted with bile after oral administration of furan to rats to better understand the potential role of reactive furan intermediates in the biliary toxicity of furan. Bile duct-cannulated rats were administered a single oral dose of 5 mg/kg b.wt. furan or [3,4,13C]furan and bile samples collected at 30-min intervals for 4 h were analyzed by LC-MS/MS. Chemical characterization of furan-derived metabolites was based on mass spectral data and coelution with reference compounds obtained by in vitro incubation of cis-2-butene-1,4-diol with GSH and amino acids.

Materials and Methods

Chemicals. Unless otherwise indicated, all chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany). The BDA precursor 2,5-diacetoxy-2,5-dihydrofurran (purity ≥99%) was prepared as described elsewhere (Holzapfel and Williams, 1995). [3,4,13C]Furan (chemical purity ≥99.6%; isotopic purity ≥96%) was purchased from Tjarden Biosciences (Burlington, IA). Isoflurane was obtained from Abbott (Wiesbaden, Germany). Solvents for HPLC were purchased from Bio-Rad Laboratories (Hercules, CA) and were used as obtained. Solvents for reversed-phase HPLC were purchased from Merck (Darmstadt, Germany). F344/N rats (180–220 g) were purchased from Harlan Winkelmann (Borchen, Germany), and tap water ad libitum. Bile duct cannulation was performed under isoflurane anesthesia. After laparotomy, a flexible polyethylene tube (i.d. 0.28–0.40 mm, o.d. 0.33–0.45 mm) was inserted into the common bile duct and fixed by placing a ligature around it to prevent bile leakage during bile sampling period. Blank bile samples were collected on ice for 30 min before administration of 5 mg/kg b.wt. furan or [3,4,13C]furan in corn oil by oral gavage (n = 3/group). This dose was chosen to obtain sufficient amounts of furan metabolites in bile to facilitate metabolite identification but was not expected to result in liver damage or irritation of the gastrointestinal tract. The control group received corn oil only. After furan administration, bile was collected at 30-min intervals for 4 h, and aliquots of bile were stored at −20°C.

Synthesis of Reference Compounds. Reference compounds were prepared by in vitro incubation of BDA with the respective thiols and amines in 0.1 M potassium phosphate (pH 7.4) at 37°C for 15 min (total volume 1 ml). The identification was further verified by 1H, 13C, COSY, HMBC, and HSQC NMR, which was performed at 23.104 MHz (2.1 T). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilent), a quaternary gradient pump (1100 series; Agilent), and an automated switching valve to link the LC to the mass spectrometer (APCI 1100; Agilent). The LC-MS/MS system consisted of an autosampler (Model 1100; Agilen...
IDENTIFICATION OF FURAN-DERIVED METABOLITES IN RAT BILE

1701

separated by a linear gradient (pump 1) from 5% C/95% D to 50% C/50% D within 25 min and to 90% C/10% D within 1 min at a flow rate of 200 μl/min. This solvent composition was held for 7 min before reconstitution of initial conditions. Bile samples (50 μl) of control rats and animals treated with [12C4] or [3,4-13C]furan were analyzed separately. In addition, bile samples obtained after treatment with [12C4]- or [3,4-13C]furan were mixed at a ratio of 1:5 to confirm coelution of biliary metabolites derived from [12C4]- and [3,4-13C]furan. Samples were loaded onto a ReproSil-Pur C18-AQ precolumn negative ion mode with a source temperature of 400°C and an ion spray collision energy were set to conditions. Bile samples (50 μl) were then washed with 5% A/95% B for 15 min and to 90% C/10% D within 1 min at a flow rate of 200 μl/min. Within 30 min of furan application, several furan-derived metabolites were excreted in bile, including the mono-GSH conjugate of BDA a (m/z 354), which has previously been identified in hepatocyte cultures and urine of rats exposed to furan (Peterson et al., 2006; Kellert et al., 2008b; Lu et al., 2009) and a GSH-BDA-glutamic acid adduct b (m/z 501) (Peterson et al., 2006). In addition, four not previously characterized metabolites c to f were detected (Fig. 1A).

Metabolite c (m/z 372), eluting at 9.6 min, showed the same characteristic fragment of m/z 228 (corresponding to -mercaptopropyl-1H-pyrrol-1-yl)pentanedioic acid − H +) as the GSH-BDA-glutamic acid adduct b, suggesting that this metabolite also contains glutamic acid incorporated into the pyrrole ring via its amino group. Loss of 44 amu (CO2) and subsequent loss of 17 amu between 200 to 1500 amu with a scan rate of 4000 amu/s and subsequently in enhanced mass spectrometry with information-dependent acquisition of enhanced product ion (EMS-IDA-EPI) mode in the range of 200 to 1000 amu with a scan rate of 2000 amu/s. Because various background molecules are present in bile samples, peaks from undosed and furan-treated rats obtained in EMS-IDA-EPI mode were extracted with MarkerView software 1.2 (Applied Biosystems/MDS Sciex) as described previously (Kellert et al., 2008b). The extraction parameters were set to 100 counts/s for the noise threshold, 0.1 amu for the minimal spectral width, and 3 to 50 scans for the peak width. Retention time shifts between runs were defined to 1 min and mass shifts to 0.2 amu. The maximum number of extracted peaks was set to 1000, and results were only accepted when peaks were present in bile of at least two of the three furan-dosed animals and absent in controls. For each potential biliary furan metabolite, multiple reaction monitoring with information-dependent acquisition of enhanced product ion (MRM-IDA-EPI) spectra was performed. MRM transitions selected for LC-MS/MS analysis are listed in Table 1. EPI spectra were compared with those of synthesized standards or literature data as available. Biliary metabolites were further confirmed by mass spectral data of the corresponding metabolites present in bile of [3,4-13C]furan-treated animals, which showed a shift of 2 amu upward.

Results

Identification of Biliary Furan Metabolites. To identify biliary furan metabolites, bile duct-cannulated male F344 rats (n = 3 per group) were administered single oral doses of 5 mg/kg b.w.t.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>m/z</th>
<th>Selected MRM Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic GSH-BDA from [12C4] a</td>
<td>354</td>
<td>141</td>
</tr>
<tr>
<td>Cyclic GSH-BDA from [12C4] a</td>
<td>354</td>
<td>141</td>
</tr>
<tr>
<td>GSH-BDA-Glu from [12C] b</td>
<td>501</td>
<td>228</td>
</tr>
<tr>
<td>GSH-BDA-Glu from [12C] b</td>
<td>503</td>
<td>230</td>
</tr>
<tr>
<td>CysGly-BDA-Glu from [12C] c</td>
<td>372</td>
<td>228</td>
</tr>
<tr>
<td>CysGly-BDA-Glu from [12C] c</td>
<td>372</td>
<td>228</td>
</tr>
<tr>
<td>CysGly-BDA-GSH from [12C] d</td>
<td>532</td>
<td>498</td>
</tr>
<tr>
<td>CysGly-BDA-GSH from [12C] d</td>
<td>534</td>
<td>500</td>
</tr>
<tr>
<td>Cys-BDA-GSH from [12C] e</td>
<td>475</td>
<td>441</td>
</tr>
<tr>
<td>Cys-BDA-GSH from [12C] e</td>
<td>477</td>
<td>443</td>
</tr>
<tr>
<td>GSH-BDA-Gly from [12C] f</td>
<td>429</td>
<td>300</td>
</tr>
<tr>
<td>GSH-BDA-Gly from [12C] f</td>
<td>431</td>
<td>302</td>
</tr>
<tr>
<td>N-Acetylcysteine-BDA-N-acetylcysteine from [12C] g</td>
<td>398</td>
<td>269</td>
</tr>
<tr>
<td>N-Acetylcysteine-BDA-N-acetylcysteine from [12C] g</td>
<td>400</td>
<td>271</td>
</tr>
<tr>
<td>Sulfoxide of g from [12C] h</td>
<td>414</td>
<td>285</td>
</tr>
<tr>
<td>Sulfoxide of g from [12C] h</td>
<td>416</td>
<td>287</td>
</tr>
</tbody>
</table>

[12C4]-furan or [3,4-13C]furan. Bile samples were collected before furan application and at 30-min intervals for up to 4 h after dosing. A total of eight metabolites, which were not present in predose bile or bile samples of control rats, were detected by LC-MS in EMS-IDA-EPI mode and subsequent multiple reaction monitoring after furan administration (Fig. 1). EPI spectra and retention times of potential furan metabolites corresponded to those of the reference compounds synthesized by reaction of BDA with GSH and amino acids (Table 2: Supplemental Fig. 1). To further verify that these biliary excreted compounds represent metabolites of furan, the study was repeated using [3,4-13C]furan. As shown in Fig. 1, the metabolites previously observed were also found in bile after administration of [3,4-13C]furan, with an expected mass shift of 2 amu upward (Table 2).

Within 30 min of furan application, several furan-derived metabolites were excreted in bile, including the mono-GSH conjugate of BDA a (m/z 354), which has previously been identified in hepatocyte cultures and urine of rats exposed to furan (Peterson et al., 2006; Kellert et al., 2008b; Lu et al., 2009) and a GSH-BDA-glutamic acid adduct b (m/z 501) (Peterson et al., 2006). In addition, four not previously characterized metabolites c to f were detected (Fig. 1A).

Metabolite c (m/z 372), eluting at 9.6 min, showed the same characteristic fragment of m/z 228 (corresponding to -mercaptopropyl-1H-pyrrol-1-yl)pentanedioic acid − H +) as the GSH-BDA-glutamic acid adduct b, suggesting that this metabolite also contains glutamic acid incorporated into the pyrrole ring via its amino group. Loss of 44 amu (CO2) and subsequent loss of 17 amu between 200 to 1500 amu with a scan rate of 4000 amu/s and subsequently in enhanced mass spectrometry with information-dependent acquisition of enhanced product ion (EMS-IDA-EPI) mode in the range of 200 to 1000 amu with a scan rate of 2000 amu/s. Because various background molecules are present in bile samples, peaks from undosed and furan-treated rats obtained in EMS-IDA-EPI mode were extracted with MarkerView software 1.2 (Applied Biosystems/MDS Sciex) as described previously (Kellert et al., 2008b). The extraction parameters were set to 100 counts/s for the noise threshold, 0.1 amu for the minimal spectral width, and 3 to 50 scans for the peak width. Retention time shifts between runs were defined to 1 min and mass shifts to 0.2 amu. The maximum number of extracted peaks was set to 1000, and results were only accepted when peaks were present in bile of at least two of the three furan-dosed animals and absent in controls. For each potential biliary furan metabolite, multiple reaction monitoring with information-dependent acquisition of enhanced product ion (MRM-IDA-EPI) spectra was performed. MRM transitions selected for LC-MS/MS analysis are listed in Table 1. EPI spectra were compared with those of synthesized standards or literature data as available. Biliary metabolites were further confirmed by mass spectral data of the corresponding metabolites present in bile of [3,4-13C]furan-treated animals, which showed a shift of 2 amu upward.

Results

Identification of Biliary Furan Metabolites. To identify biliary furan metabolites, bile duct-cannulated male F344 rats (n = 3 per group) were administered single oral doses of 5 mg/kg b.w.t.

Identification of Biliary Furan Metabolites. To identify biliary furan metabolites, bile duct-cannulated male F344 rats (n = 3 per group) were administered single oral doses of 5 mg/kg b.w.t.

Identification of Biliary Furan Metabolites. To identify biliary furan metabolites, bile duct-cannulated male F344 rats (n = 3 per group) were administered single oral doses of 5 mg/kg b.w.t.

Identification of Biliary Furan Metabolites. To identify biliary furan metabolites, bile duct-cannulated male F344 rats (n = 3 per group) were administered single oral doses of 5 mg/kg b.w.t.
the mercapturate-sulfoxide-N-acetyllysine conjugate h was not possible, because its concentration in bile was too low to record an EPI spectrum.

With the exception of f and the sulfoxide h, which is likely to be formed from g via cysteine conjugate S-oxidase, all biliary metabolites identified were confirmed by LC-MS/MS analysis in MRM-IDA-EPI mode after administration of [3,4-13C]-furan (Fig. 1). As expected, the molecular masses of the metabolites shifted by 2 amu upward in bile of [3,4-13C]furan-treated rats compared with samples obtained from rats treated with [12C4]furan. EPI spectra of biliary metabolites detected in samples from isotopically labeled and unlabeled furan-treated rats showed an identical fragmentation pattern (Table 2). To estimate elimination kinetics, peak areas of each metabolite excreted at different time intervals were integrated. In contrast to the rapid excretion of metabolites derived from GSH conjugation (Fig. 2, A–C), the N-acetylcysteine-N-acetyllysine conjugate g and its sulfoxide h were only evident ≥1.5 h after furan administration, and their concentrations in bile continued to rise during the collection period (Fig. 2D).

For some of the metabolites (b, c, d, f, and g), a second peak with an identical mass spectrum but different retention times from those of the synthesized reference compound was observed in rat bile. Although this result may be consistent with the ability of GSH to attack carbons 1 and 2 of BDA, leading to the formation of either 2- or 3-(S-glutathionyl)pyrroles, we cannot conclude whether these minor peaks represent regioisomers of these compounds.

Discussion

Because of its high capacity to bioactivate furan to the reactive intermediate cis-2-butene-1,4-dial, the liver is the main target organ of furan toxicity and carcinogenicity. Furan hepatotoxicity is characterized not only by hepatocellular alterations but also by damage to the bile duct epithelium, leading to cholangiofibrosis and subsequent development of cholangiocarcinoma. However, the mechanisms involved in the biliary toxicity of furan are poorly understood. Previous studies on the disposition and biotransformation of furan in rats have demonstrated that furan is rapidly absorbed from the gastrointestinal tract, extensively metabolized, and eliminated via expired air, urine,
TABLE 2

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>In Vivo</th>
<th>V/C Ratios (14C)</th>
<th>V/C Ratios (12C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic-GSH-BDA (a)</td>
<td>14.1</td>
<td>354, 316, 300, 266, 183, 141, 124, 98</td>
<td>354, 316, 300, 266, 183, 141, 124, 98</td>
</tr>
<tr>
<td>CysGly-BDA-lysine (c)</td>
<td>14.1</td>
<td>901, 372, 328, 311, 228</td>
<td>374, 356, 330, 313, 230</td>
</tr>
<tr>
<td>Cys-BDA-GSH (e)</td>
<td>15.6</td>
<td>534, 516, 500, 272, 254, 227, 210, 179, 143, 128</td>
<td>143, 128</td>
</tr>
<tr>
<td>GSH-BDA-Gly (f)</td>
<td>12.7</td>
<td>429, 411, 399, 272, 254, 227, 210, 179, 143, 128</td>
<td>143, 128</td>
</tr>
<tr>
<td>Acetylcysteine-BDA-N-acetyllysine (g)</td>
<td>Below LOD</td>
<td></td>
<td>Below LOD</td>
</tr>
</tbody>
</table>

RT, retention time; N.A., not applicable; LOD, limit of detection.

Ided metabolites were further confirmed by analysis of bile of 3,4-13C-furan-treated rats. In this respect, it is also interesting to note that metabolites derived from cysteine-BDA-lysine cross-links, i.e., the N-acetylcysteine-N-acetylysine conjugate g and its corresponding sulfoxide h, were not detected in rat bile until 1.5 h after furan administration but continued to rise thereafter. The delayed biliary excretion of the lysine adducts and feces. Within 24 h of administration of a single oral dose of [2,5,14C]furan (8 mg/kg b.wt.) to male F344 rats, approximately 40% of the furan-derived radioactivity was excreted as the parent compound (14%) and CO2 (26%). Approximately 20 and 22% of the administered dose was eliminated in urine and feces, respectively, whereas 15% of the total radioactivity was recovered in tissues, predominantly in the liver (Burka et al., 1991). Consistent with in vitro data showing that cis-2-butene-1,4-dial readily reacts with nucleophiles to form protein adducts and GSH conjugates (Chen et al., 1997; Peterson et al., 2005; Lu et al., 2009), a range of metabolites derived from binding of cis-2-butene-1,4-dial to GSH and amino acids have recently been identified in urine of rats treated with furan (Peterson et al., 2006; Kellert et al., 2008b; Lu et al., 2009). In contrast, furan metabolites excreted with bile, which may contribute to the biliary toxicity of furan, have not yet been characterized.

Recent work by Lu et al. (2009) suggested that degradation of protein adducts of cis-2-butene-1,4-dial is a major source of lysine-derived metabolites of furan. Analysis of GSH-BDA-lysine cross-links formed in primary rat hepatocytes shows that, under physiological conditions, lysine is linked to cis-2-butene-1,4-dial predominantly via its ε-amino group, although formation of the α-substituted regiosomer was also observed (Lu et al., 2009). Furthermore, relative levels of the ε-reaction product increased with time, presumably as a result of degradation of alkylated proteins (Lu et al., 2009). Experiments conducted in culture media supplemented with [4,5,5-2H4]-lysine provide further evidence that at least some of the lysine adducts are derived from degraded protein by demonstrating that a greater percentage of the ε-substituted but not the ε-substituted regiosomer was formed from unlabelled lysine (ratio [1H4]/[2H4] = 3 for the ε-substituted versus 1.2 for the α-substituted regiosomer) (Lu et al., 2009). On the basis of the different ratios for the ε-substituted versus the α-substituted products, which would be expected to be the same if the metabolites were exclusively derived from the reaction of GSH-BDA with free lysine, Lu et al. (2009) concluded that some of the ε-substituted regiosomers are probably derived from the reaction of GSH-BDA with lysine moieties in proteins.

In this respect, it is also interesting to note that metabolites derived from cysteine-BDA-lysine cross-links, i.e., the N-acetylcysteine-N-acetylysine conjugate g and its corresponding sulfoxide h, were not detected in rat bile until 1.5 h after furan administration but continued to rise thereafter. The delayed biliary excretion of the lysine adducts...
compared with that of the mono-GSH conjugate a and metabolites b to f may provide further support that these metabolites may represent degraded protein adducts. However, even though formation of the N-acetylcysteine-N-acetylysine conjugate g is consistent with enzymatic processing of the GSH-BDA-lysine conjugate shown to be formed in rat hepatocytes in vitro (Lu et al., 2009) via the mercapturic acid pathway (Scheme 2), we cannot conclude from our data that the cysteine in g and h is indeed derived from GSH as opposed to protein.

Similar to the GSH-BDA-lysine conjugate observed in rat hepatocyte cultures (Lu et al., 2009), we identified metabolites resulting from cross-links between the cysteinyl thiol of GSH and an amino group of glycine (f) or glutamate (b and c) (Scheme 2). Although b and c may present downstream metabolites of the GSH-BDA-Gly and/or the cyclic GSH-BDA conjugate resulting from cleavage of the γ-glutamyl bond in the GSH group contributing the amine in the pyrrole cross-link, both the glycine and glutamate adducts may be formed by reaction of the GSH-BDA conjugate with the free amino acids, which are both present in high concentrations in rat liver (1.7 and ~14 mM for glycine and glutamate, respectively) (Gregus et al., 1993; Geerts et al., 1997) or N-terminal glycine or glutamate residues of proteins. In contrast to the lysine derivatives, however, the suggested glutamate adducts b and c and the GSH-BDA-glycine conjugate f are rapidly excreted in rat bile, with maximum concentrations occurring within 30 min and 1 h of furan administration, suggesting that these metabolites may be derived from free amino acids and/or GSH rather than from degraded protein adducts.

Consistent with the hypothesis that cytotoxicity mediated through binding of cis-2-butene-1,4-dial to critical target proteins is likely to play a key role in furan toxicity and carcinogenicity (Wilson et al., 1992), chemical characterization of furan metabolites in bile provided further evidence to suggest that degraded protein adducts are in vivo metabolites of furan. Based on our findings, however, we cannot conclude that the bile duct epithelium is a primary target of reactive furan metabolites, because biliary toxicity may also occur due to hepatocellular injury. Lu et al. (2009) speculated that the primary reaction product of cis-2-butene-1,4-dial and GSH may not be as short-lived as generally assumed and may even migrate across membranes. Although this speculation suggests that the BDA-GSH intermediate may directly react with proteins located within the bile duct epithelium after transport across the canalicual membrane, no experimental proof has been obtained. On the other hand, many xenobiotics known to cause injury to the biliary tract have been shown to selectively damage the canalicual membrane of hepatocytes, which forms the origin of the biliary tract, resulting in disruption of membrane integrity, interference with hepatobiliary transport mechanisms, and release of toxic compounds (e.g., lysosomal enzymes) into bile (Woodard and Moslen, 1998; Pauli-Magnus and Meier, 2006). This process frequently involves bioactivation to chemically reactive metabolites and formation of glutathione conjugates or acyl-glucuronides, which are substrates for hepatobiliary transporters (Jones et al., 2003). Therefore, it is possible that the BDA-GSH intermediate may preferentially cause damage to proteins involved in transport of GSH-conjugates across the canalicual membrane, thereby interfering with hepatobiliary function and leading to irritation of the biliary epithelium. In support of this possibility, a small rise in serum cholesterol accompanied by a significant increase in unconjugated bile acids indicative of impaired hepatobiliary function was also observed in rats treated with furan (Geerts et al., 1997).
biliary function was recently observed in F344 rats dosed with furan at 2 mg/kg b.wt. for up to 4 weeks (Mally et al., 2010). However, whether or not membrane transporters represent furan target proteins remains to be established. Alternatively, it has been suggested that proliferative signals to biliary epithelial cells may arise due to hepatocyte damage as part of a portal bile ductular hepatocyte repair process that is activated when the capacity for adaptive repair is overwhelmed by high doses or sustained exposure to furan (Hickling et al., 2010). In summary, further investigations will be required to understand the cellular and functional consequences associated with furan-mediated protein damage and current work in our laboratory is focused on identifying critical target proteins that may play a causal role in the pathogenesis of furan-associated liver toxicity.

Acknowledgments. We thank Elisabeth Rüb-Spiegel, Miriam Kral, and Heike Keim-Heusler for excellent animal care and assistance in conducting the animal study. We also thank Dr. M. Grüne and Silvia Vogl for help with NMR analysis. MarkerView software was kindly provided by Applied Biosystems/MDS Sciex.

References


Address correspondence to: Dr. Angela Mally, Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany. E-mail: mally@toxi.uni-wuerzburg.de