P-Glycoprotein Increases Portal Bioavailability of Loperamide in Mouse by Reducing First-Pass Intestinal Metabolism

Matthew B. Dufek,1 Beverly M. Knight, Arlene S. Bridges, and Dhiren R. Thakker

Division of Molecular Pharmaceutics (M.B.D., B.M.K.) and Division of Pharmacotherapy and Experimental Therapeutics (D.R.T.), UNC Eshelman School of Pharmacy; and Department of Pathology and Laboratory Medicine, School of Medicine (A.S.B.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Received November 5, 2012; accepted January 3, 2013

ABSTRACT

P-glycoprotein (P-gp) and CYP3A (cytochrome P450 3A, generally; Cyp3a, rodent enzyme) in the intestine can attenuate absorption of orally administered drugs. While some suggest that P-gp enhances intestinal metabolism by CYP3A/Cyp3a during absorption of a dual substrate, others suggest that P-gp reduces the metabolism in the intestine when substrates are at subsaturating concentrations. Hence, to elucidate the cellular mechanisms that can address these divergent reports, we studied intestinal absorption of the dual substrate loperamide in portal vein-cannulated P-gp–competent and P-gp–deficient mice. These studies showed that at low doses of loperamide, which produced intestinal concentrations near the apparent Km for oxidative metabolism, the bioavailability across the intestine (F_G) was 6-fold greater in the P-gp–competent mice than in P-gp–deficient mice. The higher F_G of loperamide in the presence of P-gp was attributed to lower loperamide intestinal metabolism. However, at high doses of loperamide, the sparing of first-pass metabolism by P-gp was balanced against the attenuation of metabolism by apical efflux, resulting in no net effect on F_G. In vitro studies with intestinal tissue from P-gp–competent and -deficient mice confirmed that P-gp reduced the metabolic rate of loperamide during absorptive flux at concentrations near Km but had little effect on metabolism at higher (saturating) concentrations. Further, studies in which Cyp3a was chemically inactivated by aminobenzotriazole in P-gp–competent and -deficient mice, showed that P-gp and Cyp3a individually attenuated F_G by 8-fold and 70-fold, respectively. These results confirmed that P-gp effectively protects loperamide at low doses from intestinal first-pass metabolism during intestinal absorption.

Introduction

The intestinal epithelium is a highly complex barrier with several physical and biochemical features, including CYP3A (cytochrome P450 3A, generally; Cyp3a, rodent enzyme) (oxidative metabolism) and P-glycoprotein (P-gp) (apical (AP) efflux), which limit oral absorption of drugs (Benet, 1996; Paine et al., 1996). These two proteins influence the systemic bioavailability of widely diverse drugs (Castanon-Gonzalez et al., 1995), such as the anti-HIV drug saquinavir (Fitzsimmons and Collins, 1997; Sinko et al., 2004) or the immunosuppressive agent cyclosporine (Gomez et al., 1995; Benet, 1996; Gan et al., 1996). The role of CYP3A in drug interactions is well established (Liu et al., 2007; Zhou, 2008; also see http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf); and recently, transporters have also emerged as important players in drug interactions (Giacomini et al., 2010; Proctor et al., 2010). In the recent FDA guidance on transporter-mediated drug-drug interactions, P-gp is featured prominently (Huang et al., 2007; Zhang et al., 2009; FDA, 2012). P-gp and CYP3A have broad substrate specificity, and the two proteins share many substrates. In the intestinal epithelium, P-gp/CYP3A dual substrates first interact with P-gp before reaching the intracellular membranes of the endoplasmic reticulum where they are metabolized by CYP3A. It is known that P-gp and CYP3A interact in affecting the cellular disposition of their substrates. However, opinions differ on whether P-gp enhances or attenuates CYP3A-mediated metabolism of shared substrates during intestinal absorption. Several in vitro studies, conducted to elucidate the effect of the interplay between CYP3A and P-gp on the intestinal absorption of dual substrates using human epithelial colorectal adenocarcinoma (Caco-2) cell monolayers (Gan et al., 1996; Cummins et al., 2004), suggested that P-gp increased CYP3A4-mediated metabolism of the dual substrates during their absorptive flux across the cell monolayers. Studies with the cysteine protease inhibitor K77 in an in situ single-pass rat intestinal perfusion model demonstrated that inhibition of intestinal P-gp efflux with elacridar (GF120918) caused reduction of the extraction ratio of K77, but had no effect on the Cyp3a probe substrate midazolam (Cummins et al., 2003). It was proposed that P-gp-mediated AP efflux...
increased intestinal metabolism of the dual substrate during absorption by prolonging the exposure of the drug to Cyp3a through repeated “cycles” of absorption and efflux. Accordingly, P-gp would work synergistically with CYP3A to attenuate the bioavailability of shared substrates for both proteins (Gan et al., 1996; Cummins et al., 2002, 2003; Benet et al., 2004). However, Tam et al. (2003) and Knight et al. (2006), based on theoretical considerations, suggested that P-gp would decrease the rate of CYP3A-mediated metabolism under nonsaturating conditions by reducing the intracellular concentration of the substrate. Thus, the conclusion that P-gp enhances the metabolism of dual P-gp/CYP3A substrates during absorption based on experimental results from Caco-2 cell model (Gan et al., 1996; Hochman et al., 2000; Cummins et al., 2001, 2002, 2003, 2004; Johnson et al., 2001; Li et al., 2002; Benet et al., 2004) or single-pass rat intestinal perfusion model (Cummins et al., 2003) is contradicted by an opposite conclusion reached based on pharmacokinetic modeling studies and theoretical considerations (Tam et al., 2003; Badhan et al., 2009).

This study addresses the contradictory conclusions about the effect of P-gp on CYP3A-mediated metabolism of dual substrates by assessing this interaction in an in vivo mouse model coupled with a matched mouse intestinal tissue model. The effect of P-gp on Cyp3a-mediated metabolism in the intestine is examined by comparing the portal bioavailability (F_{PG}) of loperamide [4-[4-(4-chlorophenyl)-4-hydroxyxypiperidin-1-y]-N,N-dimethyl-2,2-diphenylbutanamide], a CYP3A/P-gp probe substrate, in P-gp–competent and P-gp–deficient mice, and the results are further elucidated by measuring permeability and metabolism kinetics in intestinal tissue from these mice. If the hypothesis that P-gp contributes to an increase in Cyp3a-mediated metabolism of dual substrates is valid, then F_{PG} of loperamide should be lower in P-gp–competent mice than in P-gp–deficient mice. Loperamide was chosen as a probe compound because P-gp attenuates its absorption effectively (this study) and it is subject to extensive first-pass metabolism (Wolf et al., 2011), including by intestinal CYP3A4. We report an unexpected result: At certain doses of loperamide (low respect with Cyp3a saturation), the F_{PG} is higher in P-gp–competent mice than in P-gp–deficient mice, suggesting that P-gp contributes to a decrease in intestinal first-pass metabolism, and that this effect is large enough to compensate for the increased absorption in the P-gp–deficient mice due to absence of P-gp. Further, we show that the effect of P-gp on loperamide intestinal metabolism is dose-dependent.

Materials and Methods

Materials

Loperamide, terfenadine, testosterone, 6β-hydroxytestosterone, troleandomycin, sodium hydroxide, sodium bicarbonate, and Krebs bicarbonate Ringer (KBR) were purchased from Sigma-Aldrich (St. Louis, MO). The metabolites of loperamide (monodemethyl- and didemethyl-loperamide) were generously provided by Janssen Pharmaceutica (Beerse, Belgium). L-aminobenzotriazole (ABT) was purchased from Santa Cruz Biochemicals (Santa Cruz, CA). [14C]mannotol (53 μCi/μmol) and [3H]digoxin (23.5 Ci/mmol) were purchased from Moravek Biochemicals (La Brea, CA) and were determined to be ≥96% pure by the manufacturer. Acetonitrile, 95% ethanol (EtOH), methanol, ethyl acetate, and dimethylsulfoxide were purchased from Fisher Scientific (Pittsburgh, PA). Ketamine HCI and 0.9% NaCl saline were purchased from Veterinary Medical Supply (Zebulon, NC), and xylazine HCl was purchased from Webster Veterinary (Sterling, MA). All reagents were of analytical grade or higher and triple deionized water was used in all experimental procedures.

Animals

Male CF-1 (P-gp–competent) and Mdr1a1+/- (P-gp–deficient) mice were purchased from Charles River Laboratories (Wilmington, MA). The animals were housed according to requirements and approved protocols of the Association for Assessment and Accreditation of Laboratory Animal Care and the University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee. The animal housing facility was under the supervision, care, and husbandry of the University of North Carolina at Chapel Hill’s Division of Laboratory Animal Medicine, in compliance with The Animal Welfare Act public laws 89-544 and 91-579. All animals were maintained under a normal 12-hour daylight schedule with lights on at 8:00 AM.

Ex Vivo Intestinal Metabolism and Transport Studies

P-gp–competent and P-gp–deficient mice were fasted overnight and then anesthetized with an i.p. injection of ketamine (140 mg/kg) and xylazine (15 mg/kg). A 10-cm segment of jejunum was gently dissected and immediately flushed with 10 ml ice-cold KBR with 50% complete EDTA-free protease inhibitor (Roche, Basel, Switzerland). The harvested intestinal segment was separated into four 2-cm segments, mounted between two halves of a diffusion chamber insert and held in place by eight small pins as quickly as possible. The inserts were then mounted between two side-by-side diffusion chambers (Physiologic Instruments, San Diego, CA). KBR (3 ml) at 37°C was added to each chamber and bubbled with oxygen/carbon dioxide (95:5) gas to maintain tissue viability (Johnson et al., 2002). The intestinal tissues were preincubated with oxygenated KBR buffer solution or for Cyp3a inhibition studies, with KBR buffer containing 100 μM CYP3A inhibitor troleandomycin or 1 mM general cytochrome P450 (P450) inhibitor ABT.

After the equilibration period, transepithelial electrical resistance was measured to test the epithelial integrity of the intestinal tissue. Intestinal tissues with transepithelial electrical resistance ≥ 250 Ω·cm² were used for experiments with no difference observed between P-gp–competent and P-gp–deficient intestinal tissue. The KBR buffer from the BL chamber was removed and replaced with fresh buffer (3 ml), while the buffer in the AP chamber was replaced with 3 ml of an appropriate concentration of loperamide (0.75, 1, 7.5, 10, 25, 75, 100, or 125 μM) or testosterone (0.1, 0.25, 0.5, and 1.0 mM) in KBR buffer containing 0.1% EtOH. The intestinal tissues were incubated for 90 minutes at 37°C after which KBR buffer from the AP and BL chambers was collected. The intestinal tissues were washed ten times in ice-cold KBR buffer, homogenized for 30 seconds with a sonic dismembrator in 200 μl of 50:50 KBR and 2 N NaOH, and vortexed with 0.5 ml ethyl acetate for 1 minute. The homogenates were centrifuged at 9,000g for 4°C for 10 minutes, and the supernatants collected. The homogenized tissues were further washed with 0.5 ml ethyl acetate, vortexed, centrifuged, and the supernatants collected two additional times. The supernatants were combined, evaporated under nitrogen gas, and reconstituted in KBR. All samples were stored at −20°C until analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). [14C]mannotol and [3H]digoxin were measured using liquid scintillation counting (1600 TR Liquid Scintillation Analyzer; Packard Instrument Company, Downers Grove, IL).

In Vivo Studies

Pharmacokinetic Studies in Portal Vein-Cannulated Mice. P-gp–competent and P-gp–deficient mice were fasted overnight and anesthetized as previously described. The depth of anesthesia was monitored throughout the surgical procedure and experiment by the toe pinch reflex and if appropriate, a 35-mg/kg dose of ketamine was administered intramuscularly in the hind limb to maintain the anesthetic plane. A 2-cm abdominal midline incision was made and the intestine was gently pushed to the side exposing the portal vein. A saline-filled silastic catheter (0.025-inch o.d. × 0.012-inch i.d.) (Braintree Scientific, Braintree, MA), with a 28-gauge needle tip (Becton Dickinson Biosciences, Franklin Lakes, NJ) attached to the end, was inserted into the portal vein and secured to the surrounding tissue with a micro-serrefines vascular clamp (FST, Foster City, CA). The animal’s body temperature was monitored throughout the experiment by placement of a rectal thermometer (Braintree Scientific) and maintained at 37°C on surgical board (VWR, Radnor, PA), which was maintained at 37°C with a heating pad (Jarden Corporation, New York, NY). Doses of 0.23, 0.47, and 0.95 mg/kg loperamide were administered by oral gavage in 300 μl of 0.9% NaCl with 1% EtOH, which produced approximate intestinal concentration of 50, 100, or 200 μM, respectively, to the portal vein-cannulated P-gp–competent ($n = 6$) or
P-gp–deficient mice ($n = 6$). For Cyp3a inhibition studies, ABT was dosed (50-mg/kg oral dose in 100 μl = ~130 mM ABT), as adapted from studies by Balani et al. (2004), 3 hours prior to initiation of the study. An additional 50 mg/kg ABT was coadministered with a 0.23-mg/kg dose loperamide in 300 μl of 0.9% NaCl with 1% EtOH at the initiation of the study. Portal blood samples (20 μl) were withdrawn through the portal cannula over 4 hours (at 10, 30, 60, 120, 180, and 240 minutes). Each blood sample was replaced with an equal volume of 10 IU heparin and 0.9% NaCl saline. The blood samples were placed in heparinized microcentrifuge tubes (Fisher Scientific) and stored on ice until the completion of the experiment. Following centrifugation at 9,000g at 4°C for 10 minutes, plasma was collected, and the samples were stored at −80°C.

The oral absorption of loperamide in portal-cannulated mice was studied over 4 hours, which is several times longer than the standard 30–60 minutes small intestinal transit time that is observed in mice (Hsu, 1982; Suckow et al., 2001). However, it must be noted that for these studies it was necessary to maintain cannulated mice under anesthesia using a mixture of ketamine and xylazine. The maximum delay in small intestinal transit from the administration of anesthesia is typically around 2 hours; specifically, the administration of xylazine results in up to a 2-fold delay in small intestinal transit time (Hsu, 1982). It is therefore expected that the 4-hour study period would encompass the entire transit time of loperamide through the mouse small intestine.

Pharmacokinetic Studies in Jugular Vein-Cannulated Mice. P-gp–competent and P-gp–deficient mice were fasted overnight and then anesthetized, as described above, and implanted with an acute indwelling jugular catheter. A 1-cm incision was made in the neck and the jugular vein gently exposed by blunt dissection. A silastic jugular catheter (0.05-inch o.d. × 0.01-inch i.d.) (Braintree Scientific) was inserted into the right jugular vein and advanced to the junction of the vena cava and the right atrium and then sutured to tissue surrounding the vein. The catheter was then tunneled subcutaneously to the back where the cannula was exteriorized between the scapulae. The animal’s body temperature was monitored throughout the entirety of the surgical procedure and experiment, as described above. Doses of 0.23, 0.47, and 0.95 mg/kg loperamide were administered by oral gavage in 300 μl of 0.9% NaCl saline with 1% EtOH to jugular vein-cannulated P-gp–competent ($n = 6$) or P-gp–deficient mice ($n = 6$). Cyp3a inhibition in mice was achieved as described above. Systemic blood samples (20 μl) were withdrawn through the jugular cannula over 4 hours (at 10, 30, 60, 120, 180, and 240 minutes) and prepared as described previously and then stored at −80°C.

Loperamide Blood-to-Plasma Ratio. Fresh blood was collected from P-gp–competent mice in heparinized centrifuge tubes (Fisher Scientific), and 1 μl blood was then spiked with loperamide to obtain a final concentration of 5 ng/ml. The blood was then gently shaken at 37°C for 30 minutes, after which an aliquot of 100 μl whole blood was collected in quadruplicates. Plasma samples were obtained by centrifuging 100 μl aliquots whole blood at 9,000g at 4°C for 10 minutes. Whole blood and plasma samples (50 μl) were processed by precipitation with 250 μl ice-cold acetonitrile containing a 5 ng/ml terfenadine internal standard, and analyzed by LC-MS/MS.

Analytical Procedure.

Liquid Chromatography-Tandem Mass Spectrometry. Each portal and systemic plasma sample (10 μl) was prepared for analysis by precipitation with the addition of 50 μl ice-cold acetonitrile, containing terfenadine (10 ng/ml) as the internal standard. For diffusion chamber studies, 50 μl of each experimental buffer sample was mixed with 50 μl ice-cold acetonitrile, containing a 10 ng/ml terfenadine internal standard. All samples were then vortexed for 1 minute and centrifuged at 9,000g at 4°C for 10 minutes. Loperamide and its two metabolites (Fig. 1), monodemethyl-loperamide [4-[4-(4-chlorophenyl)-4-hydroxypiperidi-n-1-yl]-N-methyl-2,2-diphenylbutanamide] and didemethyl-loperamide [4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-2,2-diphenylbutanamide], were quantified by LC-MS/MS. For in vivo studies, only loperamide was quantified from each portal- and jugular-plasma sample using LC-MS/MS. Metabolites of loperamide were not quantified from portal or jugular plasma samples because concentrations were below the limit of quantification. The LC-MS/MS system comprised LC10-ADVP quaternary pumps (Shimadzu, Kyoto, Japan) that were fitted with a CTC-PAL autosampler (LEAP Technologies, Carrboro, NC) and a Sciex API-4000 triple-quadrupole mass spectrometer (Applied Biosystems, Foster City, CA). The mobile phases consisted of (A) 0.1% formic acid in water and (B) 0.1% formic acid in methanol. The chromatographic separation of analytes was performed with a linear gradient of 5–95% A in B at a flow rate of 0.8 ml/min over 4 minutes and a sample injection volume of 5 μl. The analytical column was an Aquasil C18, 50 × 2.1 mm, with a 5-μm particle size (Thermo-Scientific, Waltham, MA). The samples were ionized using TurboIonSpray ion source and the positive ions were monitored at the following Q1/Q3 transitions (m/z): 477/266 for loperamide, 463/252 for monodemethyl-loperamide, 449/238 for didemethyl-loperamide, and 472/436 for terfenadine. Calibration standard curves that ranged from 0.05–100 ng/ml were linear to the third decimal ($R^2 > 0.99$), with the coefficient of variation < 10%, and were analyzed at the beginning and end of the run for each experimental group for sample quantification. The data were acquired and processed using Analyst 1.4.1 (Applied Biosystems).

Analysis of Cyp3a-Mediated Metabolism of Testosterone. To examine the testosterone metabolism during its absorptive flux across mouse intestinal tissue, samples were prepared by mixing 40 μl of each experimental buffer sample with 60 μl of methanol that contained corticosterone (25 ng/ml) internal standard. All samples were vortexed for 1 minute, centrifuged at 9000g at 4°C for 10 minutes and then transferred to glass microinserts (National Scientific,
Rockwood, TN) placed in autosampler vials (National Scientific). Testosterone and its Cyp3a-specific metabolite 6β-hydroxytestosterone was quantified in triplicate as previously described (Knight, 2007), using a HP1100 high-performance liquid chromatography (Agilent Technologies, Santa Clara, CA) with UV detection at 242 nm for testosterone and 260 nm for corticosterone. The mobile phases consisted of (A) water and (B) methanol. The analytical column was a Zorbax Eclipse XDB-C8, 150 × 4.6 mm, with 5 μm particle size (Agilent Technologies). The samples were injected in triplicate with an injection volume of 50 μl and chromatographic separation was performed with a linear gradient of 40–75% A in B at a flow rate of 1.0 ml/min over 10 minutes. The standard curves of testosterone ranged from 0.2–200 μg/ml were linear (R² > 0.99) with a coefficient of variation < 5% and were analyzed at the beginning and end of each run.

Data Analyses

For the metabolic studies, a Michaelis-Menten model (eq. 1) was fit to the data.

\[V = \frac{V_{\text{max}} \times [S]}{K_m + [S]} \]

(1)

V represents the rate of metabolism (formation of total monodemethyl-loperamide and didemethyl-loperamide in intestinal tissue and the AP and BL compartments) achieved over 90 minutes, \(V_{\text{max}} \) is the maximum rate of metabolism, \(K_m \) is the loperamide concentration at which half of the maximum metabolic rate is achieved, and S is the loperamide dose concentration. The Michaelis-Menten model was fit to the data using GraphPad Prism 4.0 (GraphPad Software Inc., La Jolla, CA), with the goodness of fit confirmed by R² > 0.90 and a replicates test.

The apparent permeability (\(P_{\text{app}} \)) of loperamide across the mouse intestinal tissue was calculated according to eq. 2.

\[P_{\text{app,AB}} = \frac{J}{C_D \times A} \]

(2)

where J represents the mass of drug transported, integrated over time (dQ/dt), A is the area of the intestinal tissue, and \(C_D \) is the initial concentration of drug in the donor compartment, with studies conducted under sink conditions (Artursson and Karlsson, 1991). The efficiency of P-gp in attenuating the passive permeability during intestinal absorption was quantitatively expressed as the absorptive quotient (AQ) (eq. 3).

\[AQ = \frac{P_{\text{DP}} - P_{\text{app,AB}}}{P_{\text{DP}}} \]

(3)

The AQ was determined experimentally by measuring 1) apparent permeability (AP to BL) in the presence of P-gp–mediated efflux (\(P_{\text{app,AB}} \)) and 2) passive permeability in the absence of P-gp (\(P_{\text{DP}} \); P-gp inhibited with GF120918 or as in the current study with intestinal tissue from P-gp–deficient mice) and by calculating the decrease in permeability caused by P-gp in relation to the \(P_{\text{DP}} \) (Troutman and Thakker, 2003a,b). The loperamide permeability measurements were conducted with the intestinal tissue that was treated with the Cyp3a inhibitor troleandomycin (100 μM) to prevent loperamide from being metabolized during the measurement. Thus, for a compound with an AQ of 0.9, P-gp efflux attenuates the \(P_{\text{DP}} \) during absorptive flux by 90%.

The \(F_C \) was quantified as previously described by Hoffman et al. (1995), as briefly described below.

\[M_{\text{Absorbed}} = M_{\text{Portal}} - M_{\text{Systemic}} \]

(4)

\(M_{\text{Portal}} \) is the mass of parent drug calculated from measured concentrations in the portal blood over time, \(M_{\text{Absorbed}} \) is the total mass of the parent drug absorbed across the intestine over time, and \(M_{\text{Systemic}} \) is the mass of the parent drug returned to the portal vein from the systemic circulation over time.

The total drug in the portal vein that was absorbed directly from the intestine (eq. 5) or from the systemic circulation (eq. 6) was quantified from the portal blood flow (\(Q_{\text{Portal}} \)) in mouse of 1.45 ml/min (Davies and Morris, 1993), the area under the portal blood concentration-time curve to time (t) (\(AUC_{\text{Portal}} \) (0–t hr)), and the area under the systemic blood concentration-time curve to t (\(AUC_{\text{Systemic}} \) (0–t hr)) following the oral administration of the dose. The blood concentration of loperamide in the portal and systemic circulation was calculated by conversion of portal and systemic plasma concentration (Uchiuma et al., 2010) using the blood (4.8 ± 1.1 ng/ml)-to-plasma (6.7 ± 0.71 ng/ml) ratio of loperamide (0.71 ± 0.06).

\[M_{\text{Portal}} = Q_{\text{Portal}} \times AUC_{\text{Portal}}(0 - 4\text{hr}) \]

(5)

and

\[M_{\text{Systemic}} = Q_{\text{Portal}} \times AUC_{\text{Systemic}}(0 - 4\text{hr}) \]

(6)

Expressing \(M_{\text{Absorbed}} \) (eq. 4) relative to the mass of the dose absorbed into the portal circulation (\(F_C \)), as expressed in eq. 7.

\[F_C = \frac{M_{\text{Absorbed}}}{\text{Dose}} \]

(7)

Statistical Analysis

The overall difference in measured values (e.g., metabolic rate, \(K_m \), \(P_{\text{app}} \), and \(F_C \)) between the mouse strains or treatments was determined using a two-way analysis of variance followed by a Bonferroni post-test, unless specifically noted, using GraphPad Prism statistical software 4.0 for Mac (GraphPad Software Inc., La Jolla, CA). All values are expressed as the mean ± S.D. The criterion for a significant difference in values was considered as P < 0.05.

Results

Metabolism of Loperamide during Absorptive Flux across Intestinal Tissue from P-gp–Competent or P-gp–Deficient Mice.

The rate of loperamide metabolism during absorptive flux, i.e., AP-to-BL compartment, across intestinal tissue from P-gp–competent and P-gp–deficient mice, is shown as a function of the initial concentration in the donor compartment (Fig. 2). The rate of metabolism was greater in the absence of P-gp than in its presence throughout the concentration range, causing a leftward shift of the metabolic rate versus concentration profile for intestinal tissue from P-gp–deficient mice relative to that from P-gp–competent mice (Fig. 2). The difference in

\[M_{\text{Portal}} = Q_{\text{Portal}} \times AUC_{\text{Portal}}(0 - 4\text{hr}) \]

(5)

and

\[M_{\text{Systemic}} = Q_{\text{Portal}} \times AUC_{\text{Systemic}}(0 - 4\text{hr}) \]

(6)

Expressing \(M_{\text{Absorbed}} \) (eq. 4) relative to the mass of the dose absorbed into the portal circulation (\(F_C \)), as expressed in eq. 7.

\[F_C = \frac{M_{\text{Absorbed}}}{\text{Dose}} \]

(7)

Statistical Analysis

The overall difference in measured values (e.g., metabolic rate, \(K_m \), \(P_{\text{app}} \), and \(F_C \)) between the mouse strains or treatments was determined using a two-way analysis of variance followed by a Bonferroni post-test, unless specifically noted, using GraphPad Prism statistical software 4.0 for Mac (GraphPad Software Inc., La Jolla, CA). All values are expressed as the mean ± S.D. The criterion for a significant difference in values was considered as P < 0.05.

Results

Metabolism of Loperamide during Absorptive Flux across Intestinal Tissue from P-gp–Competent or P-gp–Deficient Mice.

The rate of loperamide metabolism during absorptive flux, i.e., AP-to-BL compartment, across intestinal tissue from P-gp–competent and P-gp–deficient mice, is shown as a function of the initial concentration in the donor compartment (Fig. 2). The rate of metabolism was greater in the absence of P-gp than in its presence throughout the concentration range, causing a leftward shift of the metabolic rate versus concentration profile for intestinal tissue from P-gp–deficient mice relative to that from P-gp–competent mice (Fig. 2). The difference in

\[M_{\text{Portal}} = Q_{\text{Portal}} \times AUC_{\text{Portal}}(0 - 4\text{hr}) \]

(5)

and

\[M_{\text{Systemic}} = Q_{\text{Portal}} \times AUC_{\text{Systemic}}(0 - 4\text{hr}) \]

(6)

Expressing \(M_{\text{Absorbed}} \) (eq. 4) relative to the mass of the dose absorbed into the portal circulation (\(F_C \)), as expressed in eq. 7.

\[F_C = \frac{M_{\text{Absorbed}}}{\text{Dose}} \]

(7)

Statistical Analysis

The overall difference in measured values (e.g., metabolic rate, \(K_m \), \(P_{\text{app}} \), and \(F_C \)) between the mouse strains or treatments was determined using a two-way analysis of variance followed by a Bonferroni post-test, unless specifically noted, using GraphPad Prism statistical software 4.0 for Mac (GraphPad Software Inc., La Jolla, CA). All values are expressed as the mean ± S.D. The criterion for a significant difference in values was considered as P < 0.05.
The kinetic parameters of loperamide metabolism and permeability in intestinal tissue from P-gp-competent or P-gp-deficient mice

The kinetic parameters of loperamide metabolism, \(V_{\text{max}} \), and \(K_m \), were derived by measuring loperamide metabolites during its absorptive flux across intestinal tissue from P-gp-competent or P-gp-deficient mice (as described in the Materials and Methods section). The permeability values for loperamide (20 \(\mu M \)) are reported as \(P_{\text{app}} \) (\(\text{cm}^2 \cdot \text{sec}^{-1} \cdot \text{M}^{-1} \)) and were determined in the presence of troleandomycin (100 \(\mu M \)) to inhibit oxidative metabolism of loperamide by Cyp3a. In the absence of troleandomycin, approximately 7% and 14% of loperamide (20 \(\mu M \)) was metabolized over the 90-minute period by the intestinal tissue from P-gp-competent and P-gp-deficient mice, respectively, during flux measurement (Fig. 2). Values are expressed as the mean \(\pm \) S.D. of \(n = 3 \) mice with four intestinal tissues from each mouse. AQ for loperamide in mouse intestinal tissue is thus \([0.5(0.61 + 5.5)] = 0.9\).

<table>
<thead>
<tr>
<th></th>
<th>(V_{\text{max}}) (pmol metabolite/min per cm²)</th>
<th>(K_m) ((\mu M))</th>
<th>(P_{\text{app}}) ((\text{cm}^2 \cdot \text{sec}^{-1} \cdot \text{M}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-gp-competent</td>
<td>31 ± 1</td>
<td>22 ± 4.8***</td>
<td>0.61 ± 0.047***</td>
</tr>
<tr>
<td>P-gp deficient</td>
<td>30 ± 3.2</td>
<td>4.5 ± 2.4</td>
<td>5.5 ± 1.1</td>
</tr>
</tbody>
</table>

P-gp, P-glycoprotein.

*** \(P < 0.001 \) significance between P-gp-competent and P-gp-deficient mice, as determined using a two-tailed Wilcoxon \(t \) test.

the metabolic rate due to P-gp was greatest at concentrations near the apparent \(K_m \) for Cyp3a-mediated metabolism. At high concentrations, as loperamide metabolism appeared to approach saturation, this difference gradually decreased. When the Michaelis-Menten model (eq. 1) was fit to the metabolic rate versus concentration data, the analysis showed that the apparent \(K_m \) for Cyp3a-mediated metabolism of loperamide was approximately 5-fold lower (\(P < 0.001 \)) in P-gp-deficient (4.5 ± 2.4 \(\mu M \)) versus P-gp-competent (22 ± 4.8 \(\mu M \)) intestinal tissue (Table 1), but there was no difference in the \(V_{\text{max}} \). Intestinal tissue from P-gp-competent (37 ± 8.0 pmol/min per cm²) and P-gp-deficient (36 ± 4.0 pmol/min per cm²) mice showed no difference in metabolic activity toward testosterone (Fig. 3A), a Cyp3a probe substrate (Kenworthy et al., 1999) that is not subject to AP efflux by P-gp, thus providing evidence that Cyp3a activity was not affected in the P-gp-deficient mice. Treatment of mouse intestinal tissue from P-gp-competent or P-gp-deficient mice with 100 \(\mu M \) troleandomycin completely abolished oxidative metabolism of testosterone (0.5 ± 0.5 pmol/min per cm²).

Intestinal Absorption of Loperamide into the Portal Circulation of P-gp–Competent and P-gp–Deficient Mice. The oral absorption of loperamide was studied over 4 hours in portal vein-cannulated P-gp–deficient and P-gp–competent mice. The rationale was that if P-gp influences the absorption of loperamide by a combination of effects on first-pass metabolism and permeability, this should be evaluated in the portal circulation before loperamide is further metabolized in the liver or excreted in bile. The loperamide portal plasma concentration versus time profiles following oral doses of 0.23, 0.47, and 0.94 mg/kg are shown in Fig. 3. The low dose (0.23 mg/kg) was selected to achieve intraluminal concentration of \(\sim \)50 \(\mu M \), which is close to the apparent loperamide \(K_m \) for Cyp3a-mediated metabolism during absorptive flux across intestinal epithelium (Fig. 2). The goal was to select a concentration that was in the linear metabolism range and yet provide sufficiently high plasma concentrations in the portal circulation to generate pharmacokinetic profile via serial 20-\(\mu l \) portal blood sampling over 4 hours. For this dose, the exposure of intact loperamide into the portal circulation was much higher in the P-gp–competent mice compared with P-gp–deficient mice as evidenced by significantly higher (\(P < 0.01 \)) portal \(AUC_{0-240 \text{ min}} \) in P-gp–competent mice than in P-gp–deficient mice (Fig. 3; Table 2). This result is consistent with the observation in Fig. 2 that P-gp reduces metabolism of loperamide during its absorptive flux across the intestinal epithelium, and suggests that the attenuation of loperamide absorption by P-gp is offset by reduced first-pass intestinal metabolism in P-gp–competent mice, causing overall increased absorption of intact loperamide into the portal circulation. At higher doses (0.47 mg/kg and 0.94 mg/kg), selected to achieve intraluminal concentrations that are significantly above loperamide \(K_m \) for Cyp3a and near saturating for Cyp3a, the portal vein plasma concentrations of loperamide were comparable in P-gp–competent mice and P-gp–deficient mice (Fig. 3; Table 2). Accordingly, the \(F_G \) of loperamide was 6-fold greater (\(P < 0.001 \)) in P-gp–competent mice (2.6 ± 0.70%) than in P-gp–deficient mice (0.40 ± 0.09%) (Fig. 4) at the lowest dose, whereas the \(F_G \) in P-gp–competent and P-gp–deficient mice was comparable at the middle (1.7 ± 1.0% and 1.1 ± 0.22%, respectively) and highest (16 ± 11% and 17 ± 12%, respectively) doses (Fig. 4). Comparison of the \(F_G \) values obtained at the middle dose with those at the lowest dose show that the \(F_G \) value dropped by nearly one-third for P-gp–competent mice but increased by nearly 3-fold for P-gp–deficient mice. These results suggest the intestinal metabolism was nearly saturated at the middle dose and that P-gp is not as effective at sparing the first-pass metabolism at 0.47-mg/kg dose as it is at 0.23-mg/kg dose. Nearly 10-fold higher loperamide \(F_G \) in P-gp–competent mice and 15-fold higher \(F_G \) in P-gp–deficient mice when the dose was increased from 0.47 mg/kg (50 \(\mu M \)) to 0.94 mg/kg (100 \(\mu M \)) would suggest saturation of both intestinal Cyp3a and P-gp at 0.94-mg/kg dose.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>(V_{\text{max}}) (pmol metabolite/min per cm²)</th>
<th>(K_m) ((\mu M))</th>
<th>(P_{\text{app}}) ((\text{cm}^2 \cdot \text{sec}^{-1} \cdot \text{M}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-gp-competent</td>
<td>31 ± 1</td>
<td>22 ± 4.8***</td>
<td>0.61 ± 0.047***</td>
</tr>
<tr>
<td>P-gp deficient</td>
<td>30 ± 3.2</td>
<td>4.5 ± 2.4</td>
<td>5.5 ± 1.1</td>
</tr>
</tbody>
</table>

P-gp, P-glycoprotein.

*** \(P < 0.001 \) significance between P-gp-competent and P-gp-deficient mice, as determined using a two-tailed Wilcoxon \(t \) test.

Fig. 3. The plasma concentration of loperamide in the portal circulation of P-gp–competent (solid black circle) or P-gp–deficient (open gray circle) mice treated with (A), 0.23-, (B) 0.47-, or (C) 0.95-mg/kg oral dose. The portal \(AUC_{0-240 \text{ min}} \) values obtained at these doses are 266 ± 77 (A), 269 ± 140 (B), and 4900 ± 3000 (C) ng*min/ml, respectively, for P-gp–competent mice and 90 ± 14 (A), 420 ± 54 (B), and 5700 ± 2900 (C) ng*min/ml, respectively, for P-gp–deficient mice. Values are expressed as the mean \(\pm \) S.D. of \(n = 6 \) mice. Statistical significance was determined using a two-tailed \(t \) test analysis of the \(AUC_{0-240 \text{ min}} \) of the portal loperamide plasma concentration profiles.

![Graph A](image1.png)

![Graph B](image2.png)

![Graph C](image3.png)
Individual and Combined Barrier Effects of P-gp–Mediated Apical Efflux and Intestinal First-Pass Metabolism on Loperamide Absorption into Portal Circulation. The results from the loperamide transport and metabolism studies in the intestinal tissue suggest that higher portal loperamide concentrations and higher F_G in P-gp–competent versus P-gp–deficient mice are likely due to sparing of loperamide from intestinal first-pass metabolism by P-gp during oral absorption of the drug. The overlapping and opposing effects of P-gp, to cause efflux and to spare first-pass intestinal metabolism in oral absorption of loperamide, was investigated by comparing the F_G at a 0.23-mg/kg dose in four groups of mice: P-gp–competent mice (Fig. 4, 0.23-mg/kg dose), P-gp–deficient mice (Fig. 4, 0.23-mg/kg dose), and mice in each of these groups that were treated with the mechanism-based P450 inhibitor ABT at a dose that completely abolishes P450 metabolic activity in mice (Balani et al., 2004). The complete inhibition of Cyp3a activity by ABT (1 mM) in P-gp–competent and -deficient mouse intestine was confirmed by the observation that metabolic conversion of testosterone was absent (i.e., no testosterone metabolite detected) during absorptive flux across mouse intestinal tissue, while robust metabolism of testosterone occurred in intestinal tissue from untreated animals (P-gp–competent = 37 ± 8.4 pmol/min per cm2 and P-gp–deficient = 36 ± 4 pmol/min per cm2). Further, P-gp–competent mice that were treated with ABT orally had a greater than 40-fold increase in the oral absorption of testosterone (0.4-mg/kg dose) into the portal circulation compared to P-gp–competent mice ($AUC_{0-120 min} = 2.6 \pm 0.35 \mu g/min/ml$) treated with saline ($AUC_{0-120 min} = 0.06 \pm 0.03 \mu g/min/ml$). There was no difference in passive permeability of $[^{14}C]$-mannitol (4.6 ± 3.0, 3.9 ± 2.1) and $[^{3}H]$digoxin (17.9 ± 8.8, 14.7 ± 6.6) across intestinal tissue in the presence of ABT, showing that ABT does not cause unintended changes in the permeability of the intestinal epithelium.

When the F_G of loperamide was compared in P-gp–competent (3.6 ± 3.8%) and P-gp–deficient (28 ± 20%) mice in which Cyp3a was completely inactivated, it was observed that P-gp attenuated the intestinal absorption of loperamide by 8-fold ($P < 0.001$) (Fig. 5). Although variability in F_G was high in P-gp–competent group [likely due to multiple treatment (ABT followed by loperamide) of portal vein-cannulated animals coupled with low F_G], the large attenuation of loperamide absorption by P-gp was clearly demonstrated. A comparison of loperamide F_G in P-gp–deficient mice with functional Cyp3a or with inactivated Cyp3a revealed that first-pass metabolism attenuated absorption of intact loperamide by approximately 70-fold ($P < 0.001$) (Fig. 5). Interestingly, the attenuation of F_G by Cyp3a was eliminated by functional P-gp in wild-type mice (Fig. 5).

The Effect of Interplay between Intestinal P-gp and Cyp3a on Systemic Availability of Loperamide in Mouse. In contrast to the increase in F_G caused by P-gp due to its interactions with Cyp3a in the intestine, systemic plasma concentrations were similar in P-gp–competent and P-gp–deficient mice after an oral loperamide dose of 0.23 mg/kg (Fig. 6; Table 2). The systemic exposure of loperamide following a 0.47-mg/kg oral dose was approximately 10-fold greater ($P < 0.001$) in P-gp–deficient mice versus P-gp–competent mice (Fig. 6; Table 2). These observations suggest that hepatic first-pass metabolism may mask or reverse P-gp’s effect on the intestinal first-pass metabolism. These results are consistent with the report by Sadeque et al. (2000) that inhibition of P-gp by quinidine caused an increase in systemic concentration of loperamide over a part of the plasma concentration-time profile.

Discussion

The present study systematically evaluates the effect of P-gp on 1) first-pass metabolism and 2) F_G of a P-gp/Cyp3a dual substrate using portal vein-cannulated P-gp–competent and P-gp–deficient mice and a matched in vitro model of mouse intestinal transport and metabolism. The use of both in vivo and in vitro models is necessary because the interactions between the two proteins are expected to be complex, due to differences in the expression of the two proteins along the length of the intestinal tract (Paine et al., 1997; Tamura et al., 2002; Tamura et al., 2003; Iida et al., 2005), and other physiologic factors. The functional activity of intestinal Cyp3a in P-gp–deficient and P-gp–competent mice was equivalent as determined by quantification of first-pass metabolism of the Cyp3a probe substrate testosterone. Testosterone is not a substrate for efflux by P-gp (Chan et al., 2004), and therefore it would truly reflect Cyp3a differences if such differences existed. It was recognized that to elucidate the effect of P-gp on intestinal first-pass metabolism of a compound, systemic sampling would introduce artifacts due to hepatic first-pass metabolism and/or biliary excretion. Therefore, an acute indwelling catheter was inserted into the portal and jugular veins of mice so that the test compound absorbed across the intestinal epithelium could be sampled.
absorptive flux by Thakker, 2003b) toward loperamide revealed that P-gp attenuated its a quantitative measure of efficiency of P-gp [CYP3A-mediated first-pass metabolism (Kim et al., 2004). In fact, efflux (Schinkel et al., 1996; Acharya et al., 2006) and extensive because it has a low oral bioavailability (Heykants et al., 1974; Dufek et al., 2007) and treatment of diarrhea, was chosen as a probe compound for this study.

in the bloodstream before it entered the liver. The kinetic parameters for transport and metabolism were generated from the in vitro studies with intestinal tissue of the same strains of mice, which enabled proper design and interpretation of the in vivo experiments.

Loperamide, a μ-opioid receptor agonist that is used in the treatment of diarrhea, was chosen as a probe compound for this study because it has a low oral bioavailability (Heykants et al., 1974; Miyazaki et al., 1979) that is attributed to efficient P-gp-mediated efflux (Schinkel et al., 1996; Acharaya et al., 2006) and extensive CYP3A-mediated first-pass metabolism (Kim et al., 2004). In fact, a quantitative measure of efficiency of P-gp [AQ, eq. 3, (Troutman and Thakker, 2003)] toward loperamide revealed that P-gp attenuated its absorptive flux by ~60% in Caco-2 cells (AQ = 0.60 ± 0.09) (Knight, 2007) and ~90% in mouse intestinal tissue (Table 1).

The in vivo studies produced a surprising result that the portal plasma concentrations of loperamide (0.23 mg/kg, 50 μM) were severalfold higher (Fig. 3A), and accordingly, Fg was as much as 6-fold higher in mice with normal P-gp expression in their intestine than in P-gp-deficient mice (Fig. 4). Since intestinal absorption of loperamide is expected to be attenuated by P-gp, a greater amount of loperamide in the portal blood of mice with normal intestinal P-gp suggests that a lower intestinal first-pass metabolism in these mice (compared with P-gp-deficient) compensated for the P-gp effect to reduce absorption. These findings are consistent with the results obtained in the in vitro study presented here, which showed that the metabolism of loperamide was significantly lower during absorptive flux across intestinal tissue from P-gp–competent versus P-gp–deficient mice (Fig. 2).

The only other in vivo study in which the P-gp effect on intestinal first-pass metabolism was directly measured involved the use of a rat single-pass intestinal perfusion model, in which the extent of the P-gp/ Cyp3a dual substrate K77 metabolism was found to be lower when P-gp was inhibited (Cummins et al., 2003). Thus the results in the present study contradict the results reported in Cummins et al. (2003) and the hypothesis proposed by Benet et al. that P-gp efflux would enhance intestinal first-pass metabolism by increasing the exposure of parent drug to metabolizing enzymes due to cycling between enterocytes and the luminal space as it travels down the length of the intestine (Cummins et al., 2002, 2003, 2004; Benet et al., 2004). We believe that the contradiction can be explained in part by reexamining the results reported by Cummins et al. (2003). The extent of metabolism of the dual P-gp/CYP3A substrate K77 was estimated and expressed in that study as extraction ratio, which was calculated as a ratio of total metabolites found in the perfusate and blood to total metabolites plus the absorbed substrate (measured in the blood) (see Knight et al., 2006 for detailed analysis and interpretation of this approach). As Knight et al. (2006) demonstrated in their analysis, the use of extraction ratio, as proposed by Cummins and Benet (Cummins et al., 2002, 2003, 2004; Benet et al., 2004), does not accurately estimate the extent of metabolism in the presence or absence of P-gp. This is because P-gp directly influences the amount of parent drug that crosses the intestinal barrier, and by definition affects the extraction ratio, irrespective of its effect on metabolism (Knight et al., 2006), thus distorting the estimates of the P-gp effect on metabolism. Further, a part of the differences between the two studies may be attributed to the differential effect of P-gp on metabolism of a dual substrate.

![Fig. 5. The effect of P-gp and Cyp3a on Fg of loperamide. The Fg of loperamide (0.23 mg/kg) in P-gp–competent (open bars) or P-gp–deficient (closed bars) mice in the presence (+Cyp3a, same data as Fig. 4, 0.23-mg/kg dose) or absence (~Cyp3a) of Cyp3a-mediated metabolism. (~Cyp3a) mice were created by treatment with the pan-P450 inactivator ABT (50 mg/kg, 2x). Values are expressed as the mean ± S.D. of n = 6 mice. Fg = portal bioavailability. *P < 0.05 for ~Cyp3a group or ***P < 0.001 for +Cyp3a group represents the comparison of P-gp–competent and P-gp–deficient mice; ****P < 0.001 represents the comparison +Cyp3a and ~Cyp3a of P-gp–deficient mice.](Image 509x272)

![Fig. 6. The systemic exposure of loperamide upon oral administration to P-gp–competent or P-gp–deficient mice. The systemic plasma concentrations, (A) 0.23mg/kg and (B) 0.47 mg/kg, were measured over 240 minutes in P-gp–competent (solid circle) or P-gp–deficient (open circle) mice which had jugular vein cannula implanted. Values are expressed as the mean ± S.D. of n = 6 mice. Statistical significance was determined using a two-tailed t test analysis of the AUC0–240 min of the systemic loperamide plasma concentration profiles.](Image 262x729)
depending on the extent of CYP3A saturation achieved by the
substrate.

At higher doses (0.47 mg/kg, ~100 μM; 0.94 mg/kg, ~200 μM),
the portal plasma concentrations and \(F_G \) of loperamide in P-
gp–competent and P-gp–deficient mice were nearly equal (Figs. 3
and 4). This suggested that P-gp–mediated sparing of the first-pass
intestinal metabolism of loperamide was not as large at higher doses as
at the 0.23–mg/kg dose, presumably due to saturation of CYP3A-
mediated metabolism, as would be predicted from the in vitro study
(Fig. 2). Interestingly, the loperamide concentration–time profiles in
the portal circulation generated for the 0.23 mg/kg and 0.47-mg/kg
doses in P-gp–competent mice were nearly identical (Fig. 3, A and B).
This suggests that doubling the dose from 0.23 to 0.47 mg/kg in P-
gp–competent mice doubles the first-pass metabolism rate and as
a result, the net intact loperamide that reaches the portal circulation
remained unchanged. In contrast, the portal concentrations increased
~4-fold in P-gp–deficient mice when the dose is doubled from 0.23 to
0.47 mg/kg (Fig. 4), suggesting that intestinal first-pass metabolism
was saturated, at least partially, between these two doses. The increase
in portal concentration with increase in dose from 0.47 and 0.94 mg/kg
was even more disproportionate (~15-fold). This is likely due to
saturation of both P-gp and intestinal first-pass metabolism in P-
gp–competent mice (Fig. 3, B and C).

The chemical inhibition of Cytp3a activity achieved by treating
P-gp–competent and P-gp–deficient mice with the mechanism-based
P450 inhibitor ABT provided a valuable in vivo model to dissect the
individual role of P-gp and Cytp3a in attenuating intestinal absorption
of loperamide without interactions with each other. In the absence
of Cytp3a activity, the \(F_G \) (0.23 mg/kg oral dose) of loperamide was
reduced by >8-fold in P-gp–competent mice compared with P-gp–
deficient mice (Fig. 5, bars on the right side), demonstrating that
intestinal absorption of loperamide is strongly influenced by P-gp.
This result is consistent with high loperamide AQ (P-gp’s efficiency
to reduce absorptive flux) of 0.9 in mouse intestinal tissue. The major
role of Cytp3a-mediated metabolism in attenuating loperamide \(F_G \)
is evidenced by the result that in P-gp–deficient mice, the \(F_G \)
increased by ~70-fold when Cyp was inhibited (Fig. 5). These results show
that P-gp and Cytp3a are both individually effective in attenuating
absorption of loperamide across intestinal epithelium with Cytp3a
being so effective that it nearly completely prevents absorption of
intact loperamide. However, P-gp reduces the rather formidable barrier
effect of Cytp3a, spares loperamide from efficient first-pass metabo-
lism, and increases \(F_G \) (Fig. 5). Thus, in P-gp–competent mice, Cytp3a
has little impact on \(F_G \) (Fig. 5).

The effect of P-gp and Cytp3a interaction on oral absorption of
loperamide into the systemic circulation was studied using jugular
vein-cannulated mice that were competent or deficient of P-gp
expression. For the 0.23-mg/kg dose, the systemic exposure of
loperamide was similar in P-gp–competent and P-gp–deficient mice
(Fig. 6), with no apparent effect of P-gp on loperamide systemic
bioavailability. This result suggests that hepatic metabolism and
biliary excretion of loperamide partially reverses the effect of
intestinal P-gp to increase \(F_G \); this trend continued for the higher
dose of 0.47 mg/kg, so that the systemic exposure to loperamide was
significantly greater in P-gp–deficient mice versus P-gp–competent
mice despite similar \(F_G \) (Fig. 6).

In conclusion, we have demonstrated for the first time that for a
compound with high intestinal first-pass metabolism and high
P-gp–mediated attenuation of absorptive flux (e.g., loperamide), P-gp
can increase \(F_G \) by sparing first-pass metabolism, and that the interactions of P-gp and Cytp3a are dose-dependent. However, it is
recognized that the effect of P-gp on first-pass metabolism of other
dual substrates with different kinetic behavior with respect to P-gp and
CYP3A (either due to intrinsic differences in the interactions with the
two proteins or due to different permeability) may be different. The
present study makes a strong case for a more systematic evaluation of
interactions between P-gp and CYP3A as well as other transporter-
enzyme combinations.

Acknowledgments
The authors thank Dr. Lane Clark of the University of Missouri, Columbia,
MO, for advice on diffusion chamber studies with mouse intestinal tissue.

Authorship Contributions
Participated in research design: Dufek, Knight, Thakker.
Conducted experiments: Dufek, Knight, Bridges.
Performed data analysis: Dufek, Knight, Bridges.
Wrote or contributed to the writing of the manuscript: Dufek, Knight,
Thakker.

References
expressed in a confluent monolayer of MDRI-MDCKII cells has more than one efflux
pathway with cooperative binding sites. Biochemistry 45:15505–15519.
and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells.
of a physiological model incorporating CYP3A and P-glycoprotein for the prediction of
Effective dosing regimen of 1-aminobenzotriazole for inhibition of antipyrine clearance
in guinea pigs and mice using serial sampling. Drug Metab Dispos 32:1092–1095.
Benet LW, Wu C-Y, Hebert MF, and Wacher VJ (1996) Intestinal drug metabolism and anti-
transport processes: A potential paradigm shift in oral drug delivery. J Control Release 39:
139–148.
Benet LZ, Cummins CL, and Wu CY (2004) Unmasking the dynamic interplay between efflux
Pentoxifylline and oxygen consumption in severe sepsis—a preliminary report. Acta Anaes-
CYP3A4-mediated drug disappearance during Caco-2 intestinal secretory detoxification.
J Drug Target 12:405–413.
Cummins CL, Mangravite LM, and Benet LZ (2001) Characterizing the expression of CYP3A4
and efflux transporters (P-gp, MRPI, and MRP2) in CYP3A4-transfected Caco-2 cells after
induction with sodium butyrate and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate.
Cummins CL, Jacobsen W, and Benet LZ (2002) Unmasking the dynamic interplay between
Cummins CL, Salpathi L, Reid MJ, and Benet LZ (2003) In vivo modulation of intestinal CYP3A
metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model.
Cummins CL, Jacobsen W, Christiansen U, and Benet LZ (2004) CYP3A4-transfected Caco-2 cells
as a tool for understanding biochemical absorption barriers: studies with sirolimus and mid-
FDA (2012) Guidance for Industry Drug Interaction Studies-Study Design, Data Analysis,
Implications for Dosing, and Labeling Recommendations. Office of Communications,
Division of Drug Information, Silver Spring, MD.
Fitzsimmons ME and Collins JM (1997) Selective biotransformation of the human immunoode-
scin-activity virus protease inhibitor saquinavir by human small-intestinal cytochrome P450A.
Potential contribution to high first-pass metabolism. Drug Metab Dispos 25:256–266.
Gan LS, Moseley MA, Khosa B, Augustijns PF, Bradshaw TP, Hendren RW, and Thakker DR
(1996) CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclo-
sporin A in Caco-2 cells. Drug Metab Dispos 24:344–349.
Giacomini KM, Huang SM, Twedde DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R,
transporters and metabolic enzymes.

Address correspondence to: Dr. Dhiren R. Thakker, UNC Eshelman School of Pharmacy, CB#7355, 1001 Beard Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7360. E-mail: dhiren.thakker@unc.edu