Letter to the Editor

Endogenous 4β-Hydroxycholesterol-to-Cholesterol Ratio Is Not a Validated Biomarker for the Assessment of CYP3A Activity

Received August 20, 2013; accepted August 23, 2013

Björkhem-Bergman et al. (2013) published a study in healthy adults evaluating endogenous 4β-hydroxycholesterol-to-cholesterol ratio to measure CYP3A induction. The authors compare CYP3A induction fold-changes and determined correlations between 4β-hydroxycholesterol-to-cholesterol ratio and midazolam clearance after rifampicin administration. Midazolam clearance is a validated biomarker to evaluate CYP3A activity. We commend the authors for attempting to find alternative, simple, and cost-effective methods to evaluate CYP3A activity. However, we are concerned that the study results may lead to inappropriate use of the 4β-hydroxycholesterol-to-cholesterol ratio for evaluating CYP3A-mediated drug-drug interactions.

A statistically significant, but weak, relationship was reported between 4β-hydroxycholesterol-to-cholesterol ratio and midazolam clearance (coefficient of determination \(r^2 = 0.29, P < 0.01 \)). The authors state that the ratio “...might be used as a marker to evaluate CYP3A activity at baseline and not only during induction” (Björkhem-Bergman et al., 2013). Although correlation coefficients \(r \) and/or \(r^2 \) values are commonly reported in the literature and used to assume suitability of a cytochrome P450 (P450) probe (Fuhr et al., 2007), values are not a measure of predictive performance (Sheiner and Beal, 1981; Bland and Altman, 1986). Additional limitations of \(r^2 \) values include the inability to determine if the most appropriate set of independent variables was selected, whether independent variables are causes of changes in the dependent variable, and whether omitted-variable bias exists (Nagelkerke, 1991; Draper and Smith, 1998).

Additionally, in a previously published study, the authors compared 4β-hydroxycholesterol to another validated CYP3A probe, quinine, and reported weak \(r \) values with statistical significance \(r = -0.24 \) to \(-0.5, P < 0.05 \) (Diczfalusy et al., 2008). However, statistically significant \(r \) and/or \(r^2 \) values do not substantiate that a P450 probe is valid for general use. Correlation coefficients and/or coefficients of determination are often overvalued and result in exaggerated conclusions. A P450 probe should adhere to validation criteria to be considered appropriate for use (Watkins, 1994; Zaigler et al., 2000; Fuhr et al., 2007). Given the limitations of \(r \) and \(r^2 \) values in general, as well as in these studies (Diczfalusy et al., 2008; Björkhem-Bergman et al., 2013), we do not believe that the 4β-hydroxycholesterol-to-cholesterol ratio has been validated as a biomarker for the measurement of CYP3A activity.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (J.D.M.); and Bertino Consulting, Schenectady, New York (A.N.N., J.S.B.)

Authorship Contributions

Wrote or contributed to the writing of the manuscript: Ma, Nafziger, Bertino.

References

Address correspondence to: Dr. Joseph D. Ma, University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Dr. #0714, La Jolla, CA 92039-0714. E-mail: joema@ucsd.edu