P-Glycoprotein Increases Portal Bioavailability of Loperamide in Mouse by Reducing First-Pass Intestinal Metabolism

Matthew B. Dufek, Beverly M. Knight, Arlene S. Bridges, and Dhiren R. Thakker

Division of Molecular Pharmaceutics (M.B.D., B.M.K.) and Division of Pharmacotherapy and Experimental Therapeutics (D.R.T.), UNC Eshelman School of Pharmacy; and Department of Pathology and Laboratory Medicine, School of Medicine (A.S.B.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Received November 5, 2012; accepted January 3, 2013

ABSTRACT

P-glycoprotein (P-gp) and CYP3A (cytochrome P450 3A, generally; Cyp3a, rodent enzyme) in the intestine can attenuate absorption of orally administered drugs. While some suggest that P-gp enhances intestinal metabolism by CYP3A/Cyp3a during absorption of a dual substrate, others suggest that P-gp reduces the metabolism in the intestine when substrates are at subsaturating concentrations. Hence, to elucidate the cellular mechanisms that can address these divergent reports, we studied intestinal absorption of the dual substrate loperamide in portal vein-cannulated P-gp–competent and P-gp–deficient mice. These studies showed that at low doses of loperamide, which produced intestinal concentrations near the apparent Km for oxidative metabolism, the bioavailability across the intestine (Fg) was 6-fold greater in the P-gp–competent mice than in P-gp–deficient mice. The higher Fg of loperamide in the presence of P-gp was attributed to lower loperamide intestinal metabolism. However, at high doses of loperamide, the sparing of first-pass metabolism by P-gp was balanced against the attenuation of absorption by apical efflux, resulting in no net effect on Fg. In vitro studies with intestinal tissue from P-gp–competent and -deficient mice confirmed that P-gp reduced the metabolic rate of loperamide during absorptive flux at concentrations near Km but had little effect on metabolism at higher (saturating) concentrations. Further, studies in which Cyp3a was chemically inactivated by amino-benzotriazole in P-gp–competent and -deficient mice, showed that P-gp and Cyp3a individually attenuated Fg by 8-fold and 70-fold, respectively. These results confirmed that P-gp effectively protects loperamide at low doses from intestinal first-pass metabolism during intestinal absorption.

Introduction

The intestinal epithelium is a highly complex barrier with several physical and biochemical features, including CYP3A (cytochrome P450 3A, generally; Cyp3a, rodent enzyme) (oxidative metabolism) and P-glycoprotein (P-gp) [apical (AP) efflux], which limit oral absorption of drugs (Benet, 1996; Paine et al., 1996). These two proteins influence the systemic bioavailability of widely diverse drugs (Castanon-Gonzalez et al., 1995), such as the anti-HIV drug saquinavir (Fitzsimmons and Collins, 1997; Sinko et al., 2004) or the immunosuppressive agent cyclosporine (Gomez et al., 1995; Benet, 1996; Gan et al., 1996). The role of CYP3A in drug interactions is well established (Liu et al., 2007; Zhou, 2008; also see http://www.fda.gov/downloads/Drugs/Guidance-ComplianceRegulatoryInformation/Guidances/UCM292362.pdf); and recently, transporters have also emerged as important players in drug interactions (Giacomini et al., 2010; Proctor et al., 2010). In the recent FDA guidance on transporter-mediated drug-drug interactions, P-gp is featured prominently (Huang et al., 2007; Zhang et al., 2009; FDA, 2012). P-gp and CYP3A have broad substrate specificity, and the two proteins share many substrates. In the intestinal epithelium, P-gp/ CYP3A dual substrates first interact with P-gp before reaching the intracellular membranes of the endoplasmic reticulum where they are metabolized by CYP3A. It is known that P-gp and CYP3A interact in affecting the cellular disposition of their substrates. However, opinions differ on whether P-gp enhances or attenuates CYP3A-mediated metabolism of shared substrates during intestinal absorption. Several in vitro studies, conducted to elucidate the effect of the interplay between CYP3A and P-gp on the intestinal absorption of dual substrates using human epithelial colorectal adenocarcinoma (Caco-2) cell monolayers (Gan et al., 1996; Cummins et al., 2004), suggested that P-gp increased CYP3A4-mediated metabolism of the dual substrates during their absorptive flux across the cell monolayers. Studies with the cysteine protease inhibitor K77 in an in situ single-pass rat intestinal perfusion model demonstrated that inhibition of intestinal P-gp efflux with elacridar (GF120918) caused reduction of the extraction ratio of K77, but had no effect on the Cyp3a probe substrate midazolam (Cummins et al., 2003). It was proposed that P-gp-mediated AP efflux...
increased intestinal metabolism of the dual substrate during absorption by prolonging the exposure of the drug to Cyp3a through repeated “cycles” of absorption and efflux. Accordingly, P-gp would work synergistically with CYP3A to attenuate the bioavailability of shared substrates for both proteins (Gan et al., 1996; Cummins et al., 2002, 2003; Benet et al., 2004). However, Tam et al. (2003) and Knight et al. (2006), based on theoretical considerations, suggested that P-gp would decrease the rate of CYP3A-mediated metabolism under nonsaturating conditions by reducing the intracellular concentration of the substrate. Thus, the conclusion that P-gp enhances the metabolism of dual P-gp/CYP3A substrates during absorption based on experimental results from Caco-2 cell model (Gan et al., 1996; Hochman et al., 2000; Cummins et al., 2001, 2002, 2003, 2004; Johnson et al., 2001; Li et al., 2002; Benet et al., 2004) or single-pass rat intestinal perfusion model (Cummins et al., 2003) is contradicted by an opposite conclusion reached based on pharmacokinetic modeling studies and theoretical considerations (Tam et al., 2003; Badhan et al., 2009).

This study addresses the contradictory conclusions about the effect of P-gp on CYP3A-mediated metabolism of dual substrates by assessing this interaction in an in vivo mouse model coupled with a matched mouse intestinal tissue model. The effect of P-gp on Cyp3a-mediated metabolism in the intestine is examined by comparing the portal bioavailability (F_p) of loperamide [4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-N,N-dimethyl-2,2-diphenylbutanamide], a CYP3A/P-gp probe substrate, in P-gp–competent and P-gp–deficient mice, and the results are further elucidated by measuring permeability and metabolism kinetics in intestinal tissue from these mice. If the hypothesis that P-gp contributes to an increase in Cyp3a-mediated metabolism of dual substrates is valid, then F_p of loperamide should be lower in P-gp–competent mice than in P-gp–deficient mice. Loperamide was chosen as a probe compound because P-gp attenuates its absorption effectively (this study) and it is subject to extensive first-pass metabolism (Wolf et al., 2011), including by intestinal CYP3A4. We report an unexpected result: At certain doses of loperamide (low with respect to Cyp3a saturation), the F_p is higher in P-gp–competent mice than in P-gp–deficient mice, suggesting that P-gp contributes to a decrease in intestinal first-pass metabolism, and that this effect is large enough to compensate for the increased absorption in the P-gp–deficient mice due to absence of P-gp. Further, we show that the effect of P-gp on loperamide intestinal metabolism is dose-dependent.

Materials and Methods

Materials

Loperamide, terfenadine, testosterone, 6β-hydroxytestosterone, troleandomycin, sodium hydroxide, sodium bicarbonate, and Krebs bicarbonate Ringer (KBR) were purchased from Sigma-Aldrich (St. Louis, MO). The metabolites of loperamide (monodemethyl- and didemethyl-loperamide) were generously provided by Janssen Pharmaceutica (Beerse, Belgium). 1-Aminobenzotriazole (ABT) was purchased from Santa Cruz Biochemicals (Santa Cruz, CA). 14C|manitol (53 μCi/μmol) and 3H|digoxin (23.5 Ci/mmol) were purchased from Moravek Biochemicals (La Brea, CA) and were determined to be ≥96% pure by the manufacturer. Acetonitrile, 95% ethanol (EtOH), methanol, ethyl acetate, and dimethylsulfoxide were purchased from Fisher Scientific (Pittsburgh, PA). Ketamine HCl and 0.9% NaCl saline were purchased from Veterinary Medical Supply (Zebulon, NC), and xylazine HCl was purchased from Webster Veterinary (Sterling, MA). All reagents were of analytical grade or higher and triply deionized water was used in all experimental procedures.

Animals

Male CF-1 (P-gp–competent) and Mdr1a1−/− (P-gp–deficient) mice were purchased from Charles River Laboratories (Wilmington, MA). The animals were housed according to requirements and approved protocols of the Association for Assessment and Accreditation of Laboratory Animal Care and the University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee. The animal housing facility was under the supervision, care, and husbandry of the University of North Carolina at Chapel Hill’s Division of Laboratory Animal Medicine, in compliance with The Animal Welfare Act public laws 89-544 and 91-579. All animals were maintained under a normal 12-hour daylight schedule with lights on at 8:00 AM.

Ex Vivo Intestinal Metabolism and Transport Studies

P-gp–competent and P-gp–deficient mice were fasted overnight and then anesthetized with an i.p. injection of ketamine (140 mg/kg) and xylazine (15 mg/kg). A 10-cm segment of jejunum was gently dissected and immediately flushed with 10 ml ice-cold KBR with 50% complete EDTA-free protease inhibitor (Roche, Basel, Switzerland). The harvested intestinal segment was separated into four 2-cm segments, mounted between two halves of a diffusion chamber insert and held in place by eight small pins as quickly as possible. The inserts were then mounted between two side-by-side diffusion chambers (Physiologic Instruments, San Diego, CA). KBR (3 ml) at 37°C was added to each chamber and bubbled with oxygen/carbon dioxide (95:5) gas to maintain tissue viability (Johnson et al., 2002). The intestinal tissues were preincubated [AP and basolateral (BL)] for 30 minutes at 37°C in 3 ml KBR buffer solution or for Cyp3a inhibition studies, with KBR buffer containing 100 μM CYP3A inhibitor troleandomycin or 1 mM general cytochrome P450 (P450) inhibitor ABT.

After the equilibration period, transepithelial electrical resistance was measured to test the epithelial integrity of the intestinal tissue. Intestinal tissues with transepithelial electrical resistance ≥ 250 Ω cm2 were used for experiments with no difference observed between P-gp–competent and P-gp–deficient intestinal tissue. The KBR buffer from the BL chamber was removed and replaced with fresh buffer (3 ml), while the buffer in the AP chamber was replaced with 3 ml of an appropriate concentration of loperamide (0.75, 1.75, 10, 25, 75, 100, or 125 μM) or testosterone (0.1, 0.25, 0.5, and 1.0 mM) in KBR buffer containing 0.1% EtOH. The intestinal tissues were incubated for 90 minutes at 37°C after which KBR buffer from the AP and BL chambers was collected. The intestinal tissues were washed ten times in ice-cold KBR buffer, homogenized for 30 seconds with a sonic dismembrator in 200 μl of 50:50 KBR and 2 N NaOH, and vortexed with 0.5 ml ethyl acetate for 1 minute. The homogenates were centrifuged at 9,000g at 4°C for 10 minutes, and the supernatants collected. The homogenized tissues were further washed with 0.5 ml ethyl acetate, vortexed, centrifuged, and the supernatants collected two additional times. The supernatants were combined, evaporated under nitrogen gas, and reconstituted in KBR. All samples were stored at −20°C until analysis using liquid chromatography–tandem mass spectrometry (LC-MS/MS). [14C]|manitol and [3H]digoxin were measured using liquid scintillation counting (1600 TR Liquid Scintillation Analyzer; Packard Instrument Company, Downers Grove, IL).

In Vivo Studies

Pharmacokinetic Studies in Portal Vein-Cannulated Mice. P-gp–competent and P-gp–deficient mice were fasted overnight and anesthetized as previously described. The depth of anesthesia was monitored throughout the surgical procedure and experiment by the toe pinch reflex and if appropriate, a 35-mg/kg dose of ketamine was administered intramuscularly in the hind limb to maintain the anesthetic plane. A 2-cm abdominal midline incision was made and the intestine was gently pushed to the side exposing the portal vein. A saline-filled silastic catheter (0.025-inch o.d. × 0.012-inch i.d.) (Braintree Scientific, Braintree, MA), with a 28-gauge needle tip (Becton Dickinson Biosciences, Franklin Lakes, NJ) attached to the end, was inserted into the portal vein and secured to the surrounding tissue with a micro-serefines vascular clamp (FST, Foster City, CA). The animal’s body temperature was monitored throughout the experiment by placement of a rectal thermometer (Fisher Scientific) and maintained at 37°C on surgical board (VWR, Radnor, PA), which was maintained at 37°C with a heating pad (Jarden Corporation, New York, NY). Doses of 0.23, 0.47, and 0.95 mg/kg loperamide were administered by oral gavage in 300 μl of 0.9% NaCl with 1% EtOH, which produced approximate intestinal concentration of 50, 100, or 200 μM, respectively, to the portal vein-cannulated P-gp–competent (n = 6) or

Downloaded from https://journals.aspetjournals.org at ASIET on June 15, 2017 dmd.aspetjournals.org Downloaded from
P-gp–deficient mice (n = 6). For Cyp3a inhibition studies, ABT was dosed (50 mg/kg oral dose in 100 μl = ~130 mM ABT), as adapted from studies by Balani et al. (2004), 3 hours prior to initiation of the study. An additional 50 mg/kg ABT was coadministered with a 0.23-mg/kg dose loperamide in 300 μl of 0.9% NaCl with 1% EtOH at the initiation of the study. Portal blood samples (20 μl) were withdrawn through the portal cannula over 4 hours (at 10, 30, 60, 120, 180, and 240 minutes). Each blood sample was replaced with an equal volume of 10 IU heparinized 0.9% NaCl saline. The blood samples were placed in heparinized microcentrifuge tubes (Fisher Scientific) and stored on ice until the completion of the experiment. Following centrifugation at 9,000g at 4°C for 10 minutes, plasma was collected, and the samples were stored at −80°C.

The oral absorption of loperamide in portal-cannulated mice was studied over 4 hours, which is several times longer than the standard 30–60 minutes small intestinal transit time that is observed in mice (Hsu, 1982; Suckow et al., 2001). However, it must be noted that for these studies it was necessary to maintain cannulated mice under anesthesia using a mixture of ketamine and xylazine. The maximum delay in small intestinal transit from the administration of anesthesia is typically around 2 hours; specifically, the administration of xylazine results in up to a 2-fold delay in small intestinal transit time (Hsu, 1982). It is therefore expected that the 4-hour study period would encompass the entire transit time of loperamide through the mouse small intestine.

Pharmacokinetic Studies in Jugular Vein-Cannulated Mice. P-gp–competent and P-gp–deficient mice were fasted overnight and then anesthetized, as described above, and implanted with an acute indwelling jugular catheter. A 1-cm incision was made in the neck and the jugular vein gently exposed by blunt dissection. A silastic jugular catheter (0.05-inch o.d. × 0.01-inch i.d.) (Braintree Scientific) was inserted into the right jugular vein and advanced to the junction of the vena cava and the right atrium and then sutured to tissue surrounding the vein. The catheter was then tunneled subcutaneously to the back where the cannula was exteriorized between the scapulae. The animal’s body temperature was monitored throughout the entirety of the surgical procedure and experiment, as described above. Doses of 0.23, 0.47, and 0.95 mg/kg loperamide were administered by oral gavage in 300 μl of 0.9% NaCl saline with 1% EtOH to jugular vein-cannulated P-gp–competent (n = 6) or P-gp–deficient mice (n = 6). Cyp3a inhibition in mice was achieved as described above. Systemic blood samples (20 μl) were withdrawn through the jugular cannula over 4 hours (at 10, 30, 60, 120, 180, and 240 minutes) and prepared as described previously and then stored at −80°C.

Loperamide Blood-to-Plasma Ratio. Fresh blood was collected from P-gp–competent mice in heparinized centrifuge tubes (Fisher Scientific), and 1 μl blood was then spiked with loperamide to obtain a final concentration of 5 ng/ml. The blood was then gently shaken at 37°C for 30 minutes, after which an aliquot of 100 μl whole blood was collected in quadruplicate. Plasma samples were obtained by centrifuging 100 μl aliquots whole blood at 9,000g at 4°C for 10 minutes. Blood and plasma samples (50 μl) were processed by precipitation with 250 μl ice-cold acetonitrile containing a 5 ng/ml terfenadine internal standard, and analyzed by LC-MS/MS.

Analytical Procedure

Liquid Chromatography-Tandem Mass Spectrometry. Each portal and systemic plasma sample (10 μl) was prepared for analysis by precipitation with the addition of 50 μl ice-cold acetonitrile, containing terfenadine (10 ng/ml) as the internal standard. For diffusion chamber studies, 50 μl of each experimental buffer sample was mixed with 50 μl ice-cold acetonitrile, containing a 10 ng/ml terfenadine internal standard. All samples were then vortexed for 1 minute and centrifuged at 9,000g at 4°C for 10 minutes. Loperamide and its two metabolites (Fig. 1), monodemethyl-loperamide [4-[(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-N-methyl-2,2-diphenylbutanamide] and didemethyl-loperamide [4-[(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylbutanamide], were quantified by LC-MS/MS. For in vivo studies, only loperamide was quantified from each portal- and jugular-plasma sample using LC-MS/MS. Metabolites of loperamide were not quantified from portal or jugular plasma samples because concentrations were below the limit of quantification. The LC-MS/MS system comprised LC10-ADVAP quaternary pumps (Shimadzu, Kyoto, Japan) that were fitted with a CTC-PAL autosampler (LEAP Technologies, Carrboro, NC) and a Sciex API-4000 triple-quadrupole mass spectrometer (Applied BioSystems, Foster City, CA). The mobile phases consisted of (A) 0.1% formic acid in water and (B) 0.1% formic acid in methanol. The chromatographic separation of analytes was performed with a linear gradient of 5%–95% A in B at a flow rate of 0.8 ml/min over 4 minutes and a sample injection volume of 5 μl. The analytical column was an Aquasili C18, 50×2.1 mm, with a 5-μm particle size (Thermo-Scientific, Waltham, MA). The samples were ionized using TurboIonSpray ion source and the positive ions were monitored at the following Q1/Q3 transitions (m/z): 477/266 for loperamide, 463/252 for monodemethyl-loperamide, 449/238 for didemethyl-loperamide, and 472/436 for terfenadine. Calibration standard curves that ranged from 0.05–100 ng/ml were linear (R² > 0.99), with the coefficient of variation < 10%, and were analyzed at the beginning and end of the run for each experimental group for sample quantification. The data were acquired and processed using Analyst 1.4.1 (Applied BioSystems).

Analysis of Cyp3a-Mediated Metabolism of Testosterone. To examine the testosterone metabolism during its absorptive flux across mouse intestinal tissue, samples were prepared by mixing 40 μl of each experimental buffer sample with 60 μl of methanol that contained corticosterone (25 ng/ml) internal standard. All samples were vortexed for 1 minute, centrifuged at 9000g at 4°C for 10 minutes and then transferred to glass microinserts (National Scientific,
Rockwood, TN) placed in autosampler vials (National Scientific). Testosterone and its Cyp3a-specific metabolite 6β-hydroxytestosterone was quantified in triplicate as previously described (Knight, 2007), using a HP1100 high-performance liquid chromatography (Agilent Technologies, Santa Clara, CA) with UV detection at 242 nm for testosterone and 260 nm for corticosterone. The mobile phases consisted of (A) water and (B) methanol. The analytical column was a Zorbax Eclipse XDB-C8, 150 × 4.6 mm, with 5 μm particle size (Agilent Technologies). The samples were injected in triplicate with an injection volume of 50 μl and chromatographic separation was performed with a linear gradient of 40–75% A in B at a flow rate of 1.0 ml/min over 10 minutes. The standard curves of testosterone ranged from 0.2–200 μg/ml were linear (R² > 0.99) with a coefficient of variation < 5% and were analyzed at the beginning and end of each run.

Data Analyses

For the metabolic studies, a Michaelis-Menten model (eq. 1) was fit to the data.

\[V = \frac{V_{\text{max}} \times [S]}{K_m + [S]} \]

where \(V \) represents the rate of metabolism (formation of total monodemethyl-loperamide and didemethyl-loperamide in intestinal tissue and the AP and BL compartments) achieved over 90 minutes, \(V_{\text{max}} \) is the maximum rate of metabolism, \(K_m \) is the loperamide concentration at which half of the maximum metabolic rate is achieved, and \(S \) is the loperamide dose concentration. The Michaelis-Menten model was fit to the data using GraphPad Prism 4.0 (GraphPad Software Inc., La Jolla, CA) with the goodness of fit confirmed by R² > 0.90 and a replicates test.

The apparent permeability (\(P_{\text{app}} \)) of loperamide across the mouse intestinal tissue was calculated according to eq. 2,

\[P_{\text{app,AB}} = \frac{J}{C_D \times A} \]

where \(J \) represents the mass of drug transported, integrated over time (dQ/dt), \(A \) is the area of the intestinal tissue, and \(C_D \) is the initial concentration of drug in the donor compartment, with studies conducted under sink conditions (Artursson and Karlsson, 1991).

The efficiency of P-gp in attenuating the passive permeability during intestinal absorption was quantitatively expressed as the absorptive quotient (AQ) (eq. 3).

\[AQ = \frac{P_{\text{PD}} - P_{\text{app,AB}}}{P_{\text{PD}}} \]

The AQ was determined experimentally by measuring 1) apparent permeability (AP to BL) in the presence of P-gp-mediated efflux (\(P_{\text{app,AB}} \)) and 2) passive permeability in the absence of P-gp (\(P_{\text{PD}} \)) inhibited with GF120918 or as in the current study with intestinal tissue from P-gp–deficient mice and by calculating the decrease in permeability caused by P-gp in relation to the \(P_{\text{PD}} \) (Troutman and Thakker, 2003a,b). The loperamide permeability measurements were conducted with the intestinal tissue that was treated with the Cyp3a inhibitor troleandomycin (100 μM) to prevent loperamide from being metabolized during the measurement. Thus, for a compound with an \(AQ \) of 0.9, P-gp efflux attenuates the \(P_{\text{PD}} \) during absorptive flux by 90%.

The \(F_Q \) was quantified as previously described by Hoffman et al. (1995), as briefly described below.

\[M_{\text{Absorbed}} = M_{\text{Portal}} - M_{\text{Systemic}} \]

\(M_{\text{Portal}} \) is the mass of parent drug calculated from measured concentrations in the portal blood over time, \(M_{\text{Absorbed}} \) is the total mass of the parent drug absorbed across the intestine over time, and \(M_{\text{Systemic}} \) is the mass of the parent drug returned to the portal vein from the systemic circulation over time.

The total drug in the portal vein that was absorbed directly from the intestine over time, and the area under the systemic blood concentration-time curve to \(t \) (\(\text{AUC}_{\text{Systemic}}(0-t) \)) was quantified from the portal and systemic plasma concentration (Uchimura et al., 2010) using the blood (4.8 ± 1.1 ng/ml)-to-plasma (6.7 ± 0.71 ng/ml) ratio of loperamide (0.71 ± 0.06).

\[M_{\text{Portal}} = Q_{\text{Portal}} \times \text{AUC}_{\text{Portal}}(0 - 4t) \]

and

\[M_{\text{Systemic}} = Q_{\text{Portal}} \times \text{AUC}_{\text{Systemic}}(0 - 4t) \]

Expressing \(M_{\text{Absorbed}} \) (eq. 4) relative to the mass of the dose absorbed into the portal circulation (\(F_Q \)), as expressed in eq. 7.

\[F_Q = \frac{M_{\text{Absorbed}}}{\text{Dose}} \]

Statistical Analysis

The overall difference in measured values (e.g., metabolic rate, \(K_m \), \(P_{\text{app}} \), and \(F_Q \)) between the mouse strains or treatments was determined using a two-way analysis of variance followed by a Bonferroni post-test, unless specifically noted, using GraphPad Prism statistical software 4.0 for Mac (GraphPad Software Inc., La Jolla, CA). All values are expressed as the mean ± S.D. The criterion for a significant difference in values was considered as \(P < 0.05 \).

Results

Metabolism of Loperamide during Absorptive Flux across Intestinal Tissue from P-gp–Competent or P-gp–Deficient Mice.

The rate of loperamide metabolism during absorptive flux, i.e., AP-to-BL compartment, across intestinal tissue from P-gp–competent and P-gp–deficient mice, is shown as a function of the initial concentration in the donor compartment (Fig. 2). The rate of metabolism was greater in the absence of P-gp than in its presence throughout the concentration range, causing a leftward shift of the metabolic rate versus concentration profile for intestinal tissue from P-gp–deficient mice relative to that from P-gp–competent mice (Fig. 2). The difference in...
TABLE 1
The kinetic parameters of loperamide metabolism and permeability in intestinal tissue from P-gp-competent or P-gp-deficient mice

<table>
<thead>
<tr>
<th></th>
<th>V<sub>max</sub> (pmol metabolite/min per cm²)</th>
<th>K<sub>m</sub> (µM)</th>
<th>P<sub>app</sub>(-p<sub>450</sub>) (nm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-gp-competent</td>
<td>31 ± 1</td>
<td>22 ± 4.8<sup>***</sup></td>
<td>0.61 ± 0.047<sup>***</sup></td>
</tr>
<tr>
<td>P-gp-deficient</td>
<td>30 ± 3.2</td>
<td>4.5 ± 2.4</td>
<td>5.5 ± 1.1</td>
</tr>
</tbody>
</table>

P-gp, P-glycoprotein.

^{***} P < 0.001 significance between P-gp-competent and P-gp-deficient mice, as determined using a two-tailed Wilcoxon rank test.

The kinetic parameters of loperamide metabolism, V_{max}, and K_m were derived by measuring loperamide metabolites during its absorptive flux across intestinal tissue from P-gp-competent or P-gp-deficient mice (as described in the Materials and Methods section). The permeability values for loperamide (20 µM) are reported as P_{app}(-p₄₅₀) and were determined in the presence of troleandomycin (100 µM) to inhibit oxidative metabolism of loperamide by Cyp3a. In the absence of troleandomycin, approximately 7 and 14% of loperamide (20 µM) was metabolized over the 90-minute period by the intestinal tissue from P-gp-competent and P-gp-deficient mice, respectively, during flux measurement (Fig. 2). Values are expressed as the mean ± S.D. of n = 3 mice with four intestinal tissues from each mouse. AQ for loperamide in mouse intestinal tissue is thus [0.5(0.61 + 5.5)]^{0.9}.

The kinetic parameters of loperamide metabolism and permeability in intestinal tissue (Table 1), but there was no difference in the P_{app}(-p₄₅₀) of loperamide was approximately 5-fold lower (⁶₄ P_{app}(-p₄₅₀)_{max}) versus P-gp-competent or P-gp-deficient mice. These results suggest the intestinal epithelium, and suggests that the attenuation of loperamide absorption by P-gp is offset by reduced first-pass intestinal metabolism in P-gp-competent mice, causing overall increased absorption of intact loperamide into the portal circulation. At higher doses (0.47 mg/kg and 0.94 mg/kg), selected to achieve intraluminal concentrations that are significantly above loperamide K_m for Cyp3a and near saturating for Cyp3a, the portal vein plasma concentrations of loperamide were comparable in P-gp-competent mice and P-gp-deficient mice (Fig. 3; Table 2). Accordingly, the F_G of loperamide was 6-fold greater (P < 0.001) in P-gp-competent mice (2.6 ± 0.70%) than in P-gp-deficient mice (0.40 ± 0.09%) (Fig. 4) at the lowest dose, whereas the F_G in P-gp-competent and P-gp-deficient mice was comparable at the middle (1.7 ± 1.0% and 1.1 ± 0.22%, respectively) and highest (16 ± 11% and 17 ± 12%, respectively) doses (Fig. 4). Comparison of the F_G values obtained at the middle dose with those at the lowest dose show that the F_G value dropped by nearly one-third for P-gp-competent mice but increased by nearly 3-fold for P-gp-deficient mice. These results suggest the intestinal metabolism was nearly saturated at the middle dose and that P-gp is not as effective at sparing the first-pass metabolism at 0.47-mg/kg dose as it is at 0.23-mg/kg dose. Nearly 10-fold higher loperamide F_G in P-gp-competent mice and 15-fold higher F_G in P-gp-deficient mice when the dose was increased from 0.47 mg/kg (50 µM) to 0.94 mg/kg (100 µM) would suggest saturation of both intestinal Cyp3a and P-gp at 0.94-mg/kg dose.

Fig. 3. The plasma concentration of loperamide in the portal circulation of P-gp–competent (solid black circle) or P-gp–deficient (open gray circle) mice treated with (A), 0.23-, (B) 0.47-, or (C) 0.95-mg/kg oral dose. The portal AUC_{0–240 min} values obtained at these doses are 266 ± 77 (A), 269 ± 140 (B), and 4900 ± 3000 (C) ng·min/ml, respectively, for P-gp–competent mice and 90 ± 14 (A), 420 ± 54 (B), and 5700 ± 2900 (C) ng·min/ml, respectively, for P-gp–deficient mice. Values are expressed as the mean ± S.D. of n = 6 mice. Statistical significance was determined using a two-tailed t test analysis of the AUC_{0–240 min} of the portal loperamide plasma concentration profiles.
Individual and Combined Barrier Effects of P-gp–Mediated Apical Efflux and Intestinal First-Pass Metabolism on Loperamide Absorption into Portal Circulation. The results from the loperamide transport and metabolism studies in the intestinal tissue suggest that higher portal loperamide concentrations and higher \(F_G \) in P-gp–competent versus P-gp–deficient mice are likely due to sparing of loperamide from intestinal first-pass metabolism by P-gp during oral absorption of the drug. The overlapping and opposing effects of P-gp, to cause efflux and to spare first-pass intestinal metabolism in oral absorption of the drug. The overlapping and opposing effects of loperamide from intestinal first-pass metabolism by P-gp during the observation that metabolic conversion of testosterone was absent in mice (Balani et al., 2004). The mechanism-based P450 inhibitor ABT at a dose that completely abolishes P450 metabolic activity in mice (Balani et al., 2004). The complete inhibition of Cyp3a activity by ABT (1 mM) in P-gp–competent or -deficient mouse intestine was confirmed by investigating the comparison of loperamide absorption by P-gp was clearly demonstrated. A comparison of loperamide \(F_G \) in P-gp–deficient mice with functional Cyp3a or with inactivated Cyp3a revealed that first-pass metabolism attenuated absorption of intact loperamide by approximately 70-fold (P < 0.001) (Fig. 5). Interestingly, the attenuation of \(F_G \) by Cyp3a was eliminated by functional P-gp in wild-type mice (Fig. 5).

The Effect of Interplay between Intestinal P-gp and Cyp3a on Systemic Availability of Loperamide in Mouse. In contrast to the increase in \(F_G \) caused by P-gp due to its interactions with Cyp3a in the intestine, systemic plasma concentrations were similar in P-gp–competent and P-gp–deficient mice after an oral loperamide dose of 0.23 mg/kg (Fig. 6; Table 2). The systemic exposure of loperamide following a 0.47-mg/kg oral dose was approximately 10-fold greater (P < 0.001) in P-gp–deficient mice versus P-gp–competent mice (Fig. 6; Table 2). These observations suggest that hepatic first-pass metabolism may mask or reverse P-gp's effect on the intestinal first-pass metabolism. These results are consistent with the report by Sadeque et al. (2000) that inhibition of P-gp by quinidine caused an increase in systemic concentration of loperamide over a part of the plasma concentration-time profile.

Discussion

The present study systematically evaluates the effect of P-gp on 1) first-pass metabolism and 2) \(F_G \) of a P-gp/Cyp3a dual substrate using portal vein-cannulated P-gp–competent and P-gp–deficient mice and a matched in vitro model of mouse intestinal transport and metabolism. The use of both in vivo and in vitro models is necessary because the interactions between the two proteins are expected to be complex, due to differences in the expression of the two proteins along the length of the intestinal tract (Paine et al., 1997; Tamura et al., 2002; Tamura et al., 2003; Iida et al., 2005), and other physiologic factors. The functional activity of intestinal Cyp3a in P-gp–deficient and P-gp–competent mice was equivalent as determined by quantification of first-pass metabolism of the Cyp3a probe substrate testosterone. Testosterone is not a substrate for efflux by P-gp (Chan et al., 2004), and therefore it would truly reflect Cyp3a differences if such differences existed. It was recognized that to elucidate the effect of P-gp on intestinal first-pass metabolism of a compound, systemic sampling would introduce artifacts due to hepatic first-pass metabolism and/or biliary excretion. Therefore, an acute indwelling catheter was inserted into the portal and jugular veins of mice so that the test compound absorbed across the intestinal epithelium could be sampled.
in the bloodstream before it entered the liver. The kinetic parameters for transport and metabolism were generated from the in vitro studies with intestinal tissue of the same strains of mice, which enabled proper design and interpretation of the in vivo experiments.

Loperamide, a μ-opioid receptor agonist that is used in the treatment of diarrhea, was chosen as a probe compound for this study because it has a low oral bioavailability (Heykants et al., 1974; Miyazaki et al., 1979) that is attributed to efficient P-gp-mediated metabolism. Loperamide is a CYP3A-mediated first-pass metabolism (Kim et al., 2004). In fact, the extent of metabolism of loperamide was significantly lower during absorptive flux across intestinal tissue from P-gp–competent versus P-gp–deficient mice (Fig. 2).

The only other in vivo study in which the P-gp effect on intestinal first-pass metabolism was directly measured involved the use of a rat single-pass intestinal perfusion model, in which the extent of the P-gp/CYP3A-mediated first-pass metabolism was found to be lower when P-gp was inhibited (Cummins et al., 2003). Thus the results in the present study contradict the results reported in Cummins et al. (2003) and the hypothesis proposed by Benet et al. that P-gp efflux would enhance intestinal first-pass metabolism by increasing the exposure of parent drug to metabolizing enzymes due to cycling between enterocytes and the luminal space as it travels down the length of the intestine (Cummins et al., 2002, 2003, 2004; Benet et al., 2004). We believe that the contradiction can be explained in part by reexamining the results reported by Cummins et al. (2003). The extent of metabolism of the dual P-gp/CYP3A substrate K77 was estimated and expressed in that study as extraction ratio, which was calculated as a ratio of total metabolites found in the perfusate and blood to total metabolites plus the absorbed substrate (measured in the blood) (see Knight et al., 2006 for detailed analysis and interpretation of this approach). As Knight et al. (2006) demonstrated in their analysis, the use of extraction ratio, as proposed by Cummins and Benet (Cummins et al., 2002, 2003, 2004; Benet et al., 2004), does not accurately estimate the extent of metabolism in the presence or absence of P-gp. This is because P-gp directly influences the amount of parent drug that crosses the intestinal barrier, and by definition affects the extraction ratio, irrespective of its effect on metabolism (Knight et al., 2006), thus distorting the estimates of the P-gp effect on metabolism. Further, a part of the differences between the two studies may be attributed to the differential effect of P-gp on metabolism of a dual substrate.
Evidenced by the result that in P-gp deficient mice, the portal plasma concentrations of loperamide are decreased by 70-fold when Cyp was inhibited (Fig. 5). These results show that P-gp and Cyp3a are both individually effective in attenuating intestinal absorption of loperamide across intestinal epithelium with Cyp3a being so effective that it nearly completely prevents absorption of intact loperamide. However, P-gp reduces the rather formidable barrier effect of Cyp3a, spares loperamide from efficient first-pass metabolism, and increases FG (Fig. 5). Thus, in P-gp–competent mice, Cyp3a has little impact on FG (Fig. 5).

The effect of P-gp and Cyp3a interaction on oral absorption of loperamide into the systemic circulation was studied using jugular vein-cannulated mice that were competent or deficient of P-gp expression. For the 0.23-mg/kg dose, the systemic exposure of loperamide was similar in P-gp–competent and P-gp–deficient mice (Fig. 6), with no apparent effect of P-gp on loperamide systemic bioavailability. This result suggests that hepatic metabolism and biliary excretion of loperamide partially reverses the effect of intestinal P-gp to increase FG; this trend continued for the higher dose of 0.47 mg/kg, so that the systemic exposure to loperamide was significantly greater in P-gp–deficient mice versus P-gp–competent mice despite similar FG (Fig. 6).

In conclusion, we have demonstrated for the first time that for a compound with high intestinal first-pass metabolism and high P-gp–mediated attenuation of absorptive flux (e.g., loperamide), P-gp can increase FG by sparing first-pass metabolism, and that the interactions of P-gp and Cyp3a are dose-dependent. However, it is recognized that the effect of P-gp on first-pass metabolism of other dual substrates with different kinetic behavior with respect to P-gp and Cyp3a (either due to intrinsic differences in the interactions with the two proteins or due to different permeability) may be different. The present study makes a strong case for a more systematic evaluation of interactions between P-gp and CYP3A as well as other transporter–enzyme combinations.

Acknowledgments

The authors thank Dr. Lane Clark of the University of Missouri, Columbia, MO, for advice on diffusion chamber studies with mouse intestinal tissue.

Authorship Contributions

Participated in research design: Dufek, Knight, Thakker.
Conducted experiments: Dufek, Knight, Bridges.
Performed data analysis: Dufek, Knight, Bridges.
Wrote or contributed to the writing of the manuscript: Dufek, Knight, Thakker.

References

Miyazaki H, Nambu K, and Hashimoto M (2005) Regional difference in P-glycoprotein function in rat intestine. Doctoral dissertation, p 235, Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Address correspondence to: Dr. Dhiren R. Thakker, UNC Eshelman School of Pharmacy, CB#7355, 100L Beard Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360. Email: dhiren_thakker@unc.edu