Short Communication

Cigarette Smoke Extract Induces CYP2B6 through Constitutive Androstan Receptor in Hepatocytes

Received June 7, 2010; accepted October 18, 2010

ABSTRACT:

Smoking induces a wide range of drug-metabolizing enzymes. Among them, CYP2B6 as well as CYP1A2 is well known to be up-regulated in smokers. Although the induction of CYP1A2 is mediated by the aryl hydrocarbon receptor, the molecular mechanisms of CYP2B6 induction by smoking remain to be fully elucidated. In this study, by preparing cigarette smoke extract (CSE), we addressed the possibility that human constitutive androstan receptor (hCAR) is involved in smoking-mediated induction of CYP2B6. In HepG2 cells, CSE induced CYP1A2 but not CYP2B6, suggesting that CYP2B6 expression is differentially regulated from CYP1A2. Compared with liver in vivo, hCAR expression is dramatically reduced in cultured hepatocytes, such as HepG2. Therefore, to reconstitute hCAR signaling pathways in vitro, we generated adenovirus vector expressing hCAR. Real-time reverse transcription-polymerase chain reaction analyses revealed that the adenoviral transfection of hCAR resulted in the up-regulation of CYP2B6 mRNA, even in the absence of CSE. It is interesting to note that CSE stimulation augmented hCAR-mediated induction of CYP2B6. In contrast, the expression of CYP2B6 was not enhanced by adenovirus vector expressing β-galactosidase, a control vector, either in the presence or absence of CSE. In summary, hCAR mediated the CYP2B6 induction by CSE in HepG2 cells. These data suggest that smoking up-regulates CYP2B6 through hCAR in vivo.

Introduction

In addition to CYP2A6, CYP2B6 is one of the major nicotine-metabolizing enzymes (Yamazaki et al., 1999). Much attention has been paid to the regulation of CYP2B6 activity, because nicotine-metabolizing activity is positively associated with nicotine dependence, and the understanding of nicotine dependence contributes to the promotion of smoking cessation (Ray et al., 2009). So far, several CYP2B6 genetic polymorphic mutations that affect CYP2B6 enzyme activity have been identified; however, the association of CYP2B6 genotypes with nicotine dependence is still controversial (Lee et al., 2007; Ring et al., 2007). It is interesting to note that CYP2B6 expression is up-regulated in smokers (Miksys et al., 2003), suggesting that cigarette smoke induces CYP2B6. Therefore, the understanding of molecular mechanisms for CYP2B6 induction by smoking would provide a novel insight into nicotine dependence.

Smoking induces drug-metabolizing enzymes, including CYP1A2 and CYP2B6, and influences the pharmacokinetic profiles of a wide range of drugs (Kroon, 2007). It has been established that cigarette smoke activates aryl hydrocarbon receptor (AhR) and up-regulates CYP1A2 (Shimada et al., 2002), resulting in the increased clearance of CYP1A2 substrates, such as theophylline. In contrast to CYP1A2, the involvement of AhR in CYP2B6 expression has not been proved. It has been demonstrated previously that CYP2B6 gene expression is regulated by human pregan X receptor and human constitutive androstan receptor (hCAR) (Wang and Negishi, 2003). CYP2B6 gene is the target of hCAR, and the direct binding sites for hCAR have been identified in the CYP2B6 gene promoter region (Swales et al., 2004); however, whether hCAR is involved in CYP2B6 induction by cigarette smoke remains to be elucidated.

In this study, we have designed experiments to address the effects of tobacco smoke on CYP2B6 expression in vitro. In analysis on the molecular mechanisms of the expression of drug-metabolizing enzymes in vitro, the difficulty is derived from the phenotypic changes during the cell cultivation. In particular, it is well known that hCAR expression is down-regulated immediately after hepatocyte cultivation from liver (Pascussi et al., 2000). Therefore, hCAR signal is likely to be impaired in cultured hepatocytes. In this context, we have generated the adenovirus vector expressing hCAR (Ad-hCAR). By transducing the hCAR gene, we reconstituted hCAR signaling systems in cultured hepatocytes and analyzed the effects of cigarette smoke extract (CSE) on CYP2B6 induction in HepG2 cells. In addition, we have revealed that hCAR expression is required for the CYP2B6 induction by CSE in HepG2 cells but not for that of CYP1A2. These data suggest that smoking induces CYP2B6 through the CAR signaling pathway.

ABBREVIATIONS: AhR, aryl hydrocarbon receptor; hCAR, human constitutive androstan receptor; Ad-hCAR, adenovirus vector expressing hCAR; CSE, cigarette smoke extract; PBS, phosphate-buffered saline; RT-PCR, reverse transcription polymerase chain reaction; HEK, human embryonic kidney; MOI, multiplicity of infection; Ad-βgal, adenovirus vector expressing β-galactosidase.
CSE Preparation. CSE was prepared according to a method described previously (Su et al., 1998), with minor modifications. In brief, commercial cigarettes (Seven Stars; JT Group, Tokyo, Japan) were smoked continuously through phosphate-buffered saline (PBS) by the vacuum aspirator. Mainstream smoke from 10 cigarettes was drawn through 20 ml of PBS by application of a vacuum aspirator to the vessel containing the PBS, which was designated as 100% CSE. For each experiment, this solution was diluted with PBS to the indicated concentrations.

Generation of the Adenovirus Vector Expressing hCAR. The construction of the adenovirus vector was performed according to a method described previously (Becker et al., 1994). In brief, full-length human CAR cDNA was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using human liver cDNA as the template. The sequences of the primers were GGGAATTCAGCGGCATCATGGCAG (reverse). The PCR product was digested with TATGTGG (forward) and GGGAAGCTTTCAGCTGCAGATCTCGGA-GGGGAATTCATGGCCAGTAGGGAAGATGAGCTGAGGAACTGTGTGG-

Real-Time RT-PCR Analysis. Real-time RT-PCR was performed as described previously (Mohri et al., 2009). Total RNA (2 μg) was subjected to first-strand cDNA synthesis with oligo(dT) primer. The expression of each template was quantified by real-time RT-PCR with a SYBR Green system. The primer pairs used in this study were demonstrated in the supplemental table.

Immunoblot Analysis. Cell lysates were prepared by directly extracting proteins with an SDS-polyacrylamide gel electrophoresis sample solution. Proteins were separated with SDS-polyacrylamide gel electrophoresis and transferred onto a polyvinylidene membrane. After being blocked with 5% skim milk, the membrane was incubated with anti-hCAR (Santa Cruz Biotechnology, Inc., Santa Cruz, CA). An enhanced chemiluminescence system (ECL, Plus Western Blotting Detection Reagents; GE Healthcare Japan, Co., Ltd., Tokyo, Japan) was used for detection.

Results and Discussion

In this study, we have introduced CSE into the analysis on the expression of drug-metabolizing enzymes. CSE has been used mainly to address the effects of cigarette smoke on tissue damage, such as endothelial dysfunction (Hoshino et al., 2005). To our knowledge, this is the first application of CSE to address the influences of cigarette smoke on drug-metabolizing enzymes. Therefore, first we examined the effects of CSE on CYP1A2 expression in cultured hepatocytes (Fig. 1A) because CYP1A2 is well known to be induced by smoking through the activation of AhR. CYP1A2 mRNA was remarkably increased within 3 h after CSE stimulation, indicating that CSE could be a good tool for the study of drug metabolism. In contrast to CYP1A2, CYP2B6 mRNA was not induced by CSE in HepG2 cells (data not shown).

Because hCAR is one of the transcriptional factors responsible for CYP2B6 expression, the expression of hCAR in HepG2 was examined. Real-time RT-PCR estimated that the expression level of hCAR in HepG2 cells is less than 1% of that in human liver samples (Fig. 1B), consistent with the previous report that hCAR is rapidly down-regulated after cultured hepatocyte preparation from liver (Pascussi et al., 2000). Therefore, to reconstitute the hCAR signaling pathway in HepG2 cells, Ad-hCAR was generated (Fig. 2A). To confirm the expression of hCAR protein, HepG2 cells were infected with Ad-hCAR or adenovirus vector expressing β-galactosidase (Ad-βgal), a control vector. Cell lysates were prepared and immunoblotted with anti-hCAR antibody (Fig. 2B). The band with a molecular mass of 40 kDa was detected in Ad-hCAR-infected HepG2 cells, as reported previously (Arnold et al., 2004), although not in Ad-βgal-infected cells.
proposing the molecular mechanisms for CYP2B6 induction by smoking in vivo.

Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences (I.W., C.S., R.S., Y.F., J.A.), and Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine (M.Y.), Osaka University, Osaka, Japan; and Department of Clinical Pharmacogenomics, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan (M.M., S.N., J.A.)

Authorship Contributions

Participated in research design: Fujio and Azuma.
Conducted experiments: Yoshida, Azuma, and Fujio.
Contributed new reagents or analytic tools: Nonen, Maeda, and Fujio.
Performed data analysis: Washio, Sugiyama, Shiga, Maeda, and Fujio.
Wrote or contributed to the writing of the manuscript: Maeda and Fujio.

Other: Maeda, Nonen, Fujio, and Azuma acquired funding for the research.

References

Address correspondence to: Makiko Maeda, 1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo, 650-8530, Japan. E-mail: makikom@huhs.ac.jp

Supplementary Figure 1
Drug Metabolism and Disposition (DMD #34504)

Supplementary Figure legends.

Supplementary Figure 1. CSE upregulated CYP2B6 in HepG2 cells expressing hCAR in a concentration-dependent manner. HepG2 cells were infected with Ad-hCAR at MOI 100 and cultured in the media containing 7% (vol/vol) PBS including the indicated final concentrations of CSE, for 24 hours. The expression of CYP2B6 was analyzed by real time RT-PCR. Data are shown as mean ± S.D. from three samples.

Supplementary Table 1. Primers used in real time RT-PCR analyses.

<table>
<thead>
<tr>
<th>gene</th>
<th>direction</th>
<th>sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6</td>
<td>forward</td>
<td>5’-CACCCTAACACCCATGACCG-3’</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>5’-GATCACACCCTATCCCCGGA-3’</td>
</tr>
<tr>
<td>CYP1A2</td>
<td>forward</td>
<td>5’-CTTTGACAAGAACAGTGTCCG-3’</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>5’-AGTGTCCAGCTCTTCTGGAT-3’</td>
</tr>
<tr>
<td>hCAR</td>
<td>forward</td>
<td>5’-TGCTGCTCTGTCACACACTT-3’</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>5’-TCAATCTCATCTCTCTGTGGAAC-3’</td>
</tr>
<tr>
<td>GAPDH</td>
<td>forward</td>
<td>5’-CAATGGAAATCCCATCACCACAT-3’</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>5’-TGAGACGCCAGTGGACTCC-3’</td>
</tr>
</tbody>
</table>