Aristolochic acids (AAs) are nitrophenanthrene carboxylic acids found in various Aristolochia species used as traditional herbal medicines throughout the world (Jameson et al., 2008). Chronic exposure to AA is responsible for aristolochic acid nephropathy (AAN) and for Balkan endemic nephropathy [for review, see Grollman et al. (2007) and Debeelle et al. (2008)]. Hallmarks of each disease are proximal tubule atrophy and tubulointerstitial fibrosis, leading to end-stage renal disease. At least half of these patients also develop cancers of the upper urinary tract.

Commercial preparations of AA are composed of mixtures of 8-methoxy-6-nitro-phenanthro-(3,4-)-1,3-dioxolo-5-carboxylic acid (AAI) and 6-nitro-phenanthro-(3,4-)-1,3-dioxolo-5-carboxylic acid (AAII), compounds that differ only by the presence of an O-methoxy group in AAI. AAI is far more cytotoxic than AAII both in simian kidney cells in culture (Balachandran et al., 2005) and in treated animals (Shibutani et al., 2007).

In animals and cell culture, AA is metabolized by several mechanisms. One pathway involves reduction of the nitro group and concomitant condensation with the carboxylic acid moiety to form aristolactam I (ALI) and aristolactam II (ALII). An intermediate in this pathway, N-hydroxyaristolactam, is believed to form a cyclic N-acylnitrenium ion that forms adducts with exocyclic amines of purines in DNA. Indeed, the promutagenic 7-(deoxyadenosine-N6-yl)aristolactams (ALI-dA and ALII-dA) have been observed in the DNA of all species examined after treatment with AA. A:T→T:A transversions, the most frequently observed mutation in the TP53 gene in urothelial tumors of patients with AAN and Balkan endemic nephropathy (Lord et al., 2004; Grollman et al., 2007), have been proposed to be a “fingerprint” mutation for aristolochic acid exposure (Grollman et al., 2007). Furthermore, aristolactam metabolites are observed in the urine of various species treated with AA (Krbjebiel et al., 1987). Thus, this pathway is postulated to be universal in mammals.

The second detoxication pathway involves demethylation of AAI to form the nontoxic 8-hydroxy-6-nitro-phenanthro-(3,4-)-1,3-dioxolo-5-carboxylic acid (AAIa). AAIa and its metabolites have been observed in the urine and feces of rabbits, dogs, mice, and rats treated with AAI, but not in urine from humans exposed to AA (Krbjebiel et al., 1987). A number of defined enzyme systems can activate AA to form DNA adducts in vitro. These include the microsomal enzymes NAPDH:cytochrome P450 reductase (Stiborová et al., 2001a, 2005a), prostaglandin H synthase (Stiborová et al., 2001a, 2005a), and CYP1A1/2 under anaerobic conditions (Schmeiser et al., 1987; Stiborová et al., 2005a).
Cytoplasmic enzymes implicated in AA activation include NAD(P)H:quinone oxidoreductase (Stiborová et al., 2002, 2003, 2005a) and sulfotransferase A1 (Meinl et al., 2006). Under aerobic conditions, hepatic microsomes from rats and humans demethylate AAl to form AAAs (Schmeiser et al., 1986; Sistkova et al., 2008).

More recently, mice deficient in hepatic cytochrome P450 activity were shown to have increased sensitivity to the nephrotoxic effects of AA (Xiao et al., 2008). Conversely, pretreatment of mice with 3-methylcholanthrene (Xue et al., 2008) or β-naphthoflavone (Xiao et al., 2009), agonists of the arylhydrocarbon receptor that induce CYP1 enzymes and other xenometabolizing activities, protects mice from AA.

The purpose of this study was to delineate the role of specific P450 enzymes in vivo in AA detoxication. We report that CYP1A1 and CYP1A2 are the most active of 18 human P450s tested in demethylating AAl. Kinetic analyses revealed that rat and human CYP1A2 enzymes were similarly efficient in catalyzing the formation of AAAs. However, species differences were found in the efficiency of CYP1A1 versus CYP1A2 to catalyze the demethylation reaction.

We show also that Cyp1a2-null mice are relatively more sensitive to AA-elicted nephrotoxicity. This increased sensitivity can be reversed by pretreatment with 3-methylcholanthrene. In addition, CYP1A2-null mice accumulate ALI-DNA adducts at a higher rate than control mice. Taken together, these results indicate that, in rodents, AA elicits demethylation, mediated by CYP1A2, is a primary pathway of AA detoxication. If the demethylation pathway is compromised, DNA adducts continued to accumulate, indicating that AA nitroreduction is increased.

Materials and Methods

Materials and Reagents. Reagents. AAAl was purified from a mixture of AA and AAAl (40:60) purchased from Thermo Fisher Scientific (Waltham, MA) as described previously (Shibutani et al., 2007). 3-Methylcholanthrene was purchased from Sigma-Aldrich (St. Louis, MO). Human and rat recombinant CYP1A1 and CYP1A2 enzymes and pooled human liver microsomes were purchased from BD Biosciences (San Jose, CA). Microccocal nuclease and potato apyrase were purchased from Sigma-Aldrich, spleen phosphodiesterase was purchased from Worthington Biochemical Corp. (Lakewood, NJ), and 3'-phosphatase-free T4 polynucleotide kinase and nuclease P1 were from Roche Applied Science (Indianapolis, IN). [γ-32P]ATP (specific activity, >6000 Ci/mmol) was obtained from GE Healthcare (Little Chalfont, Buckinghamshire, UK). [3H]AAAl was kindly provided by Tapan Ray, Novartis Institutes of Biomedical Research (East Hanover, NJ). The radiochemical purity of [3H]AAAl was >98% and chemical purity was ≥93%. Anti-Cyp1a1 rabbit IgG and anti-Cyp1a2 goat IgG and corresponding peroxidase-conjugated secondary antibodies were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Protein electrophoresis gels, membranes, buffers, and electrochemical detection kits were obtained from Thermo Fisher Scientific. All other chemicals and reagents were purchased from commercial sources.

Urinalysis kits. Mouse Albubell microalbuminuria enzyme-linked immunosorbent assay kits were purchased from Excocell (Philadelphia, PA). Creatinine Quantichrom assay kits were purchased from BioAssay Systems (Hayward, CA). All urinalysis kits were used following the manufacturer’s instructions.

Mice. Animal protocols were reviewed and approved by the Stony Brook Institutional Animal Care and Use Committee. Breeding pairs of Cyp1a2 knockout mice were obtained from Dr. F. Gonzalez (National Cancer Institute, National Institutes of Health, Bethesda, MD). A colony was maintained by breeding in the Stony Brook University animal facility. Control 129S1/SvImJ mice were purchased from The Jackson Laboratory (Bar Harbor, Maine). All experiments used 8-week-old male mice.

Metabolism of [3H]AAAl by Human Liver Microsomes. For all the in vitro metabolism incubations in this report, the buffer components were 100 mM potassium phosphate buffer (pH 7.4) and 5 mM MgCl₂ (final concentrations). For the glucuronidation reactions (containing UDPGA), microsomes were preincubated with alamethicin (60 μg of alamethicin/mg protein, final concentration) for 15 min on ice before addition of MgCl₂ and [3H]AAAl. All reactions were preincubated at 37°C for 3 min before cofactor initiation (1 mM NADPH and/or 4 mM UDPGA). Human liver microsomes (1 mg of protein/ml) were incubated with [3H]AAAl (95 μM), and reactions were initiated with NADPH and/or UDPGA and were incubated for 30 min at 37°C (final reaction volume of 0.2 ml). Control incubations contained all reaction components without cofactors. Reactions were quenched by the addition of an equal volume of cold acetone, and the precipitated protein was removed by centrifugation at 39,000 × g for 10 min at 4°C.

HPLC Analysis of [3H]AAAl and Metabolites. Samples (25 μl) were analyzed by reverse-phase HPLC on an X Terra MS C18 column (250 × 4.6 mm, 5 μm; Waters, Milford, MA) at ambient temperature. Gradient elution was achieved using solvent A (0.1 M ammonium acetate, pH 7.5, v/v/v). Solvent B (acetonitrile) at a flow rate of 1.2 ml/min. The HPLC eluate was collected with a fraction collector (FC204; Gilson, Inc., Middleton, WI) at 0.2 ml/fraction into Deepwell LumaPlate-96 plates (PerkinElmer Life and Analytical Sciences, Waltham, MA). The fractions were dried with a stream of nitrogen, and radioactivity was counted with a TopCount NXT Microplate Scintillation and Luminescence Counter (PerkinElmer Life and Analytical Sciences) at a counting time of 10 min/well. Chromatograms from the TopCount counter were evaluated using WinFLOW HPLC application software (version 1.4a; IN/US Systems, Tampa, FL) and plotted using SigmaPlot software (SigmaPlot 2002 for Windows, version 8.0; Jandel Corporation, Chicago, IL).

Metabolism of [3H]AAAl by Specific Human Recombinant P450 Enzymes. [3H]AAAl (95 mM) was incubated with the recombinant human P450 enzymes, Cyp1a1, Cyp1a2, Cyp1b1, Cyp2a6, Cyp2b6, Cyp2c8, Cyp2c9, Cyp2c18, Cyp2c19, Cyp2d6, Cyp2e1, Cyp2f2, Cyp3a4, Cyp3a5, Cyp4a11, Cyp4f2, Cyp4f3a, and Cyp4f3b (100 pmol of P450/ml), or control P450 microsomes in the presence of NADPH for 30 min at 37°C (final reaction volume of 0.4 ml). The buffer components, sample processing, and HPLC analysis were as described above.

Kinetic Analysis of [3H]AAAl Metabolism by Recombinant Human or Rat CYP1A1 and CYP1A2. Steady-state kinetic parameters associated with recombinant human (h) CYP1A2 and rat (r) CYP1A2 were determined to establish the efficiency of [3H]AAAl metabolism by these enzymes. hCyp1a1 (10 pmol of P450/ml · m⁻¹, 0.11 mg of microsomal protein/ml), hCyp1a2 (10 pmol of P450/ml, 0.067 mg of microsomal protein/ml, final concentration), rCyp1a1 (25 pmol of P450/ml, 0.0625 mg of microsomal protein/ml, final concentration), or rCyp1a2 (10 pmol of P450/ml, 0.05 mg of microsomal protein/ml, final concentration) was incubated with various concentrations of [3H]AAAl (in duplicate) in the presence of NADPH for 10 min (final reaction volume of 0.2 ml). The concentration of P450 enzyme and reaction time were predetermined to be optimal to ensure ~<20% turnover of AAAl during the incubation. Control samples at each concentration of [3H]AAAl did not contain any P450. The buffer components, sample processing, and HPLC analysis were as described above. [3H]AAAl metabolism activity was plotted against substrate concentration and the kinetic parameters, Kₘ and Vₘax, were determined by nonlinear regression.

Treatment of Mice with Aristolochic Acid. Eight-week-old male mice were given intraperitoneal injections of 2 mg/kg AAAl dissolved in phosphate-buffered saline without divalent cations (Sigma-Aldrich). Several groups of mice were pretreated the previous day with a single intraperitoneal injection of 3-methylcholanthrene (60 mg/kg) in corn oil. This dose of 3-MC has previously been shown to induce resistance to AA nephrotoxicity in mice (Xue et al., 2008). Control animals received vehicle-only injections. For urine collections, mice were housed overnight in metabolic cages. Mice were euthanized by CO₂ asphyxiation, and tissues were collected for microsome and DNA preparation.

Microsomal Preparation and Protein Quantification. Hepatic microsomes were prepared by homogenization of freshly thawed mouse liver in a Potter S homogenizer (B. Braun Biotech Inc., Allentown, PA) containing 0.9 M sucrose, 0.154 M KCl, 0.05 M Tris-HCl, 0.001 M EDTA, and 0.25 mM phenylmethylsulfonyl fluoride, pH 7.4, at a concentration of 3 ml of buffer/g of tissue. The homogenate was centrifuged at 10,000 × g for 20 min at 4°C. The supernatant (S9) was transferred to fresh ultracentrifuge tubes and centrifuged at 105,000 × g for 1 h at 4°C. The
top lipid layer and cytosol were aspirated, and the microsomal pellet was resuspended in storage buffer (0.1 M potassium phosphate buffer, pH 7.4, 20% glycerol, v/v) at an estimated final concentration of 1 ml of storage buffer per g of tissue (starting amount) using a Dounce homogenizer. Aliquots of approximately 50 μl each were stored at −80°C. The amount of microsomal protein was determined by the Bradford protein assay method.

**Metabolism of [3H]AAI in Mouse Liver Microsomes.** The metabolism of [3H]AAI was examined in mouse liver microsomes prepared from control or 3-MC-treated wild-type or Cyp1a2(−/−) mice. Mouse liver microsomes (1 mg of protein/ml) were preincubated with alamethicin, as described above, before incubation with [3H]AAI (95 μM, final concentration). The reactions were initiated with UDPGA and NADPH, and the samples were incubated for 30 min at 37°C. Control incubations contained all reaction components without cofactors. The buffer components, sample processing, and HPLC analysis were as described above.

**Extraction and Digestion of Renal Cortical DNA.** DNA was extracted from cortical slices from freshly isolated kidneys using a DNeasy Blood and Tissue kit (QIAGEN, Valencia, CA) according to the manufacturer’s protocol. The concentration of DNA was determined by UV spectroscopy. One microgram of DNA was digested enzymatically at 37°C for 16 h in 100 μl of 17 mM sodium succinate buffer (pH 6.0) containing 8 mM CaCl₂, micrococcal nuclease (30 U), and spleen phosphodiesterase (0.15 U) (Dong et al., 2006). The [3H]-labeled products were separated by electrophoresis for 4 to 5 h on a nondenaturing 30% polyacrylamide gel (35 × 42 × 0.04 cm) with 1500 to 1800 V/20 to 40 mA. The position of [3H]-labeled adducts was established by β-PhosphorImage analysis (GE Healthcare). To quantify the [3H]-labeled products, integrated values were measured using a β-PhosphorImage and compared with the standards. Because ALI-DNA adducts were not available, a known amount (0.0152 pmol) of ALI-dA- or ALI-dG-modified oligodeoxynucleotides was used as a standard (obtained from Francis Johnson, Department of Chemistry, Stony Brook University) (Attaluri et al., 2010).

**Immunoblotting Microsomal Proteins.** Fifty micrograms of each microsomal protein preparation was subjected to electrophoresis through a 4 to 20% gradient SDS-polyacrylamide gel (Thermo Fisher Scientific) and then electrotransferred to a nitrocellulose membrane (Thermo Fisher Scientific). Membranes were preblocked with 5% milk protein in TBST (150 mM sodium chloride, 50 mM Tris, pH 7.5, and 0.2% Tween 20 detergent) and then were incubated with primary antibody, at 0.2 μg/ml, for 1 h. The blots were washed with washing buffer for 2 h followed by washing in TBST. Secondary antibody was diluted (1:20,000) in blocking buffer and incubated with the membrane for 1 h followed by washing in TBST. Antibody was detected with electrochemical reagents and film exposure following the manufacturer’s protocols (Thermo Fisher Scientific).

**32P-Postlabeling/Polyacrylamide Gel Electrophoresis Analysis.** DNA digestion mixtures were incubated at 37°C for 40 min with 10 mCi of γ-32P[ATP and 3’-phosphatase-free T4 polynucleotide kinase (10 U), followed by incubation with apyrase (50 mU) for 30 min, as described previously (Dong et al., 2006). The 32P-labeled products were separated by electrophoresis for 4 to 5 h on a nondenaturing 30% polyacrylamide gel (35 × 42 × 0.04 cm) with 1500 to 1800 V/20 to 40 mA. The position of 32P-labeled adducts was established by β-PhosphorImage analysis (GE Healthcare). To quantify the 32P-labeled products, integrated values were measured using a β-PhosphorImage and compared with the standards. Because ALI-DNA adducts were not available, a known amount (0.0152 pmol) of ALI-dA or ALI-dG-modified oligodeoxynucleotides was used as a standard (obtained from Francis Johnson, Department of Chemistry, Stony Brook University) (Attaluri et al., 2010).

![Diagram A](image1.png)

**Fig. 1.** A, pathways for AAI metabolism in mammals. AAI is demethylated to form AAla in a reaction catalyzed by cytochrome P450 (CYP). Subsequent conjugation to glucuronic acid or sulfate, catalyzed by UDP glucuronyl transferases (UGT) or sulfotransferases (ST), enhances excretion. Cellular nitroreductases (NR) catalyze formation of the biologically inactive aristolactam (ALI). A reactive intermediate in this pathway, possibly N-OH-ALI forms covalent adducts with DNA and proteins. B, structures of AAI-derived DNA adducts: ALI-dA and ALI-dG. * position of [3H] in the radiolabeled AAI used in this study.
likely that CYP1A2 predominates in the formation of this metabolite.

Negligible expression of CYP1A1 in uninduced human liver, it is no other human P450 tested was active in this assay. Because of CYP1A1 (Fig. 2B). With the exception of marginal CYP2C9 activity, to metabolize AAI. AAIa was formed primarily by CYP1A2 and ined 18 individual human cytochrome P450 enzymes for their ability to metabolize AAI. Shown is the production of AAIa from AAI by human CYP1A1 and CYP1A2.

Thus, formation of AAIa catalyzed by rat CYP1A1 was 126-fold lower than that for rat CYP1A2, whereas human CYP1A1 was ~4-fold more efficient than human CYP1A2 in producing this metabolite.

To determine whether CYP1A2 is required in vivo for metabolism of AAI in mice we treated Cyp1a2(−/−) and Cyp1a2(+/+) control mice with a single, moderate dose (2.0 mg/kg) of AAI. Urine was collected during the week after treatment and analyzed for albumin and creatinine content. The toxin induces proximal tubule cell toxicity manifested by reduced reuptake of low-molecular-weight proteins in the proximal neprhon and the presence of injury markers in the urine (Huang et al., 2009). Four days after AAI treatment, there is an increase in the amount of urinary albumin, as shown in Fig. 3. As proximal tubule function is restored, albuminuria decreases and even-tually disappears. The urine of AAItreated Cyp1a2(−/−) mice contained higher levels of albumin and for a longer period of time than that of Cyp1a2(+/+) control mice, indicating a higher degree of nephrotoxicity for AAI in CYP1A2-deficient mice.

3-MC induces several biotransformation activities, including CYP1A1, and pretreatment of mice with 3-MC is reported to increase resistance to AAI-elicited nephrotoxicity (Xue et al., 2008). We pretreated Cyp1a2(−/−) or control mice with 60 mg/kg 3-MC or vehicle and 24 h later treated them with AAI as in the previous experiment. Both 3-MC-pretreated control and Cyp1a2(−/−) mice displayed increased resistance to AAI relative to noninduced mice.
CYP1A2 DETOXICATES ARISTOLOCHIC ACID

Discussion

The ability to demethylate AAI may determine the toxic potential of AA in mammalian species. In this article, we established that CYP1A2 is the major enzyme responsible for demethylation of AAI in mice. We report the most extensive survey of P450 enzymes for AAI-metabolizing activities to date and the first kinetic analysis of the capabilities of the CYP1A enzymes with respect to AAI demethylation. Human and rodent CYP1A2 are kinetically similar with respect to this important reaction. If expressed, human hepatic CYP1A1 is also kinetically competent to contribute to detoxication of AAI.

In vitro studies have established that AAI may be metabolized by nitroreduction to ALI and/or demethylation to AAIa [for review, see Stiborová et al. (2008)]. Aristolactams are formed by several cellular enzymes, including NADPH:cytochrome P450 reductase, prostanoid H synthase, and NAD(P)H:quinone oxidoreductase. Microsomal AA metabolism, particularly reactions catalyzed by CYP1A enzymes under anaerobic conditions also lead to the formation of genotoxic intermediates (Schmeiser et al., 1997; Stiborová et al., 2001b, 2005a,b). Under aerobic conditions, formation of aristolactam-DNA adducts in reactions catalyzed by hepatic microsomes was greatly reduced (Schmeiser et al., 1997) and AAIa was formed (Sistkova et al., 2008). We confirm that under aerobic conditions microsomal CYP1A enzymes demethylate AAI to form AAIa and show that they are kinetically competent to do so in vivo. AAIa is nontoxic in cells (Balachandran et al., 2005; Shibutani et al., 2010) and even in the presence of reducing agents is incapable of forming covalent adducts with DNA (Shibutani et al., 2010).

In this study, we report that among 18 human cytochrome P450 enzymes tested, only the CYP1A1 and CYP1A2 enzymes have robust AA demethylating activity. The only other P450 with detectable activity against AAI was CYP2C9. Under homeostatic conditions CYP1A2 is the major CYP1A enzyme expressed in livers of humans and mice (Gonzalez et al., 1984; Ikeya et al., 1989). Consistent with these observations, we detected little AAI demethylation activity in hepatic microsomes prepared from CYP1A2-null mice. In a pilot genetic study, a weak association between the human CYP3A5*1 allele and Balkan endemic nephropathy, a disease resulting from chronic dietary exposure to AA (Grollman et al., 2007), was noted (Atanasova et al., 2005). However we did not detect AAI demethylation activity by CYP3A5.

Mice lacking hepatic P450 activity are extremely sensitive to AA, indicating that AA metabolism occurs primarily in the liver (Xiao et al., 2008). Consistent with this report, AAIa was not detected in renal microsomes (data not shown). Induction of CYP1A activity with 3-MC (Xue et al., 2008) or β-naphthoflavone (Xiao et al., 2009) increases resistance to AAI-elicited nephrotoxicity. In this study, 3-MC treatment increased hepatic microsomal AAI demethylation activity in both control and CYP1A2-null mice. However, in Cyp1a2(+/+) mice 3-MC treatment increased the hepatic expression of CYP1A2 and also increased AAIa formation. In Cyp1a2(−/−) mice, we observed induction of CYP1A1 expression. In addition to
increased AAla production, hepatic microsomes from 3-MC-induced Cyp1a2(-/-) mice also produced several, as yet unidentified, metabolites of AAI. We speculate that these metabolites include AAla phase II conjugation products. Thus, in the absence of CYP1A2, different activities are induced by 3MC, suggesting the presence of additional enzymes that metabolize AAI.

We tested Cyp1a2 knockout mice for their sensitivity to AAI. Microalbuminuria, an indicator of renal proximal tubule dysfunction was elevated after AAI treatment in CYP1A2-deficient mice. Thus, CYP1A2 does play an important role in detoxication of AAI in mice.

According to the current model of AAI metabolism, reduction in AAI demethylation activity is expected to increase production of aristolactam metabolites and associated toxicity resulting from ALI-DNA adducts in the renal cortex of Cyp1a2(-/-) mice relative to wild-type mice. This result is consistent with the proposed model of AAI metabolism.

In humans, at least 50% of patients with AA-associated nephropathies develop urothelial carcinomas of the upper urinary tract, characterized by a predominance of A:T -> T:A transversions in the TRP53 gene (Grollman et al., 2007). This effect is in sharp contrast to sporadic urothelial cancers in which A:T -> T:A transversions are rare (Olivier et al., 2002). To date, AA carcinogenicity has been investigated only in the NMRI strain of mice (Mengs, 1988). In these mice, AA induces primarily cancer of the forestomach and a lower frequency of other tumors including renal adenomas. Our results indicate that the levels of ALI-DNA adducts increase significantly in the renal-urothelial system of mice pretreated with 3-MC 24 h before treatment with AAI. Peaks corresponding to AAI and AAla are indicated. Peaks 1, 2, and 3 are unidentified products. Each result was reproduced in two mice. C, immunoblots of hepatic microsomal protein from two mice obtained from each treatment described above and reacted with antibodies to CYP1A2 (α-CYP1A2) or CYP1A1 (α-CYP1A1). Arrowhead indicates Cyp1A1.

Both AAI and AAla induce aristolactam DNA adducts (Schmeiser et al., 1988; Shibutani et al., 2007), but AAla is relatively nontoxic to renal cells in vitro (Balachandran et al., 2005) and in vivo (Shibutani et al., 2007). Thus, AA-induced DNA damage is unlikely to be responsible for the profound toxicity observed in renal proximal tubule cells. It is yet to be established whether the cytotoxic compound involved is AAI itself or a metabolite. Reduction of AAI demethylation in Cyp1a2(-/-) mice can have the effect of increasing either.

Finally, it has been noted that urine from AA-exposed humans contains metabolites of aristolactam but not those derived from AAla (Krumbiegel et al., 1987). This implies that the nitroreduction pathway is more efficient than demethylation in metabolizing AAI in humans. However, our results indicate that human CYP1A2 is kine-
CYP1A2 DETOXICATES ARISTOLOCHIC ACID

FIG. 5. Increase in ALI-DNA adducts in mice lacking CYP1A2. Genomic DNA was isolated from the renal cortex 4 and 20 h after treatment with AAI (2 mg/kg). \(^{32}\)P-postlabeling analysis was performed as described under Materials and Methods. A. \(^{32}\)P ALI-DNA adducts in renal cortex of three Cyp1a2\(^{-/-}\) mice (lanes 2–4) and three Cyp1a2\(+/+\) mice (lanes 5–7) analyzed 20 h after treatment with AAI. Standards (S) in lane 1 were ALI-dG and ALI-dA. ALI nucleosides are 30 Da less than all nucleosides and migrate slightly faster than ALI adducts (indicated by ALI-dG and ALI-dA), under the conditions used here. B, radioactivity in each band from the experiment shown in A and a similar experiment with a 4-h time point was determined by Phosphorimager analysis, and the concentrations of ALI-dG and ALI-dA were established by comparison to the standards. The concentrations of the promutagenic ALI-DNA adduct from either Cyp1a2\(+/+\) or Cyp1a2\(^{-/-}\) mice is shown. The y-axis indicates ALI-dA adducts per 100,000 nucleotides. n = 3. * , p < 0.01. Student’s one-tailed t test.

References


Address correspondence to: Dr. Thomas A. Rosenquist, Department of Pharmacological Sciences, State University of New York, One Nicolls Road, Stony Brook, NY 11794-8651. E-mail: rosenquist@pharm.stonybrook.edu