Special Section on Pregnancy

Hepatic Cyp2d and Cyp26a1 mRNAs and Activities Are Increased During Mouse Pregnancy

Ariel R. Topletz, Huong N. Le, Nora Lee, John D. Chapman, Edward J. Kelly, Joanne Wang, and Nina Isoherranen

University of Washington School of Pharmacy, Department of Pharmaceutics (A.R.T., H.N.L. N.L., E.J.K., J.W., N.I.) and Medicinal Chemistry (J.D.C.), Seattle, Washington

Received October 2, 2012; accepted November 13, 2012

ABSTRACT

There is considerable evidence that drug disposition is altered during human pregnancy and based on probe drug studies, CYP2D6 activity increases during human pregnancy. The aim of this study was to determine whether the changes of CYP2D6 activity observed during human pregnancy could be replicated in the mouse, and explore possible mechanisms of increased CYP2D6 activity during pregnancy. Cyp2d11, Cyp2d22, Cyp2d26 and Cyp2d40 mRNA was increased (P < 0.05) on gestational days (GD) 15 and 19 compared with the non-pregnant controls. There was no change (P > 0.05) in Cyp2d9 and Cyp2d10 mRNA. In agreement with the increased Cyp2d mRNA, Cyp2d-mediated dextrorphan formation from dextromethorphan was increased 2.7-fold (P < 0.05) on GD19 (96.8±39.4 pmol/min/mg protein) when compared with the non-pregnant controls (20.8±11.2 pmol/min/mg protein). An increase in Cyp26a1 mRNA (10-fold) and retinoic acid receptor (Rarβ) mRNA (2.8-fold) was also observed during pregnancy. The increase in Cyp26a1 and Rarβ mRNA during pregnancy indicates increased retinoic acid signaling in the liver during pregnancy. A putative retinoic acid response element was identified within the Cyp2d40 promoter and the mRNA of Cyp2d40 correlated (P < 0.05) with Cyp26a1 and Rarβ. These results show that Cyp2d mRNA is increased during mouse pregnancy and the mouse may provide a suitable model to investigate the mechanisms underlying the increased clearance of CYP2D6 probes observed during human pregnancy. Our findings also suggest that retinoic acid signaling in the liver is increased during pregnancy, which may have broader implications to energy homeostasis in the liver during pregnancy.

Introduction

Altered drug disposition during human pregnancy could compromise the therapy to the mother or affect the risk of medications to the fetus. Chronic or pregnancy-related conditions such as epilepsy, depression, asthma, preeclampsia or gestational diabetes often require medical treatment during pregnancy, and as a consequence the use of prescription and over-the-counter medications during pregnancy is common (Andrade et al., 2004). For example, 95.8% of pregnant women in rural West Virginia were administered prescription medications, 92.6% took over-the-counter medications, and 45.2% used herbal medicines (Glover et al., 2003). However, little is known about whether the same dosing regimens of drugs used in non-pregnant women and in men can be used during pregnancy. In fact, there is accumulating evidence that pregnancy alters the disposition of drugs and hence drug doses need to be adjusted during pregnancy (Anderson, 2005).

Pharmacokinetic studies using probe drugs have shown that the activity of liver cytochrome P450 enzymes (P450s) changes during pregnancy in an enzyme specific fashion (Anderson, 2005). The activity of CYP3A4 is increased approximately 2-fold during human pregnancy based on midazolam clearance (Hebert et al., 2008). The 6-fold increase in metoprolol oral clearance (Hogstedt et al., 1983) and decrease in dextromethorphan urinary ratio (Tracy et al., 2005) during pregnancy indicate up to 6-fold increase in CYP2D6 activity during pregnancy. In contrast, CYP1A2-mediated metabolism of caffeine and theophylline is decreased approximately 50% during human pregnancy, and CYP2C19 activity appears to be decreased based on proguanil metabolism (Anderson, 2005; Tracy et al., 2005). Together these studies show a complicated network of pregnancy mediated pharmacokinetic changes. However, the mechanisms causing these changes during pregnancy are still largely unknown. Due to the lack of mechanistic understanding, extrapolation of the findings from one gestational age to another cannot be done for specific P450s.

Animal models have been used to identify specific mechanisms by which pregnancy alters drug disposition. For example, in the mouse an

ABBREVIATIONS: aRα, all-trans-retinoic acid; GD, gestational day; KPi, potassium phosphate; MLH, mouse liver homogenates; PMSF, phenylmethylsulfonyl fluoride; P450, cytochrome P450; RA, retinoic acid; RAR or Rar, retinoic acid receptor; RARE, retinoic acid response element.

This work was supported in part by National Institutes of Health [Grant R01 GM081569]. Research reported in this publication was supported in part by the National Center for Advancing Translational Sciences of the National Institutes of Health through the Clinical and Translational Science Awards Program (CTSA) under Grants [Grants TL1TR000422 and UL1TR000423]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

dx.doi.org/dmd.112.049379.

This article has supplemental material available at dmd.aspetjournals.org.
increase was detected in liver Cyp3a16, Cyp3a41, and Cyp3a44 mRNA, in liver Cyp3a activity and in the activity of the human CYP3A4 promoter during pregnancy (Mathias et al., 2006; Zhang et al., 2008). This increase in CYP3A mRNA, activity and transcription is in agreement with the observed increase in CYP3A4 activity during human pregnancy. In addition, similar to what is observed during human pregnancy, the clearance of nelfinavir was increased during mouse pregnancy (Mathias et al., 2006). Together these data suggest that the mouse is a good model for investigating the mechanisms responsible for changes in CYP3A4 activity during human pregnancy. Similarly, the observed 50% decrease in caffeine clearance during human pregnancy was replicated in the pregnant rat with Cyp1a2 activity, expression and mRNA decreasing during rat pregnancy (Walker et al., 2011). However, Cyp2d mRNA and activity were also decreased during rat pregnancy, contradictory to the apparent increase in CYP2D6 activity in pregnant humans (Dickmann et al., 2008), suggesting that the rat does not replicate some aspects of human pregnancy. Nevertheless, the study demonstrated that Cyp2d mRNA and activity were altered during pregnancy. This is important since there are no known xenobiotic inducers of CYP2D6 expression and classic inducers of P450 enzymes do not affect CYP2D6 activity.

Interestingly, in the rat, a correlation between the Cyp2d isoform mRNA as well as Cyp2d and Rarβ changes in Cyp2d9, Cyp2d10, Cyp2d11, Cyp2d22, Cyp2d26, and Cyp2d40 mRNA were observed with pregnant mice were quantified using RT-PCR. All incubations were conducted at the protein and time linear range of dextromethorphan metabolism. The 1 mM concentration is below the K_m for dextromethorphan in rat liver microsomes (Dickmann et al., 2008) and the known K_m for CYP2D6-mediated formation of dextromethorphan (Lutz and Isoherranen, 2012). The 1 μM concentration is below the K_m of dextromethorphan in rat microsomes and for CYP2D6 allowing evaluation of intrinsic clearance changes as reported previously (Dickmann et al., 2008), whereas 50 μM is much greater than the K_m and allows determination of V_max in rat liver microsomes and for human CYP2D6. Michaelis-Menten kinetic constants for dextromethorphan formation were determined using MLH from 7 mice (3 non-pregnant, 2 GD 15 and 2 GD 19). The MLHs (0.4 mg/ml) were incubated individually with two concentrations (1 and 50 μM) of dextromethorphan. These concentrations were chosen based on prior data of dextromethorphan metabolism in rat liver microsomes (Dickmann et al., 2008) and the known K_m for CYP2D6-mediated formation of dextromethorphan. All incubations were performed using 96-well plates in 100 mM KPi buffer (pH 7.4) in a total volume of 0.2 ml per well. Samples were preincubated for 5 min before initiation with NADPH (1 mM final concentration). After an incubation period of 10 min, 0.125 ml of each sample was removed and quenched into cold acetonitrile (0.125 ml) in a fresh 96-well plate. Plates were then centrifuged for 20 min at 612g, 4°C, and 0.125-ml supernatant was removed and transferred into a fresh 96-well plate for UFLC-MS/MS (ultra fast liquid chromatography-tandem mass spectrometry) analysis.

Dextromethorphan was separated using a Thermo Scientific Hypersil Gold column (1.9 μm, 2.1 x 100 mm; Thermo Fisher Scientific) with a Shimadzu UFLC XR DGU-20A5 (Shimadzu Scientific Instruments, Columbia, MD) coupled to an AB Sciex 3200 Mass Spectrometer (AB Sciex, Framingham, MA). The analytes were separated using a linear seven minute gradient from an initial mobile phase of 10% acetonitrile 90% aqueous with 0.1% formic acid to a final condition of 90% acetonitrile 10% aqueous with 0.1% formic acid. Dextromethorphan was detected using positive ion electrospray mass spectrometry, with a declustering potential of 61, a collision energy of 49, and a collision exit potential of 4.5 (Lutz and Isoherranen, 2012). The parent fragment MS/MS transition of m/z 258.2 > 157.2 Da was monitored. The injection volume was 10 μl. A six point standard curve for dextromethorphan was constructed using concentrations between 5 and 500 nM and dextromethorphan concentrations were quantified based on dextrorphan peak height.

All-trans-Retinoic Acid Metabolism in Mouse Liver Homogenates. Changes in hepatic all-trans-retinoic acid (aTRA) metabolism were...
RARE Identification within Promoter Regions of Cyp2d, Cyp26a1 and Rarβ.

The DNA sequences of the mouse Cyp2d genes, Cyp26a1 and Rarβ were scanned to determine if any retinoic acid response elements (RAREs) existed within the respective promoter regions. In-house Perl scripts were written to collect and parse stretches of genomic information for potential RARE promoter sequences in a two-step process. The first step uses the BioMart API (http://www.biomart.org) to access Ensembl (http://www.ensemble.org) and record the user-defined gene information to a text file in FASTA format. Genes of interest are listed in FASTA format and are accessed by the Perl script. For each gene in the input file, 10,000 DNA base pairs are captured directly upstream of the gene and annotated to an output file. The second step uses an independent Perl script to parse the aforementioned collection of gene information for RARE sequences. Perl string matching is employed to match sequences with the following requirement: (A|G)G(T|C)A(A|G|T|C)/(A|G)G(T|C)G(A), where n is one, two or five bases as defined by DR1, DR2 and DR5 RARE sequences, respectively. As defined by Perl, bases listed within parentheses and separated by the character ‘?’ allow the string matching algorithm to match only one of the listed bases. If a series of base pairs in a gene match the string representing a potential RARE sequence based on the above rule, the gene name and the determined RARE sequence found are listed in a FASTA format output file.

Data and Statistical Analysis.

Changes in mRNA were quantified as fold-difference from control using the comparative Ct method (ΔΔCt) with β-actin as the housekeeping gene. All data were fitted via linear and nonlinear regression using Prism v.5 (GraphPad Software, Inc., La Jolla, CA) and all statistical analyses were performed using Prism v.5 (GraphPad). One-way analyses of variance were performed to determine statistical significance of differences in mRNA expression and Cyp2d and Cyp26a1 activity between non-pregnant mice and pregnant mice at GD 15 and GD 19. A value of P < 0.05 was considered significant. Significant differences between non-pregnant GD 15 and GD 19 mice were then determined using Bonferroni’s Multiple Comparison Test. All correlations between mRNA of Cyp2d isofoms, Cyp26a1 and Rarβ across the gestational ages were tested using linear regression. Regressions with P values < 0.05 were considered significant.

All enzyme kinetic data were fitted using nonlinear regression. All parameter estimates are given as means ± S.D. Michaelis-Menten parameters for dextrorphan formation were estimated using Eq. 1, where v is the formation velocity of the metabolite and [S] is the initial substrate concentration (dextrorphan).

\[
v = \frac{V_{\text{max}}[S]}{K_m + [S]}
\]

Intrinsic clearance (CLint) of dextrorphan formation was calculated using Eq. 2.

\[
CL_{\text{int}} = \frac{V_{\text{max}}}{K_{\text{int}}}
\]

Formation velocity of 4-OH-RA + 4-oxo-RA from cyp2d was used as a measure of cyp2d metabolism due to the sequential oxidation of 4-OH-RA to 4-oxo-RA (Lutz et al., 2009).

The changes in the in vivo intrinsic clearance of dextrorphan and cyp2d were predicted using in vitro-to-in vivo extrapolation. The intrinsic clearances were scaled up to in vivo CLint at different gestational stages and in non-pregnant controls according to Eq. 3 using total milligrams of protein per gram of liver measured in each animal (Supplemental Table 1) and the average maternal mouse liver weight for each gestational age. Values for the average liver weight at each gestational age were used as previously reported: 3.75 ± 0.25 g (non-pregnant), 2.48 ± 0.39 g (GD 15), and 2.62 ± 0.49 g (GD 19) (Lai et al., 2011). The values of mg protein per gram of liver were calculated for each animal and used to scale up to total CLint, liver, before each gestational age was averaged.

\[
CL_{\text{int, liver}} = CL_{\text{int}} \times \left(\frac{mg \text{ protein per g of liver}}{total \text{ g of liver}}\right)
\]

Results

Changes in Cyp2d mRNA during Mouse Pregnancy. Cyp2d10, Cyp2d11, Cyp2d22, Cyp2d26, and Cyp2d40 are all found in both murine genders (Renaud et al., 2011). The mRNA of Cyp2d11, Cyp2d22, Cyp2d26, and Cyp2d40 was increased significantly (P < 0.01) on GD 15 and GD 19 when compared with the non-pregnant control mice (Fig. 1A), with Cyp2d40 showing the greatest increase in mRNA (6-fold) during gestation. The mRNA of Cyp2d10 at GD 15 and GD 19 was not different from the non-pregnant controls (P > 0.05). The mRNA of the male-specific enzyme Cyp2d9 was also unchanged during pregnancy (P > 0.05). No differences (P > 0.05) were found between GD 15 and GD 19 for any of the Cyp2d enzymes. Baseline (non-pregnant) Ct values indicated that average mRNA levels were highest for Cyp2d26 (Ct,Ave NP = 23.3), Cyp2d22 (Ct,Ave NP = 25.8), and Cyp2d10 (Ct,Ave NP = 24.7), with lower mRNA baseline quantification for Cyp2d40 (Ct,Ave NP = 32.6), Cyp2d9 (Ct,Ave NP = 32.9) and Cyp2d11 (Ct = 36.8).

Changes in Dextrorphan Metabolism during Mouse Pregnancy. To determine whether increased Cyp2d mRNA levels translated to increased Cyp2d activity, dextrorphan formation from dextrorphan was evaluated in MLHs (non-pregnant, n = 5; GD 15, n = 3; and GD 19, n = 3) at two concentrations: 1 µM (below apparent Km in rat liver microsomes) and 50 µM (~10*-8* Km in rat liver microsomes providing estimate of Vmax). A 2.7-fold increase in dextrorphan formation was observed between non-pregnant (20.8 ± 11.2 pmol/min/mg protein) and GD 19 (56.8 ± 39.4 pmol/min/mg protein) MLHs at 50 µM dextrorphan (P < 0.05), but the 1.7-fold increase in dextrorphan formation between non-pregnant and GD 19 (36.3 ± 8.4 pmol/min/mg protein) MLHs was not significant (P > 0.05) (Fig. 1B). Formation of dextrorphan at 1 µM was comparable (P > 0.05) between all three gestational ages (Fig. 1C).

To evaluate the reasons for the increased dextrorphan formation at 50 µM dextrorphan, Michaelis-Menten constants were determined in MLHs from seven mice; three non-pregnant, two GD 15,
A 1.3-fold increase ($P < 0.05$) in the V_{max} of dextrorphan formation was observed at GD 19 when compared with non-pregnant controls and GD 15 mice (Fig. 1D; Table 1), suggesting increased Cyp2d protein expression. The average V_{max} on GD 15 was not different from non-pregnant mice (Table 1). The increase in the apparent K_m for dextrorphan formation during gestation was also not significant (Table 1). The Eadie-Hofstee plots for each GD are shown in Supplemental Fig. 1. The K_m and V_{max} values are listed in Table 1. Significant changes in comparison with nonpregnant controls are indicated as **$P < 0.01$ and *$P < 0.05$.

![Figure 1](https://example.com/fig1.png)

Fig. 1. (A) The fold change in Cyp2d mRNA on GD 15 ($n = 6$, blue bars), and GD 19 ($n = 6$, green bars) in comparison with non-pregnant mice ($n = 4$, yellow bars). The measured dextrorphan formation velocity at 50 µM (B) and 1 µM (C) concentration of dextromethorphan is shown at two gestational ages and in non-pregnant controls using MLH from a separate group of animals. The panels show box and whiskers plots of dextrorphan formation velocity in non-pregnant ($n = 5$), GD 15 ($n = 3$) and GD 19 ($n = 3$) mice. The line shows the median, the box the 75th and 25th percentile and the error bar the range of the measurements in each group. The Michaelis-Menten parameters of dextrorphan formation from dextromethorphan were measured in MLHs from individual animals (D) using three control (open circles), two GD15 (closed circles) and two GD19 (closed triangles) MLHs. The lines indicate the fit of Michaelis-Menten equation to the average data from all animals on that gestational age and the error bars show the range of formation velocities observed at a given concentration of dextromethorphan in the different animals. The Eadie-Hofstee plots for each GD are shown in Supplemental Fig. 1. The K_m and V_{max} values are listed in Table 1. Significant changes in comparison with nonpregnant controls are indicated as **$P < 0.01$ and *$P < 0.05$.

and two GD 19. A 1.3-fold increase ($P < 0.05$) in the V_{max} of dextrorphan formation was observed at GD 19 when compared with non-pregnant controls and GD 15 mice (Fig. 1D; Table 1), suggesting increased Cyp2d protein expression. The average V_{max} on GD 15 was not different from non-pregnant mice (Table 1). The increase in the apparent K_m for dextrorphan formation during gestation was also not significant (Table 1). The Eadie-Hofstee plots for dextrorphan formation in the three gestational ages are shown in supplemental Fig. 1. The average intrinsic clearance of dextrorphan formation from dextromethorphan in MLHs did not change on GD 15 and GD 19 when compared with that of non-pregnant mice (Table 1). However, the in vivo intrinsic clearance of dextromethorphan was predicted to increase 1.5- to 1.8-fold during mouse pregnancy (GD 15 and GD 19) in comparison with the non-pregnant controls. The predicted in vivo

<table>
<thead>
<tr>
<th>Gestational Age</th>
<th>V_{max} (pmol/min/mg protein)</th>
<th>K_m (µM)</th>
<th>CL_{int} (µl/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpregnant ($n = 3$)</td>
<td>25.4 ± 1.0</td>
<td>2.5 ± 0.5</td>
<td>10.1 ± 2.1</td>
</tr>
<tr>
<td>15 days ($n = 2$)</td>
<td>26.6 ± 1.6</td>
<td>3.4 ± 1.0</td>
<td>7.9 ± 2.3</td>
</tr>
<tr>
<td>19 days ($n = 2$)</td>
<td>32.3 ± 0.7*</td>
<td>3.5 ± 0.4</td>
<td>9.2 ± 1.0</td>
</tr>
</tbody>
</table>

* Indicates statistical significance at $P < 0.05$ compared with nonpregnant and GD15 mice.

TABLE 1
Characterization of changes in dextromethorphan metabolism in mouse liver during gestation

The incubations were conducted as described in Materials and Methods.

Michaelis-Menten Parameters for Dextrorphan Formation in MLH from Pregnant and Nonpregnant mice
Changes in Cyp26a1, RARα, and RARβ mRNA during Mouse Pregnancy. The mRNA of Cyp26a1 was increased ($P < 0.05$) on both GD 15 (10-fold) and GD 19 (9.7-fold) compared with non-pregnant controls (Fig. 2A). RARβ mRNA was also increased on GD 15 (2.8-fold, $P < 0.01$) but the increase on GD 19 (2.0-fold) was not significant ($P > 0.05$). There was no significant change in RARα mRNA at GD 15 and GD 19 when compared to non-pregnant controls. No differences in mRNA expression were observed between GD 15 and GD 19 for Cyp26a1, RARα, or RARβ ($P > 0.05$).

Changes in 4-OH-RA, 4-oxo-RA, and 16-OH-RA Formation during Mouse Pregnancy. Since Cyp26a1 mRNA was increased during pregnancy, arRA metabolism by MLHs was quantified using the additive formation rates of 4-OH-RA and 4-oxo-RA. While 4-OH-RA is formed by multiple P450 enzymes, 16-OH-RA appears to be a specific metabolite for CYP26A1 (Thatcher et al., 2011). Hence, the relative formation of 16-OH-RA was measured as a specific Cyp26a1 probe. Formation of 4-OH-RA, 4-oxo-RA and 16-OH-RA from MRA was detected in all livers, regardless of gestational age. The combined formation rate of 4-oxo-RA and 4-OH-RA (Fig. 2B) was not different between the different gestational days: 2.05 ± 0.57 pmol/min/mg protein (non-pregnant), 2.11 ± 0.55 pmol/min/mg protein (GD 15), and 2.21 ± 0.20 pmol/min/mg protein (GD 19). The relative formation of 16-OH-RA (Fig. 2C), increased 1.8-fold ($P < 0.05$) on GD 15 compared with the non-pregnant animals. The in vivo CL_{int} for 4-OH-RA and 4-oxo-RA formation was predicted to increase 1.7- and 2.2-fold on gestational days 15 and 19, respectively, when compared with the non-pregnant controls. The predicted CL_{int} values were 391.0 ± 105.6 µL/min (non-pregnant), 673.4 ± 314.8 µL/min (GD15) and 873.4 ± 358.0 µL/min (GD19) suggesting that arRA clearance is increased during mouse pregnancy.

Correlations between Cyp2d, Cyp26a1 and Rarb mRNA. To explore the role of arRA in regulating Cyp2d expression, correlation between Cyp2d mRNA and the mRNA of marker genes of RAR activation was evaluated. The mRNA of Cyp2d11, Cyp2d22, Cyp2d26, and Cyp2d40 positively correlated ($P < 0.05$) with Cyp26a1 mRNA (Table 2; Supplemental Fig. 2). There was no correlation ($P > 0.05$) between Cyp26a1 mRNA and the mRNA of Cyp2d9 and Cyp2d10 (Table 2; Supplemental Fig. 2). Similar to the correlation between Cyp2d enzymes and Cyp26a1, a correlation ($P < 0.05$) was observed between Rarβ mRNA and Cyp2d22, Cyp2d26, and Cyp2d40 mRNA. There was no correlation between Rarβ mRNA and Cyp2d11, Cyp2d9 and Cyp2d10 mRNA ($P > 0.05$) (Table 2; Supplemental Fig. 3). In addition, of the Cyp2d enzymes, Cyp2d22 and Cyp2d40 mRNA correlated ($P < 0.05$) with Cyp2d11, the mRNA of Cyp2d26 and Cyp2d40 correlated with Cyp2d22 mRNA, and the mRNA of Cyp2d40 correlated with Cyp2d26 mRNA (Supplemental Table 2). A positive correlation was also detected between Cyp26a1 and Rarβ mRNA (Table 2; Supplemental Fig. 4).

Identification of an RARE within Mouse Cyp2d40, Cyp26a1 and Rarβ Promoter Regions. The location of the Cyp2d11, Cyp2d22, Cyp2d10, Cyp2d40 and Cyp2d26 genes in the Cyp2d gene locus is shown in Fig. 3A. An RARE-DR2 promoter sequence was found within Cyp2d40 promoter (Fig. 3, B and E) but due to the location of the Cyp2d genes it is possible that this RARE also contributes to the regulation of the other Cyp2d genes in this locus. No additional RARE sequences were found in the Cyp2d gene locus. Cyp26a1 and Rarβ have previously been shown to contain identical RARE-DR5 promoter regions (Loudig et al., 2000; Loudig et al., 2005), and these RAREs were identified in the current study as well (Fig. 3, C, D, and E).
Discussion

Based on probe studies, one of the largest effects of pregnancy on specific P450 activity is observed with CYP2D6. The increased activity of CYP2D6 is clinically important as approximately 30% of drugs on the market are metabolized by CYP2D6 (Shimada et al., 1994), including many drugs administered to pregnant women such as antidepressants, antipsychotics, and β-blockers (Wadelius et al., 1997). The oral clearance of metoprolol, a CYP2D6 probe, increased 6-fold and the bioavailability decreased to half at 26–30 weeks of gestation compared with postpartum (Hogstedt et al., 1985). A decrease in the urinary dextromethorphan-dextrorphan metabolic ratio was also observed at all trimesters (Tracy et al., 2005). In CYP2D6 extensive metabolizers, at 36 weeks of gestation a 50% decrease in the plasma dextromethorphan-dextrorphan metabolic ratio was detected when compared with post-partum (Wadelius et al., 1997). In individuals lacking functional CYP2D6, a 50% increase in parent/metabolite ratio was detected (Wadelius et al., 1997). Together these data provide evidence that CYP2D6 activity is increased during human pregnancy.

The apparent induction of CYP2D6 during pregnancy is puzzling since CYP2D6 is not considered to be inducible by xenobiotics. It has been shown that classic xenobiotic inducers that activate PXR, AhR and CAR, do not induce CYP2D6 (Niemi et al., 2003; Dixit et al., 2007; Hewitt et al., 2007; Westerink and Schoonen, 2007). There does, however, appear to be transcriptional regulation of CYP2D6. The variation of CYP2D6 activity correlates well with CYP2D6 mRNA in humans (Carcillo et al., 2003) and previous studies have shown that the orphan nuclear receptor HNF 4α regulates CYP2D6 transcription via binding to a direct repeat site (DR1) on the CYP2D6 promoter (Cairns et al., 1996). In addition, in human hepatocytes, analysis of P450 gene expression after adenoviral HNF4α antisense RNA transfection resulted in a 45% decrease in CYP2D6 gene expression (Jover et al., 2001). In CYP2D6 humanized mice lacking HNF4α in the liver, a 50% decrease in CYP2D6 mRNA and activity was observed (Corchero et al., 2001). However, HNF4α is a common regulator of many liver P450 enzymes, which all change in different manner during pregnancy, and as such it is unlikely that changes in CYP2D6 activity during human pregnancy can be completely explained by changes in HNF4α-mediated transcriptional activity.

Studies in pregnant rats have shown that both Cyp2d mRNA and activity change during pregnancy, but a decrease instead of an increase in Cyp2d mRNA and activity was observed during rat pregnancy (Dickmann et al., 2008). In contrast to the findings in the rat, this study shows that during mouse pregnancy the mRNA of Cyp2d40 was increased up to 6-fold and Cyp2d11, Cyp2d22 and Cyp2d26 were increased approximately 2-fold. This increase in Cyp2d mRNA is in agreement with the observed increase in CYP2D6 activity in the human, and suggests that the mouse can replicate changes in Cyp2d activity and may be an appropriate model to study the mechanisms underlying CYP2D regulation during pregnancy. Indeed, when the in vitro intrinsic clearance of dextromethorphan during mouse pregnancy was extrapolated to in vivo, a 2.2- to 3.7-fold increase in dextromethorphan intrinsic clearance was predicted on GD15 and GD19, respectively. This predicted increase is in agreement with the 2-fold increase in dextromethorphan clearance observed in humans (Wadelius et al., 1997). The increase in predicted Cyp2d activity and dextromethorphan...
intrinsic clearance is most likely due to increased apparent V_{max} for dextorphan formation. The apparent V_{max} value was increased by 30% at GD 19, and the dextorphan formation velocity in a different set of mice was increased by 2.8-fold at GD 19 at dextromethorphan concentration of 50 μM.

The increased V_{max} value for dextorphan formation is in agreement with the increase in Cyp2d40, Cyp2d11, Cyp2d22 and Cyp2d26 mRNA. Nevertheless, it is not possible to differentiate the relative contributions of individual Cyp2d enzymes to dextorphan formation. Using Cyp2d knock-out mice, it has been shown that Cyp2d enzymes mediate the overall elimination of dextromethorphan in mice (Scheer et al., 2012), but dextromethorphan metabolism has been kinetically characterized only for Cyp2d22 ($K_m = 250$ μM) (Yu and Haining, 2006). The observed K_m values for dextorphan formation in the mouse liver homogenates (2.5–3.5 μM), were ~40-fold lower than that shown for Cyp2d22, suggesting that multiple enzymes contribute to dextorphan formation in mouse liver. However, the Eadie-Hofstee plots were linear preventing identification of multiple contributing enzymes. The observed K_m values in MLH were similar to those previously determined in rat liver microsomes (2.5–10 μM) from pregnant and nonpregnant animals (Dickmann et al., 2008) and in agreement with the K_m values of dextorphan formation determined for all four recombinant rat Cyp2d enzymes (K_m values 0.3–49 μM) (Narimatsu et al., 2009). The trend toward higher K_m during pregnancy is similar to that observed in rats, and could be entirely a result of increased contribution of a low affinity Cyp2d enzyme to dextorphan formation in relation to a high affinity Cyp2d enzyme. Assuming similar PCR amplification efficiencies and the obtained absolute C$_T$ values for the Cyp2d enzymes, Cyp2d26, Cyp2d22 and Cyp2d10 are the predominant Cyp2d enzymes in female mouse liver. Therefore, it is likely that the obtained K_m is a combination of the activities of these three enzymes together with increased contribution of Cyp2d40 to dextromethorphan metabolism during pregnancy. It is also likely that at low dextromethorphan concentrations (< 5 μM) dextorphan formation is mainly catalyzed by a high affinity Cyp2d enzyme which does not change during pregnancy. This high affinity Cyp2d enzyme could be Cyp2d10. The metabolism at 50 μM is likely to be catalyzed by low affinity enzymes, possibly Cyp2d22 and Cyp2d40, that are significantly increased during pregnancy. It is also possible that the recombinant enzyme system used for Cyp2d22 characterization is different in the lipid content and protein-protein interactions than MLH resulting in possible differences in measured enzyme kinetic values. Together these data suggest that the increased dextorphan formation on GD19 is due to increased expression of Cyp2d proteins. However, due to the likely contribution of multiple mouse P450 enzymes to dextromethorphan metabolism a humanized CYP2D6 mouse model may be a better option for studying changes in CYP2D6 activity during pregnancy.

It has been proposed that RA signaling contributes to CYP2D regulation during pregnancy and RA was shown to alter CYP2D6 mRNA in HepG2 cells (Dickmann et al., 2008). To further evaluate this relationship the changes in the mRNA of two classic model arRα responsive genes, Cyp26a1 and Racβ, were measured during mouse pregnancy. The mRNA of both of these genes was increased during pregnancy in agreement with activation of Rars and arRα signaling. The promoter regions of Cyp26a1 and Racβ have characteristic RAREs with direct repeats separated by 5 bases (DR5) (Fig. 3) that are typically associated with increased transcription (Chambon, 1996). The increase in Cyp26a1 mRNA was greater than Racβ during pregnancy, similarly to what has been previously observed following RA treatment in HepG2 cells (Tay et al., 2010). The increase in Cyp26a1 mRNA was coupled with increase in 16-OH-RA formation, a reaction indicative of increased Cyp26a1 activity. The increased Cyp26a1 and Racβ mRNA during pregnancy suggest that arRα signaling is also increased in the maternal liver. arRα is a critical signaling molecule during mammalian development (Claget-Dame and DeLuca, 2002; Maden, 2007; Duester, 2008) and plays a role in fetal organogenesis.

Positive correlations between activation of Rars (using Cyp26a1 and Racβ mRNA as markers), and Cyp2d mRNA were observed in this study. On the basis of these correlations and previous data, it was speculated that RA signaling may contribute to Cyp2d regulation. A DR2 RARE was identified in the Cyp2d40 promoter (Fig. 3). The DR2 RARE has been shown to be associated with an RA mediated increase in transcription of the CRABPII gene (Lefebvre et al., 1995; Chambon, 1996). The DR2 element may be responsible for the correlation between Cyp2d40 mRNA and Cyp26a1 mRNA, the increased mRNA of Cyp2d22, Cyp2d11, Cyp2d40 and Cyp2d26 and the correlation of the mRNA of these four genes due to the orientation of these genes and a co-regulation of the linked genes. However, further detailed biochemical studies are needed to demonstrate that the identified RARE is a functional promoter element and to determine whether RA signaling contributes to the increased Cyp2d mRNA during pregnancy.

In conclusion, this study shows that Cyp2d mRNA and activity together with Cyp26a1 and Racβ are increased during mouse pregnancy. As hypothesized, the increased Cyp2d mRNA correlated with increased RA signaling in the mouse liver during pregnancy. This is the first study to demonstrate that Cyp2d mRNA is increased during pregnancy and hence the data presented provides important evidence toward potential transcriptional regulation of CYP2D6 and Cyp2d enzymes during human and mouse pregnancy. Further mechanistic characterization of the possible involvement of RA signaling in CYP2D6 regulation is needed.

Authorship Contributions

Participated in research design: Topletz, Isoherranen

Conducted experiments: Topletz, Le, Lee

Contributed new reagents or analytic tools: Kelly, Wang, Lee, Chapman

Performed data analysis: Topletz, Le, Isoherranen, Chapman

Wrote or contributed to writing of the manuscript: Topletz, Le, Chapman, Isoherranen

References

Dixi V, Hariparsad N, Li F, Desai P, Thummel KE, and Unadkat JD (2007) Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in...

Address correspondence to: Dr. Nina Isoherranen, School of Pharmacy, Department of Pharmaceutics, University of Washington, Box 357610, H272 Health Science Building, Seattle, WA 98195-7610. E-mail: ni2@u.washington.edu