Elucidation of the Metabolic Pathways and the Resulting Multiple Metabolites of Almorexant, a Dual Orexin Receptor Antagonist, in Humans

Jasper Dingemanse, Petra Hoever, Matthias Hoch, Alexander Treiber, Winfried Wagner-Redeker, Tommaso Miraval, Gérard Hopfgartner, and Kasra Shakeri-Nejad

Department of Clinical Pharmacology (J.D., P.H., M.H., K.S.-N.) and Department of Preclinical Pharmacokinetics and Metabolism (A.T.), Actelion Pharmaceuticals Ltd, Allschwil, Switzerland; and Swiss BioAnalytics AG (W.W.-R., T.M., G.H.), Birsfelden, Switzerland

Received November 19, 2012; accepted February 21, 2013

ABSTRACT

Almorexant [(2R)-2-[(1S)-6, 7-dimethoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-3,4-dihydro-1H-isoquinolin-2-yl]-N-methyl-2-phenyl-acetamide], a tetrahydroisoquinoline derivative, is a dual orexin receptor antagonist with sleep-promoting properties in both animals and humans. This study investigated the disposition, metabolism, and elimination of almorexant in humans. After oral administration of a 200-mg dose of 14C-almorexant, almorexant was rapidly absorbed (Tmax = 0.8 hour), and the apparent terminal half-life (t1/2) was 17.8 hours. The radioactive dose was almost completely recovered with 78.0% of the administered radioactive dose found in feces and 13.5% in urine. Unchanged almorexant was not found in urine and represented 10% of the administered dose in feces. In total, 47 metabolites were identified of which 21 were shown to be present in plasma. There are four primary metabolites, the isomeric phenols M3 and M8, formed by demethylation, the aromatic isoquinolinium ion M5, formed by dehydrogenation, and M6, formed by oxidative dealkylation with loss of the phenylglycine moiety. Most of the subsequent products are formed by permutations of these primary metabolic reactions followed by conjugation of the intermediate phenols with glucuronic or sulfonic acid. The percentage of dose excreted in urine or feces for any of the metabolites did not exceed 10% of the administered radioactive dose, nor did any of the metabolites represent more than 10% of the total drug-related exposure. In conclusion, after rapid absorption, almorexant is extensively metabolized, and excretion of metabolites in feces is the predominant route of elimination in humans.

Introduction

Insomnia may be defined as the inability to sleep, in the absence of external impediments such as noise or bright light during the period when sleep should normally occur (PDR, 1995). An estimated 10% of adults suffer from insomnia in the United States (NIH, 2005) and most seek treatment. Current pharmacologic treatments include nonbenzodiazepines, and ramelteon, a melatonin receptor agonist and are the endogenous ligands of two identified G-protein-coupled receptors, OX1 and OX2 (de Lecea et al., 1998; Sakurai et al., 1998). A number of experimental observations suggest that the orexin system plays an important role in the sleep-wake cycle and that antagonists of orexin at orexin receptors is one of the new approaches pursued (Nishino, 2007; Zisapel, 2012).

The neuropeptides orexin-A and orexin-B were discovered in 1998 and are the endogenous ligands of two identified G-protein-coupled receptors, OX1 and OX2 (de Lecea et al., 1998; Sakurai et al., 1998). A number of experimental observations suggest that the orexin system plays an important role in the sleep-wake cycle and that antagonists of (Zisapel, 2012). Although the newer drugs such as nonbenzodiazepines and ramelteon have an improved safety profile when compared with benzodiazepines and barbiturates (Zammit, 2009), research is continuing to find new drugs with a new mechanism of action, a better tolerability, a lower liability for abuse, without withdrawal effects, and with improved sleep quality (Wafford and Ebert, 2008). Antagonism at orexin receptors is one of the new approaches pursued (Nishino, 2007; Zisapel, 2012).

This work was funded by Actelion Pharmaceuticals Ltd., Allschwil, Switzerland. dx.doi.org/10.1124/dmd.112.050120

Supplemental material to this article can be found at:

http://dmd.aspetjournals.org/content/suppl/2013/02/21/dmd.112.050120.DC1

ABBREVIATIONS: ACT-078332 (M6), (S)-6,7-dimethoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-1,2,3,4-tetra-hydroisoquinoline; ACT-127979 (M8), (R)-2-[(S)-7-hydroxy-6-methoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-3,4-dihydro-1H-isoquinolin-2-yl]-N-methyl-2-phenyl-acetamide; ACT-127980 (M3), (R)-2-[(S)-6-hydroxy-7-methoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-3,4-dihydro-1H-isoquinolin-2-yl]-N-methyl-2-phenyl-acetamide; ACT-172515 (M5), 1-(6,7-dimethoxy-1-[4-trifluoromethylphenethyl]isoquinolin-2-ium-2-y1)-2-(methylamino)-2-oxo-1-phenyl-ethan-1-one; ACT-178291 (M7), rac-7-methoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-1,2,3,4-tetrahydro-isoquinolin-6-ol; ACT-208764 (M31), 2-(6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinolin-1-yl)-1-[4-(trifluoromethyl)phenyl]-ethanol; ACT-208920 (M27), 6,7-dimethoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-isoquinoline; ACT-242737, 2-[6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinolin-1-yl]-1-[4-(trifluoromethyl)phenyl]-ethanol; ACT-242987, rac-5-[6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinolin-1-yl]-ethyl]-2-trifluoromethyl-phenol; ACT-244508, 1, (R)-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinolin-1-yl)-2-(4-trifluoromethyl)-phenyl)-ethanol; ACT-254819 (M14b), rac-1S,4S)-6,7-dimethoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-1,2,3,4-tetrahydro-isoquinolin-4-ol; ACT-285612 (M14a), rac-(1S,4R)-6,7-dimethoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-1,2,3,4-tetrahydro-isoquinolin-4-ol; ACT-461759 (M7), (S)-6-methoxy-1-[2-[4-trifluoromethyl-phenyl]-ethyl]-1,2,3,4-tetrahydro-isoquinolin-7-ol; AUCinf, area under the plasma concentration-time curve from 0 to infinity; AUCt, area under the plasma concentration-time curve from zero to time t of the last measured concentration above the limit of quantification; Cmax, maximum plasma concentration; EDTA, ethylenediaminetetraacetic acid; H/D, hydrogen/deuterium; HPLC, high-performance liquid chromatography; LC-MS/MS, liquid chromatography–tandem mass spectrometry; OX, orexin; SLE, supported liquid extraction; t1/2, terminal half-life; Tmax, time to maximum plasma concentration.
orexin receptors may enable sleep. These observations include the following: intracerebroventricular administration of orexin-A to rats enhanced arousal but decreased paradoxical sleep (Piper et al., 2000), cerebrospinal fluid levels of orexin-A are highest at the end of the wake period and lowest at the end of the sleep period (Kiyashchenko et al., 2002; Salomon et al., 2003), and deficits in normal orexine function play a major role in the pathogenesis of narcolepsy, a debilitating sleep disorder, in both animals and humans (Chenelli et al., 1999; Lin et al., 1999; Nishino et al., 2000).

Almorexant, \((2\text{-R})-2\{(1\text{-S})-6,7\text{-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]}\}-3,4\text{-dihydro-1H-isoquinolin-2-yl}\}-N\text{-methyl-2-phenylacetamide,}
\)
\(\text{a dual orexin receptor antagonist which has been shown to}
\)
\(\text{have promising sleep-promoting properties in animals, healthy subjects,}
\)
\(\text{and patients with primary insomnia (Brisubre-Roch et al., 2007; Hoyer et al., 2010, 2012b). The safety and pharmacokinetics of almorexant after single-dose and multiple-dose administration have been described previously elsewhere (Hoch et al., 2012; Hoyer et al., 2010, 2012a). In brief, oral administration of almorexant was well tolerated with an adverse event profile consistent with that of a sleep-promoting drug (mainly somnolence and fatigue). The pharmacokinetics of almorexant are characterized by a clearance of 43 l/h, a large volume of distribution (683 l), a fast absorption (time to maximum plasma concentration \(T_{\text{max}}\) ~1 h), and a rapid disposition due to a pronounced distribution phase with concentrations decreasing to less than 20% of \(C_{\text{max}}\) during the course of 8 hours. Despite a terminal half-life \((t_{1/2})\) of about 20 hours, its accumulation was minimal. After evening administration, absorption was delayed \((T_{\text{max}} ~3 hours)\), and the \(C_{\text{max}}\) decreased. The absolute bioavailability of almorexant is 11.4%, which may indicate poor absorption and/or an extensive first-pass metabolism.

The purpose of the present study was to investigate the pharmacokinetics, routes of excretion, and metabolism of almorexant after oral administration to healthy male subjects.

Materials and Methods

Reference Compounds and Other Materials. Almorexant was synthesized at Apsuit, Edinburgh, United Kingdom. The \(^{14}\text{C}\)-label of \(^{14}\text{C}\)-almorexant (ACT-078573E) was located at carbon 1 of the tetrahydroisoquinoline ring, and the labeled compound was synthesized by Amersham Biosciences, Whitchurch, UK. For oral administration, almorexant was administered as a powder mixture filled in hard gelatin capsules (content weight: 450 mg). The capsules contained a mixture of nonradioabeled and \(^{14}\text{C}\)-labeled almorexant that had been coprecipitated as powder to ensure homogeneous mixing and equivalent particle size. The specific radioactivity was 0.42 \(\mu\text{Ci/mg. A similar capsule formulation had also been used in several clinical trials (Hoyer et al., 2010, 2012b). Nonlabeled almorexant, reference compounds ACT-078332 [(S)-6,7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]}-1,2,3,4-tetrahydroisoquinoline], M6; ACT-127979 [(R)-2-{(S)-7-hydroxy-6-methoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]}-3,4-dihydro-1H-isoquinolin-2-yl]-N-methyl-2-phenylacetamide], M8; ACT-127980 [(R)-2-{(S)-6-hydroxy-7-methoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]}-3,4-dihydro-1H-isoquinolin-2-yl]-N-methyl-2-phenylacetamide], M3; ACT-172515 [1-(6,7-dimethoxy-1-(4-(trifluoromethyl)phenethyl)isoquinolin-2-yl)-2-(methylamino)-2-oxo-1-phenyl-ethan-1-ide], M5; ACT-178291 [rac-7-methoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]}-1,2,3,4-tetrahydroisoquinolin-6-ol], M7; ACT-208764 [2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-1-(4-trifluoromethyl-phenyl)-ethyl]-5-trifluoromethylphenyl]-ethanol]; ACT-242987 [rac-5-{2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-ethyl}-2-trifluoromethyl-phenol]; ACT-24508 [1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-(4-trifluoromethyl-phenyl)-ethanol]; ACT-254819 [rac-15S,45S]*-6,7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinolin-4-ol], M14b; ACT-285612 [rac-15S,45R]*-6,7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-1,2,3,4-tetrahydroisoquinolin-4-ol], M14a; and ACT-461759 [(S)-6-methoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]}-1,2,3,4-tetrahydroisoquinolin-7-ol], M7, or isomer, and the internal standards d5-ACT-078573C, d5-ACT-127980A, d6-ACT-172515A, and d6-ACT-078332A were synthesized at Actelion Pharmaceuticals Ltd (Allschwil, Switzerland). All the other chemicals and reagents used were obtained commercially.

Subjects and Dosing. The clinical part of this study was conducted at Covance (Allschwil, Switzerland), formerly called Swiss Pharma Contract, in full conformity with the principles of good clinical practice and the Declaration of Helsinki and its amendments. Six male Caucasian subjects with a mean age of 50.7 years (range: 46 to 55 years) and a mean body mass index of 23.5 kg/m\(^2\) (range: 20.2 to 27.3 kg/m\(^2\)) participated. After an overnight fast, all subjects received a single dose of 200 mg of almorexant as a capsule containing 84 \(\mu\text{Ci}\) of \(^{14}\text{C}\)-radioactivity and remained fasted for an additional 4 hours. To estimate the safe radioactive dose of \(^{14}\text{C}\)-labeled ACT-078573E administered as a single oral dose in male subjects, the radiation burden was estimated based on data from a preclinical distribution study with \(^{14}\text{C}\)-ACT-078573E in albino and pigmented rats as well as results of an excretion study with \(^{14}\text{C}\)-ACT-078573E in rats (Actelion Pharmaceuticals Ltd, unpublished data) and human pharmacokinetic data (Hoyer et al., 2010). The dosimetry calculations, using FDA-approved Olinda software, yielded a radiation burden of 32.1 \(\mu\text{Sv/MBq}\). To account for interspecies differences and possible interindividual differences in bioavailability, a 5-fold safety factor was implemented resulting in an effective dose of 0.161 \(\mu\text{Sv/MBq}\). In general, it is recommended not to exceed a total radiation burden of 0.5 \(\mu\text{Sv}\) in a mass balance study in healthy male subjects. The average environmental background radiation exposure in Switzerland is approximately 2.0 mSv per year. Therefore, the maximum dose of \(^{14}\text{C}\)-ACT-078573E-radioactivity was 3.11 MBq (84 \(\mu\text{Ci}\)). The total radioactivity of each capsule prepared was measured to determine the individual radioactive dose, which varied from 83.05 to 83.24 \(\mu\text{Ci}\).

Safety and Tolerability. Vital signs, ECG, physical examination, monitoring of adverse events, and clinical laboratory tests were assessed throughout the study. The investigator rated the intensity (mild, moderate, or severe) of all adverse events and the possible relationship (yes or no) to almorexant.

Sample Collections. For determination of \(^{14}\text{C}\)-radioactivity in whole blood and plasma, for the determination of the plasma concentrations of almorexant and four metabolites, M3, M5, M6, and M8, and for metabolic profiling about 15 ml of blood was collected in light-protected tubes containing EDTA by direct venipuncture or via an intravenous catheter at the following time points: before the dose and 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 24, 48, 72, 96, 120, 144, 168, 192, 216, and 240 hours after dosing. Expired air sampling was performed at the same time points (except for the 0.33-, 0.75-, and 1-hour time points) by letting the subjects expire into 4 ml of a trapping solution consisting of a 1:1 mixture of 1N hyamine hydroxide and ethanol with thymolphthalein as a pH indicator. The subject expired into the solution until it became colorless, which indicated the neutralization of hyamine hydroxide by an equimolar amount of CO\(_2\). Subsequently, the vials were stored at 44°C pending analysis for total radioactivity. Urine samples were collected at 8-hour intervals on day 1 after dosing and then at 24-hour intervals on days 2 to 10. A 10-ml aliquot was used for scintillation counting, and 4 \(\times\) 10 ml aliquots were stored at ~70°C for metabolic profiling.

All feces was collected quantitatively for a period of 10 days after dosing and stored at ~70°C as soon as possible. In the analyzing laboratory, thawed feces was homogenized in water, and a sample corresponding to 300 mg was combusted before scintillation counting. The remainder was used for metabolic profiling.

If on day 10 of the study the recovery of total radioactivity was <90% of the administered dose, sample collection had to continue until the set threshold of at least 90% was reached, or until no significant excretion could be detected, or the maximum number of 21 in-house days was reached.

Measurement of Total Radioactivity. Radioactivity in samples of whole blood, plasma, urine, feces, and expired air was determined in triplicate using a TRI-CARB 2800TR liquid scintillation counter (PerkinElmer Life and Analytical Sciences, Waltham, MA). Whole blood samples were prepared by...
incubation for 2 hours at 60°C with an ethanol/tissue solubilizer mixture (1:1) and then incubation for 30 minutes at room temperature after addition of hydrogen peroxide. Liquid scintillation fluid (Ultima Gold; PerkinElmer Life and Analytical Sciences) was added and vials counted after having been allowed to stand in the dark at room temperature for at least 12 hours. Plasma samples were first mixed with a small volume of water before scintillation fluid (Ultima Gold; PerkinElmer Life and Analytical Sciences) was added and radioactivity counted. Liquid scintillation fluid was added to urine (Ultima Gold; PerkinElmer Life and Analytical Sciences) and expired air (Aerosol-2, PerkinElmer Life and Analytical Sciences) samples and radioactivity counted. Fecal extracts were homogenized in 2 equivalents of water (w/w) and 4 aliquots of approximately 300 mg were transferred to a porcelain cup and combusted using an OX-700 oxidizer (Zinsser Analytic GmbH, Frankfurt, Germany). The combusted material was taken up in scintillation fluid (OxySolve-C-400; Zinsser Analytic, Berkshire, UK), and the radioactivity was determined. The performance of the radioactivity counting was monitored by running alongside quality control samples containing known activities of 14C-stearic acid (ARC-Inc., St. Louis, MO).

Quantitative LC-MS/MS Analysis. Plasma concentrations of almorexant and its metabolites M3, M5, M6, and M8 were determined using validated liquid chromatography–tandem mass spectrometry (LC-MS/MS) methods at Swiss BioAnalytics AG (Birsfelden, Switzerland). Two methods were developed to measure simultaneously all five analytes, one method using protein precipitation and one method using supported liquid extraction (SLE) for sample processing. The protein precipitation method had a calibration range from 0.4 to 100 ng/ml for almorexant, M3, and M6 and from 1.0 to 100 ng/ml for M3 and M8 (low calibration range). The SLE method had a range of 50 to 1000 ng/ml for all analytes (high calibration range).

For the high calibration range method, 300 μl of acetonitrile containing all four internal standards—that is, penta-deuterated analogs of almorexant, M3, M5, and M6—were added to 100 μl of plasma. The isomeric metabolites M3 and M8 were quantified using the same deuterated internal standard (i.e., ACT-127980A). After protein precipitation and centrifugation, an equivalent volume of acetonitrile/methanol/water (5:5:90 v/v/v) was added, and 10 μl of the diluted sample were injected onto the trapping column. The chromatographic system consisted of two pumps (Rheos 2000 and 2200; Thermo Fisher Scientific, Waltham, MA), a trapping column (Eclipse XDB-C18, 150 × 2.1 mm, 3.5 μm; Agilent Technologies, Palo Alto, CA), an analytic column (Eclipse XDB-C18, 30 × 4.6 mm, 3.5 μm; Agilent Technologies), and an autosampler (PAL; CTC Analytics, Zwingen, Switzerland). The solvent system for the trapping column consisted of solvent A, acetonitrile/water containing 1% formic acid, and solvent B, methanol. The column was eluted for 3 minutes with solvent A, then for 5 minutes with solvent B, and next for 5 minutes with solvent A. The solvent system for the analytic column consisted of solvent A, acetonitrile/methanol/water (5:5:90 v/v/v) containing 1% formic acid, and solvent B, acetonitrile/methanol/water (45:45:10 v/v/v) containing 1% formic acid. The column was eluted for 7 minutes with a 70/30 mixture of solvents A and B, then for 4 minutes with solvent B, and next for 2 minutes with a 70/30 mixture of solvents A and B.

For the low calibration range method, 25 μl of acetonitrile/water (20:80 v/v/v) 1% formic acid containing all four internal standards and 225 μl of water + 2% formic acid were added to an aliquot of 250 μl of plasma. After mixing, 300 μl of the diluted sample was applied to a 96-well Isolute SLE+ plate (Biotage Sweden AB, Uppsala, Sweden). After 10 minutes, low vacuum was applied to complete adsorption. Sample desorption was attained by applying 2 × 900 μl of ethyl acetate. The final extract was evaporated to dryness and reconstituted in 100 μl of acetonitrile/water (50:50 v/v) containing 1% formic acid and an aliquot of 20 μl was injected onto the high-performance liquid chromatography (HPLC) column. The chromatographic system consisted of two pumps (Rheos 2000 and 2200; Thermo Fisher Scientific), an analytic column (XBridge C18, 50 × 2.1 mm, 3.5 μm; Waters, Milford, MA), and an autosampler (PAL; CTC Analytics). The solvent system for the analytic column consisted of solvent A, acetonitrile/methanol/water (5:5:90 v/v/v) containing 1% formic acid, and solvent B, acetonitrile/methanol/water (45:45:10 v/v/v) containing 1% formic acid. A gradient was used where solvent A was held at 80% for 0.5 minutes and then decreased to 0% in the next 4 minutes before re-equilibrium.

Mass spectrometric analysis was performed with a triple quadrupole mass spectrometer (TSQ Quantum; Thermo Fisher Scientific) operating in positive electrospray ionization mode with the capillary temperature at 350°C and the spray voltage at 4.0 kV. The performance of the methods was checked by the inclusion of quality control samples. Each analytic run was accepted when at least 2/3 of the quality control samples were within ±15% of their nominal value and not more than 50% of the quality control samples at the same concentration were outside this limit.

Pharmacokinetic Analysis. The pharmacokinetic evaluation for total radioactivity of almorexant and its four primary metabolites was performed with noncompartmental methods using WinNonlin version 5.2.1 (Pharsight, Mountain View, CA). Cmax and Tmax were directly read from the plasma concentration-time profiles and the area under the concentration-time curve (AUC) was estimated using the linear trapezoidal rule and extrapolation to infinity with the help of the terminal elimination rate constant kl. The latter was determined by log-linear regression analysis of the terminal phase. The terminal half-life (t1/2) was calculated by dividing ln2 by kl. Pharmacokinetic parameters were analyzed descriptively, calculating geometric means and 95% confidence limits or median and range for Tmax.

Sample Preparation for In Vivo Metabolic Profiling. Due to the low radioactivity, plasma samples from all six subjects and for at least two time points were pooled. Similarly, urine samples were pooled, but all time points were treated separately except for samples from 0–16 hours, 144–216 hours, and 216–384 hours which were combined for two or more time points. Pooled feces samples were prepared by combining a fixed percentage by weight from all 6 subjects using the following intervals: 0–48 hours, 48–96 hours, 96–144 hours, 144–192 hours, and 192–332 hours.

To an aliquot of 2.5 ml of plasma pool, 7.5 ml of acetonitrile was added. After protein precipitation at room temperature, plasma samples were centrifuged for 20 minutes at 4000g and 8°C, and the supernatant was collected. The protein pellet was resuspended with 7.5 ml of acetonitrile, and the resulting suspension was vortexed and centrifuged for 20 minutes at 4000 rpm and 8°C. This procedure was repeated twice. The supernatants were combined and evaporated to dryness and reconstituted with 250 μl of water/methanol (50:50, v/v). An aliquot of 100 μl was injected onto the HPLC system. Two aliquots of 25 μl were taken for liquid scintillation counting to determine the procedural recovery, which was 78.2%.

The urine pools were analyzed without additional sample preparation. A 500-μl aliquot of each pool was injected onto the HPLC system; procedural recovery was 95.3%. Pooled feces were extracted by addition of three equivalents (w/v) of acetonitrile and vortex-mixing for approximately 30 minutes. Samples were then centrifuged for 20 minutes at 4000g and 8°C. After centrifugation, the supernatant was decanted off. The pellet was extracted two more times as described previously. Supernatants were combined and evaporated to dryness and reconstituted in 0.5 ml of water/methanol (50:50, v/v). A 100-μl aliquot was injected onto the HPLC system. Duplicate aliquots of 50 μl were used for liquid scintillation counting to determine the procedural recovery, which was 73.6%.

Metabolite Profiling Analysis. The metabolite profile of sample extracts was analyzed by LC-MS/MS combined with offline radioactivity detection after fraction collection. The LC-MS/MS/radioactivity detection system consisted of a PAL autosampler (CTC Analytics AG), a Rheos 2200 pump (Thermo Fisher Scientific), a Gecko-2000 column oven (Chuzeau Info Laboratory, Courbevoie, France), a Luna C18 column (4.6 × 250 mm, 5 μm; Phenomenex, Aschaffenburg, Germany), a LTQ linear ion trap mass spectrometer (Thermo Fisher Scientific), and an FC204 fraction collector (Gilson Inc., Middleton, WI). The system was operated by Xcalibur 2.0 software (Thermo Fisher Scientific).

The postcolumn flow was split at a ratio of 1:5 between the mass spectrometer and the fraction collector. Fractions were sampled into 96-well plates, which were preconditioned with solid phase scintillation material (Deepwell Luma Plates; PerkinElmer Life and Analytical Sciences). The fraction collection interval was 0.15 minutes. After evaporation to dryness, the plates were analyzed by scintillation counting using a microplate counter (TopCount NXT; PerkinElmer Life and Analytical Sciences).

Radiochromatograms were reconstructed by conversion of raw data (counts per fraction versus fraction number) into chromatographic data (counts per fraction versus retention time) and processed by the Laura 4.0.3 software (LabLogic Systems Limited, Sheffield, South Yorkshire, UK). Chromatographic peaks in the reconstructed radiochromatograms were manually integrated.
Metabolites were quantified by calculating the percentage of each integrated radiopeak relative to the sum of all peaks in the radiochromatogram. Several metabolites coeluted and were consequently quantified together. The LTQ mass spectrometer was operated in data-dependent mode. In this mode, the instrument was able to collect full scan and MS² data simultaneously if an ion exceeded a predefined threshold.

Similar chromatography was used for urine and plasma samples. Metabolites were separated by a gradient of aqueous ammonium formate (50 mM, pH 4.0, solvent A) versus acetonitrile (solvent B) at a flow rate of 1.0 ml/min. The gradient for plasma was 75% A at 0 minutes, 27% A at 45 minutes, 5% A at 45.5 and 50 minutes, and 75% A at 50.1 and 57 minutes. For urine, the gradient was 90% A at 0 and 2 minutes, 30% A at 50 minutes, 5% A at 50.1 and 55 minutes, and 90% A at 55.1 and 60 minutes. For feces samples, solvent A was the same, but solvent B consisted of methanol/acetonitrile (50:50 v/v). The gradient was 70% A at 0 minutes, 15% A at 50 minutes, 5% A at 50.1 and 55 minutes, and 70% A at 55.1 and 60 minutes at a flow rate of 1.0 ml/min. The mass spectrometer was operated in positive and negative electrospray ionization modes, with capillary temperature at 275°C and spray voltage at 3.0 kV (positive mode) or 2.5 kV (negative mode).

Structure Elucidation of Metabolites. Structure elucidation of metabolites was performed in several ways. In total, 14 synthetic references were available for investigation of chromatographic retention times and MS and MS² spectra. Some metabolites were identified by comparing the data of these reference compounds with the corresponding data of compounds detected in the study samples. As the structure of the synthetic reference compounds was known, their MS² spectra were used to investigate the fragmentation pathways and to assign structures to the various product ions. The MS² spectra of the synthesized reference compounds ACT-078573, ACT-127980 (M3), ACT-127979 (M8), ACT-172515 (M5), ACT-078332 (M6), ACT-285612 (M14a), ACT-254819 (M14b), ACT-208764 (M31), and ACT-178291 (M7 rac), and ACT-461759 (M7) are given in the supplement (Supplemental Figs. 1–10) as well as the structure of the key fragments of ACT-078573 and its metabolites (Supplemental Table 1) suggested by Mass Frontier 6.0 (Thermo Fisher Scientific). This correlation between fragment masses and fragment structures facilitated the interpretation of MS² spectra of unknowns. In several instances, the proposed structures and fragmentation pathways were further confirmed by accurate mass MS and MS² experiments with a LTQ Orbitrap (Thermo Fisher Scientific) mass spectrometer.

Fig. 1. (A) Mean (± S.D.) concentration-time profiles of total radioactivity in whole blood and plasma. (B) Mean plasma concentration-time profiles of almorexant and its metabolites M3, M5, M6, and M8 after a single 200-mg oral administration of ¹⁴C-almorexant in healthy male human subjects (N = 6). No S.D. is displayed.
that contained the metabolite of interest were pooled, evaporated to dryness under a stream of nitrogen, reconstituted in water/MeOH (50:50, v/v), and analyzed with an Orbitrap LC-MS/MS. The resolving power was 100,000, and the mass accuracy in these experiments was usually better than 3 ppm.

To differentiate between hydroxy- and N-oxide metabolites, the respective metabolites were isolated by fractionation and subjected to hydrogen/deuterium (H/D) exchange. In the presence of excess of deuterium, OH-groups will undergo H/D exchange but N-oxides will not.

Almorexant itself as well as selected metabolites may undergo further biotransformation by addition of glutathione. The formation of these metabolites as well as their downstream glycyl cysteine, N-acetylcysteine, and cysteine products was investigated by searching for the corresponding mass traces in the chromatograms of the study samples and comparing them with the respective mass traces in blank matrix chromatograms.

Results

Safety and Tolerability of Almorexant. All 6 subjects completed the study, and single-dose treatment with 200 mg of ¹⁴C-almorexant was well tolerated. Fourteen adverse events were reported of which fatigue (6/6 subjects) and headache (2/6 subjects) were the most frequent. There were no severe or serious adverse events reported in this study, and all adverse events resolved without sequelae. No clinically significant abnormalities were observed in the clinical laboratory, vital signs, or ECG variables.

Pharmacokinetics and Disposition of Almorexant. The concentration-time profiles of total radioactivity in plasma and whole blood were characterized by rapid absorption with maximum concentrations of total radioactivity attained after 1.0 hour (Fig. 1A; Table 1). The mean terminal t₁/₂ of total radioactivity in plasma was 78.0 hours, which was longer than the t₁/₂ of total radioactivity in whole blood (39.0 hours). The exposure ratio based on the area under the plasma concentration-time curve from 0 to infinity (AUC₀–∞) of total radioactivity in whole blood to plasma was 0.51, indicating that most of the radioactivity was associated with plasma.

The mean plasma concentration-time profiles of almorexant and its primary metabolites M3, M5, M6, and M8 are depicted in Fig. 1B. After oral administration, almorexant was rapidly absorbed, as shown by a median Tₘₐₓ of 0.8 hours. After attainment of Cₘₐₓ, the plasma concentrations of almorexant declined, with a marked disposition phase followed by an elimination phase characterized by a t₁/₂ of 17.8 hours. The Cₘₐₓ of almorexant (113 ng/ml) was markedly lower than that of total radioactivity in plasma (1060 ng-Eq/ml) suggesting that almorexant is extensively metabolized. This notion is further supported by the longer t₁/₂ of total radioactivity in plasma and whole blood when compared with that of almorexant (Table 1).

Mass Balance and Excretion in Feces and Urine. The cumulative excretion profile of radioactivity in urine and feces as well as the total excretion (feces and urine) is shown in Fig. 2. Excretion was

![Fig. 2.](image-url)
14C-labeled material was virtually complete within 5 days in 5 out of 6 subjects, but in one subject the fecal recovery was delayed by about 4 days. The mean (range) recovery of the administered dose was 91.5% (88.2–94.1%), with 13.5% (9.6–17.5%) excreted in urine and 78.0% (74.4–81.4%) excreted in feces. The radioactivity excreted in expired air was <0.5% of the administered radioactive dose in all subjects and was not taken into account for the calculation of total recovery.

Fig. 3. (A) Representative HPLC radiochromatograms of human plasma: pool 2, 0.75–1.0 hours (I); pool 3, 1.5–2.0 hours (II); and pool 4, 3–4 hours (III); BLQ = 15 CPM (only quantifiable peaks are annotated). (B) Representative HPLC radiochromatograms for feces: pool 1, 0–48 hours (I); pool 2, 48–96 hours (II); BLQ = 25 CPM (only quantifiable peaks are annotated). (C) Representative HPLC radiochromatograms for urine: pool 1, 0–48 hours (I); pool 2, 48–96 hours (II); BLQ = 25 CPM (only quantifiable peaks are annotated). Characterization of the metabolites presented was based on both MS data and retention time.
Quantitative Profiles of 14C-almorexant and Metabolites in Plasma and Excreta. Representative radiochromatograms in plasma, urine, and feces are shown in Fig. 3. Characterization of the metabolites presented was based on both MS data and retention time. Plasma pharmacokinetic variables of almorexant and identified metabolites in plasma are shown in Table 2, and the percentages of dose excreted in urine and feces are displayed in Table 3. The LC-MS/MS data of all metabolites detected in the matrices are listed in Table 4. As chromatographic baseline separation could not be achieved for all metabolites, a number of metabolites were coeluted in feces or urine as indicated.

To calculate the relative exposure to each circulating metabolite or groups of coeluting metabolites, measured radioactivity in each pooled plasma sample was converted into ng-Eq/ml and used to calculate the AUC from 0 to the last time point with a measurable concentration (AUC$_{0-t}$). As a consequence of this approach, the results may differ from those obtained with LC-MS/MS used in the pharmacokinetic analysis.

In plasma, the main circulating entity was the combination M11/M41 followed by the combination M7/M14a/M31/M32 and by M30 which represented 15.6, 3.2, and 1.4%, respectively, of total radioactivity in plasma. The parent and all other metabolites or combination of metabolites accounted for less than 1% of total radioactivity. The parent and less abundant metabolites could only be quantified up to 1.6–3.5 hours after dosing, whereas total radioactivity was measured up to 240 hours after dosing. No parent compound was detected in urine.

The combinations of metabolites M11/M41/M58/M59 and M45/M46 accounted for more than 1% of the radioactive dose administered; all other metabolites or combinations of metabolites represented less than 1% of the dose. The most abundant compound in feces was the parent compound, which represented 10.0% of the radioactive dose administered. The combinations of metabolites M5/M35 and M66/M67 accounted for 8.6 and 9.1%, respectively, whereas all other metabolites or combinations of metabolites represented less than 5% of the administered radioactive dose.

The parent and its identified metabolites represented about 50% of the total administered radioactivity. Overall, 49.6, 61.5, and 21.6% of the radioactivity in feces, urine, and plasma, respectively, were identified, indicating the presence of as yet unidentified metabolites. This is caused by the large number of metabolic pathways of almorexant. Importantly, all metabolites >1% of the total radioactivity in plasma and urine and >5% in feces were identified. Analytical recovery was between 73.0 and 95.3% for the three matrices, indicating that no major metabolites have been missed by losses during sample preparation and LC-MS analysis.

Structure Elucidation of Metabolites. M3, M5, M6, M7, M8, M14a, M14b, M27, and M31 were identified by comparing chromatographic retention times and MSn spectra of available reference compounds with the corresponding data of the study samples. The structure proposals for M10, M11, M12, M28/29, M30, M32, M34, M39, and M41 were derived from interpretation of the respective MSn data, as described in the corresponding Materials and Methods section. The H/D exchange experiments were performed for M35 and M37, indicating that oxidation occurred at a carbon atom rather than by formation of N-oxides. The major fragmentation reactions of protonated almorexant, m/z 513, are shown in Fig. 4. The reactions are dominated by direct cleavages whereas rearrangement reactions are of
minor importance. This simplified the interpretation of spectra of unknown metabolites.

The metabolic scheme of the formation of the primary almorexant metabolites is displayed in Fig. 5. Figure 6 presents the proposed metabolic schemes of almorexant in human plasma, feces, and urine for a) the M3-pathway, b) the M8-pathway, and c) and d) the M5- and M6-pathways, respectively. As mass spectrometry usually cannot differentiate between isomeric structures, the site of a biotransformation reaction is not specified in this scheme if several possibilities existed and no reference compounds were available for comparison.

The metabolic scheme in human plasma is depicted in Fig. 7A. Twenty-one discrete metabolite structures are present in human plasma. Some metabolite structures appeared to be close to a 10% level relative to parent almorexant. Twelve of these 21 metabolites are products of phase I biotransformations, and nine metabolites are phase II conjugates with either glucuronic acid or sulfonic acid. Fig. 7B depicts the metabolic scheme in human urine and feces.

Discussion

The safety and pharmacokinetic profile of almorexant, a dual orexin receptor antagonist, and its sleep-promoting properties warranted further investigation of this compound (Brisbare-Roch et al., 2007; Hoever et al., 2012b). This study was conducted to characterize the disposition and metabolism of almorexant in vivo.

After oral administration of \(^{14}C\)-almorexant, only 10% of the administered dose (200 mg, 84 \(\mu\)Ci) was recovered in feces as unchanged almorexant. Based on the assumptions that this 10% represents unabsorbed material and that intestinal bacteria do not metabolize almorexant, and together with the finding that in urine no
unchanged almorexant was found, this suggests that at least 90% of the administered dose was absorbed and subsequently excreted as metabolites. The measured absolute bioavailability of almorexant in humans is only 11.4% (Hoch et al., 2012), a discrepancy is readily explained by extensive first-pass metabolism, in line with its clearance of 43 l/h. After quick oral absorption (T_{max} of 0.8 hours), systemic almorexant concentrations decreased rapidly; the terminal t_{1/2} of 17.8 hours represented only a small part of the AUC. However, the plasma t_{1/2} of total radioactivity was 4.4 times longer, suggesting the presence of metabolites with longer half-lives than the parent compound. Three (M3, M5, and M8) of the four metabolites measured in plasma by LC-MS/MS showed a longer t_{1/2} than almorexant. Because of the difference in quantification limit of the method used, total radioactivity in whole blood could only be quantified up to 96 hours after dosing, but in plasma this was up to 240 hours. This may explain the observed difference in t_{1/2} between both matrices (39.0 hours versus 78.0 hours). The exposure ratio based on the AUC_{0-inf} of total radioactivity in whole blood to plasma was 0.51, in line with the results of the in vitro blood-to-plasma partitioning experiments.

The primary metabolites of almorexant are the isomeric phenols M3 and M8, formed by oxidative demethylation, the aromatic isoquinolinium ion M5, formed by dehydrogenation, and M6, formed by oxidative dealkylation with loss of the phenylglycine moiety. From these primary metabolites all other metabolites are derived, involving a number of phase II enzyme reactions such as glucuronidation and sulfation among other reactions. In total 47 metabolites were identified; of these, 22 were identified in plasma. Ten metabolites, including the primary metabolite M6, were found in plasma but not in the excreta, which is most likely due to their low abundance. Only the coeluting pair M11/M41 was observed at a plasma exposure greater than 10% of total radioactivity exposure (Table 2), but the majority
was below 1%. M11 is a glucuronide of M7, and M41 is a glucuronide of M42, and both were found in urine. Based on the current ICH guideline (2009), those metabolites that have a plasma exposure of at least 10% of drug-related material are to be toxicologically characterized, that is, preferably covered by exposure in preclinical toxicology studies. In rat toxicology studies, M11/M41, which are both N-dealkylated, O-demethylated, and O-glucuronidated metabolites, showed higher exposure levels than in this clinical study. Further, O-glucuronides generally do not raise toxicology/safety concerns. The earlier so-called MIST guidance (FDA, 2008) specified the threshold as 10% of the parent drug. Obviously, for a highly metabolized drug such as almorexant this makes a big difference and would lead to practical challenges when a spectrum of metabolites, which as such reach low concentrations but still higher than 10% of those of parent drug, would have to be characterized. Therefore, the current ICH guidance appears to be more realistic.

Metabolism and subsequent biliary excretion of metabolites were identified as the major route of elimination. In feces, 16 metabolites were identified, among which M3, M5, and M8 were among the more abundant ones together with M35 and M66/M67. Urinary excretion represented a minor excretion pathway with, on average, 13.5% of the radioactivity administered recovered in urine. Unchanged almorexant was not found in urine, and none of the 16 and 21 identified metabolites in feces and urine, respectively, were major (i.e., none represented >10% of the administered radioactive dose). Therefore, although most radioactive material in feces and especially urine was not identified, no further attempts were undertaken to characterize this unidentified material. When comparing the metabolic profile of almorexant established in the present study to that obtained in animals, no unique human metabolites were identified (Actelion Pharmaceuticals Ltd, unpublished data).

The exposure to the primary metabolites M3, M5, and M8 was approximately similar to that to almorexant whereas that to M6 was considerably higher. In vitro binding experiments have shown that M5 and M6 have no affinity for orexin receptors and thus do not appear to contribute to the pharmacologic actions of almorexant. In contrast and compared with almorexant, metabolites M3 and M8 have similar

![Metabolism pathways of almorexant in humans](image-url)

Fig. 5. Metabolism pathways of almorexant in humans after a single 200-mg oral administration of 14C-almorexant. Structures of metabolites were characterized by mass spectrometry. Four primary metabolites are the starting points for the entire metabolic scheme, that is, the demethylation of either methoxy group in the 6- or 7-position of the tetrahydroisoquinoline ring to yield the isomeric phenols M3 and M8, dehydrogenation of the tetrahydroisoquinoline to the aromatic isoquinolinium ion M5, and oxidative dealkylation with loss of the phenylglycine moiety to yield M6.
affinity to the OX2 receptor but have a 9 to 34 times lower affinity to the OX1 receptors. Both metabolites may contribute to the pharmacologic actions of almorexant (Actelion Pharmaceuticals Ltd, unpublished data).

In conclusion, extensive metabolism and subsequent excretion of metabolites via the feces represents the major elimination pathway of almorexant.
Fig. 6. Continued
Fig. 7. (A) Phase I metabolites are labeled in light orange, and phase II metabolites are labeled in dark orange. Due to their isomeric nature, the exact chemical structure of metabolites M10, M12, M32, and M35 could not be determined by mass spectrometry. To account for the existence of isomers, both possibilities (e.g., M12 and M12-i) have been included yielding to symmetrical metabolic pathways for metabolites M3 and M8. [Mx] indicates intermediate metabolites that were not observed in humans. (B) Almorexant metabolites are organized by the number of metabolic steps required to yield their final chemical structure; that is, each circle contains the metabolites requiring the same number of chemical modifications. Metabolites highlighted in yellow are those detected in urine (light yellow = phase I metabolites; dark yellow = phase II metabolites) whereas those in brown were found in feces. [Mx] indicates intermediate metabolites that were not observed in humans. Most metabolites in this scheme are products of multistep transformations. The present organization of data is intended to visualize their interrelationship rather than claiming knowledge of the exact sequence of metabolic pathways.
Acknowledgments

The authors thank Hamed Aissaoui and Ralf Koberstein (Actelion Pharmaceuticals Ltd, Allschwil, Switzerland) for the synthesis of reference compounds, Covance (Allschwil, Switzerland) with Michael Seiberling as principal investigator for the clinical conduct of the study, Elke Speker, Sebastian Thomas, and Janine Wank (Swiss BioAnalytics, Birsfelden, Switzerland) for the bioanalytical part and the total radioactivity measurements, and Paul van Giersbergen (Van Giersbergen Consulting, Wuenheim, France) for editorial assistance.

Authorship Contributions

Participated in research design: Dingemanse, Hoever, Treiber, Shakeri-Nejad.

Conducted experiments: Hopfgartner, Redeker, Miraval.

Performed data analysis: Shakeri-Nejad, Treiber, Hopfgartner, Redeker, Miraval.

Wrote or contributed to the writing of the manuscript: Dingemanse, Hoever, Hoch, Treiber, Redeker, Hopfgartner, Shakeri-Nejad.

References

Address correspondence to: Dr. Jasper Dingemanse, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland. E-mail: jasper.dingemanse@actelion.com