Significance of Reductive Metabolism in Human Intestine and Quantitative Prediction of Intestinal First-Pass Metabolism by Cytosolic Reductive Enzymes

Haruka Nishimuta, Tetsuya Nakagawa, Naruaki Nomura, and Masashi Yabuki
Pharmacokinetics Research Laboratory, Dainippon Sumitomo Pharma Co., Ltd., Suita, Osaka, Japan

Received January 22, 2013; accepted February 26, 2013

ABSTRACT

The number of new drug candidates that are cleared via non-cytochrome P450 (P450) enzymes has increased. However, unlike oxidation by P450, the roles of reductive enzymes are less understood. The metabolism in intestine is especially not well known. The purposes of this study were to investigate the significance of reductive metabolism in human intestine, and to establish a quantitative prediction method of intestinal first-pass metabolism by cytosolic reductive enzymes, using haloperidol, mebendazole, and ziprasidone. First, we estimated the metabolic activities for these compounds in intestine and liver using subcellular fractions. Metabolic activities were detected in human intestinal cytosol (HIC) for all three compounds, and the intrinsic clearance values were higher than those in human liver cytosol for haloperidol and mebendazole. These metabolic activities in HIC were NADPH- and/or NADH-dependent. Furthermore, the metabolic activities for all three compounds in HIC were largely inhibited by menadione, which has been used as a carbonyl reductase (CBR)-selective chemical inhibitor. Therefore, considering subcellular location, cofactor requirement, and chemical inhibition, these compounds might be metabolized by CBRs in human intestine. Subsequently, we tried to quantitatively predict intestinal availability (F_i) for these compounds using human intestinal S9 (HIS9). Our prediction model using apparent permeability of parallel artificial membrane permeability assay and metabolic activities in HIS9 could predict F_i for humans for the three compounds well. In conclusion, CBRs might have higher metabolic activities in human intestine than in human liver. Furthermore, our prediction method of human F_i using HIS9 is applicable to substrates of cytosolic reductive enzymes.

Introduction

In early drug research efforts, it is commonplace for newly synthesized compounds to be tested for proclivity to high clearance by incubating with human liver microsomes (HLMs) and cofactors to support cytochrome P450 (P450) activity (Obach, 2001). Compounds demonstrating high lability are either discarded or structurally modified to impart improved metabolic stability. This type of activity has now been occurring for several years, and our ability to find and design new drugs with low P450-catalyzed lability is well established. An unintended consequence of such an effort has been that the number of new drug candidates that are cleared via non-P450 enzymes has increased (Zientek et al., 2010).

Unlike oxidation by P450, the roles of reductive enzymes are less well understood. Alcohol dehydrogenases, aldo-keto reductases (AKRs), short-chain dehydrogenases/reductases (SDRs), and quinone reductases (Maser, 1995; Parkinson, 1996; Oppermann and Maser, 2000) catalyze the reduction of aldehyde and ketone moieties. Most carbonyl-reducing enzymes are AKRs or SDRs and are cytosolic enzymes, except for some SDR superfamily members located in microsomes and mitochondria (Forrest and Gonzalez, 2000). Carboxyl reductases (CBRs) and 11β-hydroxysteroid dehydrogenase are SDR superfamily members. CBRs are NADPH- and/or NADH-dependent cytosolic enzymes, and 11β-hydroxysteroid dehydrogenase is a microsomal enzyme. Recently, it was reported that aldehyde oxidase (AO) also catalyzes reduction such as the reduction of the N-S bond in the benzothiazole moiety of ziprasidone (Prakash et al., 1997; Beedham et al., 2003). AO is a cofactor-independent cytosolic enzyme.

Haloperidol, mebendazole, and ziprasidone undergo reductive metabolism in humans (Dawson et al., 1985; Kudo and Ishizaki, 1999; Beedham et al., 2003). Haloperidol and mebendazole are carbonyl compounds. It was reported that major metabolic pathways of haloperidol in liver were reduction by CBR, oxidative dealkylation by CYP3A4, and glucuronidation by uridine diphosphate glucuronosyltransferase (UGT) (Someya et al., 1992). Mebendazole is metabolized by hydrolysis and reduction in humans (Dawson et al., 1985); however, the enzyme that is involved in each metabolic pathway is unknown. Ziprasidone is reductively metabolized by AO in liver cytosol (Beedham et al., 2003), and the other main metabolic pathway

ABBREVIATIONS: AKR, aldo–keto reductase; AO, aldehyde oxidase; CBR, carbonyl reductase; $CL_{h,p}$, hepatic clearance in plasma base after intravenous administration; $CL_{int,u}$, total clearance in plasma base after intravenous administration; F_a, fraction absorbed; F_g, intestinal availability; F_h, hepatic availability; f_{ur}, unbound fractions in incubations; f_{ex}, the fraction of the dose excreted in urine as unchanged drug; HIC, human intestinal cytosol; HIM, human intestinal microsome; HIS9, human intestinal S9; HLC, human liver cytosol; HLM, human liver microsome; HLS9, human liver S9; HPLC-MS/MS, high-performance liquid chromatography with tandem mass spectrometry; k_{el}, elimination rate constant; m/z, mass-to-charge ratio; P450, cytochrome P450; P_{app}, apparent permeability; PAMPA, parallel artificial membrane permeability assay; Q_h, hepatic blood flow; Rb, blood-to-plasma concentration ratio; SDR, short-chain dehydrogenases/reductases; UGT, uridine diphosphate glucuronosyltransferase. 1104
is oxidation by CYP3A4 (Miao et al., 2005). On the other hand, whether reductases contribute to intestinal first-pass metabolism has not been reported. Therefore, we first estimated whether haloperidol and ziprasidone were metabolized in intestinal cytosolic fraction, because CBR and AO are cytosolic enzymes and P450 and UGT are microsomal enzymes. In addition, we investigated metabolites of mebendazole in various subcellular fractions because there is a possibility that hydrolysis is involved in the metabolic activity for mebendazole in cytosolic fraction. Furthermore, we conducted enzyme identification using chemical inhibitors. Menadione, flufenamic acid, and ondansetron were used as inhibitors for CBRs, AKRs, and AO, respectively (Atalla et al., 2000; Porter et al., 2000; Obach et al., 2004; Rosemond and Walsh, 2004).

The pharmacological action of orally administered drugs is influence by oral bioavailability. The fraction entering intestinal tissue, intestinal availability, and hepatic availability are involved in oral bioavailability. It is now well known that many drugs metabolized by CYP3A and UGT undergo first-pass metabolism in the intestine (Wu et al., 1995; Kemp et al., 2002; Kato, 2008; Cubitt et al., 2009). On the other hand, the intestinal metabolic activities by other non-P450 enzymes are not well known.

We reported a prediction method of the intestinal first-pass metabolism in humans based on in vitro data (Nishimuta et al., 2011). In this method, it is necessary to use metabolic clearance values from metabolic stability in human intestinal microsomes (HIMs) and permeability values from parallel artificial membrane permeability assays (PAMPAs) at pH 7.4. It showed good prediction accuracy for CYP3A and UGT substrates; however, whether this method is applicable to reductive enzymes has not yet been investigated. Furthermore, there has been no report of a quantitative prediction method of intestinal first-pass metabolism by cytosolic enzymes using human intestinal cytosol (HIC) or human intestinal S9 (HIS9).

The purposes of this study were to investigate the significance of reductive metabolism in human intestine, and to establish a quantitative prediction method of intestinal first-pass metabolism by cytosolic reductive enzymes, using haloperidol, mebendazole, and ziprasidone. The metabolic stabilities in intestine and liver were estimated using subcellular fractions. The reductive enzymes involved in intestinal metabolic activities for the compounds were investigated by subcellular location, cofactor requirement, and chemical inhibition. The intestinal availability (F_i) values of these compounds in humans were then quantitatively predicted using the metabolic stabilities in HIS9 fraction.

Materials and Methods

Chemicals. Mebendazole, haloperidol, nitrendipine, terfenadine, (\pm)-verapamil hydrochloride, and flecainide acetate were purchased from Sigma Aldrich (St. Louis, MO). Midazolam and nifedipine were purchased from Wako Pure Chemical Industries (Osaka, Japan). Buspirone hydrochloride, flufenamic acid, and ondansetron hydrochloride dihydrate were purchased from LKT Laboratories (St. Paul, MN), lovastatin and ziprasidone hydrochloride from Toronto Research Chemicals (North York, ON, Canada), saquinavir mesylate from The United States Pharmaceutical Convention (Rockville, MD), and menadione from Enzo Life Sciences, Inc. (New York, NY). β-NADPH and β-NADH were purchased from Oriental Yeast Co., Ltd. (Tokyo, Japan). All of the other reagents and solvents were of analytical grade and commercially available.

Subcellular Fractions. Pooled HIMs and HLMs [pool of 18 (male: 11, female: 7) and pool of 200 (male: 100, female: 100), respectively], pooled HIS9 and human liver S9 (HLS9) [pool of 18 (male: 11, female: 7) and pool of 50 (male: 25, female: 25), respectively], and pooled HIC and human liver cytosol (HLC) [pool of 13 (male: 7, female: 6) and pool of 50 (male: 25, female: 25), respectively] were purchased from Xenotech, LLC (Lenexa, KS).

Metabolic Stabilities in HIM, HLM, HIC, HLS9, HIS9, and HLS9 for Haloperidol, Mebendazole, and Ziprasidone. We incubated substrates (haloperidol, mebendazole, and ziprasidone) at 37°C in 100 μl of a reaction mixture consisting of 50 mM phosphate buffer (pH 7.4), cofactors (3 mM β-NADPH, 3 mM β-NADH, or distilled water), and subcellular fractions (microsomes, cytosol, or S9 from human intestine or liver). Linearity of metabolic activities for subcellular fractions (0.2–4 mg protein/ml), substrate concentrations (50–1000 nM), and incubation times (30 or 60 minutes) were confirmed, and the optimal reaction conditions were set for each compound. We adopted 200 nM as a substrate concentration because metabolic activities for haloperidol, mebendazole, and ziprasidone showed linearity in the range of 50–1000 nM. The final concentration of acetonitrile in the incubation mixture was 0.5% (v/v). After preincubation at 37°C for 5 minutes, the reactions were initiated by the addition of the substrates and stopped by addition of 200 μl ice-cold methanol. Control samples were incubated using the same method under the absence of substrates; substrates were added after addition of ice-cold methanol.

The reaction mixtures were spiked with 200 μl methanol containing the internal standard, 200 nM flecainide. The mixtures were centrifuged at 4500g for 10 minutes to remove precipitated protein. The supernatants were then filtered using 96-well filter plates with 0.45-μm pore size (Varian Inc., Palo Alto, CA). The filtrates were diluted 2-fold using distilled water and transferred to 96-well plates. A 10-μl portion was then injected into a high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) system.

Metabolic Route of Mebendazole in HIM, HLM, HIC, HLS9, and HIS9. We incubated 10 μM mebendazole at 37°C in 200 μl of a reaction mixture consisting of 50 mM phosphate buffer (pH 7.4) and 3 mM β-NADPH with 1 mg protein/ml subcellular fractions (microsomes, cytosol, or S9 from human intestine or liver) for 60 minutes. The final concentration of acetonitrile in the incubation mixture was 0.5% (v/v). After preincubation at 37°C for 5 minutes, the reactions were initiated by the addition of mebendazole, and were later stopped by addition of 600 μl ice-cold methanol. Control samples were incubated using the same method under the absence of mebendazole; mebendazole was added after addition of ice-cold methanol.

The mixtures were centrifuged at 4500g for 10 minutes to remove precipitated protein. The supernatants were then filtered using 96-well filter plates with 0.45-μm pore size (Varian Inc.). The filtrates were diluted 2-fold using distilled water and transferred to 96-well plates. A 10-μl portion was then injected into a high-performance liquid chromatography system with photodiode array detector and tandem mass spectrometry.

Metabolic Stabilities in HIS9 for CYP3A Substrates. We incubated eight CYP3A substrates (50 nM) separately at 37°C in 100 μl of a reaction mixture consisting of 50 mM phosphate buffer (pH 7.4), 3 mM β-NADPH, and HIS9. The incubations were conducted with the following concentrations of HIS9: 0.2 mg protein/ml for lovastatin and saquinavir and 1 mg protein/ml for the other six compounds, at incubation times of 15 minutes for lovastatin and saquinavir and 30 minutes for the other six compounds. Subsequently, the assay was performed as described under the section on metabolic stabilities in HIM, HLM, HIC, HLS9, HIS9, and HLS9 for haloperidol, mebendazole, and ziprasidone.

The Fraction Unbound in Incubations. The unbound fractions in incubations (f_u) for haloperidol, mebendazole, ziprasidone, and eight CYP3A substrates were determined using high-throughput dialysis. Dialysis membranes had a 10-kDa molecular mass cutoff and were purchased from Harvard Apparatus (Holliston, MA). Compounds (1 μM, final) with subcellular fractions (HIM, HLM, HIC, HLS9, or HIS9) for haloperidol, mebendazole, and ziprasidone, and HIS9 for eight CYP3A substrates at the concentrations used in the metabolic stability studies for each compound) in 50 mM phosphate buffer (pH 7.4) were added to the acceptor chambers, and 50 mM phosphate buffer (pH 7.4) was added to the donor chamber. The dialysis plate was placed in an incubator at 37°C for 22 hours on a plate rotator. Thirty microliters of samples from the acceptor chamber were mixed with 30 μl of 50 mM phosphate buffer (pH 7.4), and 30 μl of samples from the donor chamber were mixed with 30 μl of subcellular fractions (HIM, HIS9, HIC, HLS9, and HLS9) with concentrations of 2.5 μg/ml lovastatin and saquinavir and 25 μg/ml of the other six compounds. Subsequently, the assay was performed as described under the section on metabolic stabilities in HIM, HLM, HIC, HLS9, HIS9, and HLS9 for haloperidol, mebendazole, and ziprasidone.
Identification of Metabolic Enzymes of Haloperidol, Mebendazole, and Ziprasidone in HIC Using Chemical Inhibitors. Haloperidol, mebendazole, and ziprasidone (200 nM, final concentration) were separately incubated at 37°C in 100 μl of a reaction mixture consisting of 50 mM phosphate buffer (pH 7.4), HIC (1 mg protein/ml), inhibitors, and 3 mM NADPH to assess the change in peak area of test compound. The incubation time was 60 min for haloperidol and ziprasidone and 30 minutes for mebendazole. Menadione (0, 20, 100, or 200 μM, final concentration), fluconic acid (0, 2, 10, or 20 μM, final concentration), and ondasetron (0.5, 5, or 50 μM, final concentration) were used as inhibitors for CBRs, AKRs, and AO, respectively (Atalha et al., 2000; Maser et al., 2000; Porter et al., 2000; Rosemond and Walsh, 2004; Obach et al., 2011). Subsequently, the assay was carried out as described in the section on metabolic stabilities in HIM, HLM, HIC, HLC, HIS9, and HLS9 for haloperidol, mebendazole, and ziprasidone.

PAMPA for Haloperidol, Mebendazole, and Ziprasidone. PAMPA was carried out using a PAMPA Evolution instrument from pION Inc. (Woburn, MA) (Avdeef et al., 2005). The lipid solution consisted of a 20% (w/v) dodecanol solution and lecithin mixture. The donor solutions consisted of test compounds dissolved in 10 mM dimethylsulfoxide diluted in pH 7.4 buffer (final concentration of 50 μM). The acceptor solution was adjusted to pH 7.4. The test plate was incubated for 240 minutes at room temperature in a humidity-saturated atmosphere. The concentration of each test compound in the reference, donor, and acceptor plates was measured with a UV plate reader. The apparent permeability coefficient (Papp) was calculated using PAMPA Evolution software (pION Inc.).

Analytical Procedure. Concentrations of compounds from metabolic stability studies were measured using an HPLC-MS/MS system consisting of an API4000 mass spectrometer (Applied Biosystems, Foster City, CA) with a Shimadzu 10A series HPLC system or an API3200QTrap mass spectrometer (Applied Biosystems) with a Shimadzu 20A series HPLC system. Chromatography was performed using Inertsil ODS-3 columns (3-μm particle size, 2.1 × 150 mm; GL Science, Tokyo, Japan) warmed to 40°C. The mobile phase consisted of 0.1% formic acid (A) and methanol (B). The flow rate was 0.2 ml/min, and the gradient conditions for elution were as follows: gradient [min, B%] = [0, 10%]-[1, 90%]-[4, 90%]-[4.1, 10%]-[7, 10%] when measuring lovastatin or gradient [min, B%] = [0, 10%]-[1, 90%]-[3.1, 10%]-[6, 10%] when measuring the others. Mass spectrometry detection was performed by positive ionization electrospray. The selective reaction monitoring mode was used as follows to monitor ions [m/z]: precursor ion → product ion: buspirone (386.0 → 122.0), haloperidol (375.7 → 164.9), lovastatin (427.0 → 325.0), mebendazole (295.8 → 238.3), and ziprasidone (413.1 → 398.1).

To confirm the metabolic route of mebendazole in HIM, HLM, HIC, HLC, HIS9, and HLS9, the samples described above were measured using an high-performance liquid chromatography with photodiode array detector and tandem mass spectrometry system consisting of an API5500QTrap mass spectrometer (Applied Biosystems) with a Shimadzu 20A series HPLC system. Chromatography was performed using Cadenza CD-C18 columns (3-μm particle size, 2 × 150 mm; Intakt Corporation, Kyoto, Japan) warmed to 40°C. The mobile phase consisted of 0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B). The flow rate was 0.2 ml/min, and the gradient conditions for elution were as follows: gradient [min, B%] = [0, 10%]-[1, 90%]-[4, 90%]-[4.1, 10%]-[7, 10%] when measuring lovastatin or gradient [min, B%] = [0, 10%]-[1, 90%]-[3.1, 10%]-[6, 10%] when measuring the others. Mass spectrometry detection was performed by positive ionization electrospray. The selective reaction monitoring mode was used as follows to monitor ions [m/z]: precursor ion → product ion: buspirone (386.0 → 122.0), haloperidol (375.7 → 164.9), lovastatin (427.0 → 325.0), mebendazole (295.8 → 238.3), and ziprasidone (413.1 → 398.1).

Data Analysis. The peak area ratios of test compounds to internal standards were used for calculation in experiments of the metabolic stability studies, the fraction unbound studies, and the studies with chemical inhibitors. The mean value of duplicate determinations was plotted versus incubation time on a semi-logarithmic scale, and the slope was determined by linear-regression analysis as the elimination rate constant [kapp(min⁻¹)]. The unbound intrinsic clearance values (CLint,unbound) were calculated using Eq. 1:

\[
CL_{\text{int,unbound}} \text{ (ml/min per mg protein)} = \frac{k_{\text{app}} \text{ (min⁻¹)}}{\text{microsomal concentration (mg protein/ml) \cdot f}_{\text{app}}} \tag{1}
\]

Investigated \(f_{\text{app}}\) values were calculated using Eq. 2, and the mean of duplicate determinations was calculated:

\[
f_{\text{app}} = \frac{\text{peak area in buffer sample}}{\text{peak area internal standard}} \cdot \frac{\text{peak area in microsomal sample}}{\text{peak area internal standard}} \text{ (2)}
\]

\(F_r\) is the fraction of dose that escapes intestinal first-pass metabolism in the enteroctyes and penetrates into blood flow of portal vein. We previously reported the \(F_r\) prediction method using Eq. 3 (Nishimuta et al., 2011):

\[
F_{r,\text{predicted}} = \frac{0.011 \cdot P_{\text{app,PAMPA}} \text{ (pH 7.4)}}{0.011 \cdot P_{\text{app,PAMPA}} \text{ (pH 7.4)} + CL_{\text{int,unbound}}} \tag{3}
\]

where \(P_{\text{app,PAMPA}}\) (10⁻⁶ cm/s) represents the apparent permeability of PAMPA at pH 7.4, and \(CL_{\text{int,unbound}}\) (ml/min per milligram HIM) represents the unbound intrinsic clearance in HIM.

As shown in Eq. 3, the \(F_r\) prediction method was defined using the metabolic activity in the microsomal fraction \(CL_{\text{int,unbound}}\) (ml/min per milligram HIM). The 0.011 value is the empirical scaling factor set using compounds that are metabolized only in microsomal fraction. Therefore, a scaling factor from metabolic activities per S9 protein to those per microsomal protein is needed to apply to compounds that are metabolized both in the microsomal fraction and cytosolic fraction. CYP3A is expressed in microsomal fraction, but it is not expressed in cytosolic fraction. Therefore, we assumed that the difference between \(CL_{\text{int,unbound}}\) (ml/min per milligram HIM) and \(CL_{\text{int,S9, HIC}}\) (ml/min per milligram HIS9) for CYP3A substrates is due to the difference between protein levels in microsomes and S9 (mg HIM protein/g intestine versus mg HIS9 protein/g intestine) (Eq. 4):

\[
CL_{\text{int,S9, HIC}} = CL_{\text{int,unbound}} - \text{Scaling factor (mg HIS9/mg HIM)} \tag{4}
\]

In this study, we investigated the relationship between metabolic activities in HIM (Nishimuta et al., 2010) and those in HIS9 for CYP3A substrates that might be metabolized only in microsomal fraction. The fitting line of the correlation was 3.35-fold higher in HIM than in HIS9 (Fig. 1). Therefore, we defined that the scaling factor in Eq. 4 was 3.35, although it is indirectly method (Eq. 5):

\[
CL_{\text{int,S9, HIC}} = 3.35 \cdot CL_{\text{int,unbound}} \tag{5}
\]

We then calculated the \(F_r\) values of haloperidol, mebendazole, and ziprasidone in addition to CYP3A substrates using \(CL_{\text{int,S9, HIC}}\) by Eq. 6:

\[
F_{r,\text{predicted}} = \frac{0.011 \cdot P_{\text{app,PAMPA}} \text{ (pH 7.4)}}{0.011 \cdot P_{\text{app,PAMPA}} \text{ (pH 7.4)} + 3.35 \cdot CL_{\text{int,S9, HIC}}} \tag{6}
\]

where \(P_{\text{app,PAMPA}}\) (10⁻⁶ cm/s) represents the apparent permeability of PAMPA at pH 7.4, and \(CL_{\text{int,S9, HIC}}\) (ml/min/mg HIS9) represents the unbound intrinsic clearance in HIS9.

Calculation of \(F_{\text{g,observed}}\) in Humans by the I.V./Oral Method. \(F_{\text{g,observed}}\) values were obtained from a previous report (Table 1) (Varma et al., 2010). They calculated hepatic clearance in plasma base (CLH,p) using Eq. 7 assuming that the nonrenal clearance is all due to hepatic clearance. Then, hepatic availability (\(F_h\)) was calculated using Eqs. 7 and 8, as follows:

\[
CL_{\text{H,p}} = CL_{\text{int,p}} \cdot \left(1 - f_{\text{unbound}}\right) \tag{7}
\]

\[
F_h = 1 - \frac{CL_{\text{H,p}}}{Q_h} \tag{8}
\]
Fig. 1. Correlation of between \(Cl_{int,a}\) values in HIM and HIS9 for CYP3A substrates. We investigated the relationship between metabolic activities in HIM (Nishimuta et al., 2010) and those in HIS9 for CYP3A substrates that might be metabolized only in microsomal fraction. The fitting line of the correlation was 3.35-fold higher in HIM than in HIS9.

(23 ml/min per kilogram) is hepatic blood flow in humans, and \(R_\text{b}\) is blood-to-plasma concentration ratio (assumed to be 1).

Next, fraction absorbed \(\left(F_a\right)\) values were calculated. For mebendazole, \(F_a\) was calculated using Eq. 9. Mass balance excretion studies in which radio-labeled drug was administered orally and intravenously, and radioactivity excreted in the urine were compared with estimated \(F_a\):

\[
F_a = \frac{A_{\text{radioactivity excreted, urine, orally}}}{A_{\text{radioactivity excreted, urine, i.v.}}}
\]

(9)

where \(A\) is the amount.

For ziprasidone, \(F_a\) was calculated using Eq. 10. The amount of unchanged drug in feces after oral administration was measured (assuming that all metabolites observed arise from absorbed material and not from gut microflora) as follows:

\[
F_a = 1 - \frac{A_{\text{excreted, feces}}}{dose_{\text{oral}}}
\]

(10)

For haloperidol, Varma et al. (2010) reported that the \(F_a\) value of haloperidol was 1. We could not find the data that is necessary to calculate \(F_a\) and we could not know which method was used in the report. Then, we assumed that the \(F_a\) value of haloperidol was 1.

Finally, observed \(F_a\) values were calculated using Eq. 11:

\[
F_{a,\text{human(observed)}} = \frac{F}{F_{a,F_h}}
\]

(11)

where \(F\) is bioavailability.

Results

\(Cl_{int,a}\) Values in Microsomes, Cytosol, and S9 of Human Intestine and Liver for Haloperidol, Mebendazole, and Ziprasidone in the Presence of NADPH. \(Cl_{int,a}\) values in HIM, HLM, HIC, HLC, HIS9, and HLS9 are shown in Table 2. Metabolic activities were detected in HIC for all three compounds, and the \(Cl_{int,a}\) values in HIC were higher than those in HLC for haloperidol and mebendazole. On the other hand, \(Cl_{int,a}\) values in HIM were lower than those in HLM for all three compounds. Mebendazole showed the highest \(Cl_{int,a}\) value in HIC among the three compounds, and no metabolic activity in HIM. Furthermore, \(Cl_{int,a}\) value in HIS9 was higher than those in HLS9 only for mebendazole.

\(Cl_{int,a}\) Values in HIS9 for Haloperidol, Mebendazole, and Ziprasidone in the Presence of NADH and NADPH. \(Cl_{int,a}\) values in HIS9 for haloperidol, mebendazole, and ziprasidone in the presence or absence of NADH and NADPH are shown in Table 3. Metabolic activities were not detected in the absence of both NADH and NADPH for all three compounds. On the other hand, metabolic activities were detected in the presence of only NADPH for all three compounds. In the presence of only NADH, haloperidol and mebendazole were not metabolized, whereas ziprasidone was metabolized.

Metabolic Route of Mebendazole in Microsomes, Cytosol, and S9 of Human Intestine and Liver. Metabolic routes of mebendazole in HIM, HLM, HIC, HLC, HIS9, and HLS9 are shown in Figs. 2–4. The metabolites of mebendazole were estimated by comparing the UV spectra at 254 nm with the mass spectra from the incubated samples and the control samples. Reported major metabolic routes in humans were hydrolysis and reduction (Beedham et al., 2003) (Fig. 2). From spectral data, the major metabolic route in HLM was hydrolysis. On the other hand, the major route in HIC, HIS9, and HLC was reduction. Both hydrolysis and reduction occurred in HLS9.

Effects of Chemical Inhibitors on Metabolism of Haloperidol, Mebendazole, and Ziprasidone in HIC. The metabolic activities for haloperidol, mebendazole, and ziprasidone in HIC were largely inhibited (by 90% at 200 μM) by benzamidine, which is an inhibitor of human CBRs (Fig. 5A). On the other hand, the metabolic activities for haloperidol, mebendazole, and ziprasidone in HIC were not inhibited by 20 μM flufenamic acid, which is an inhibitor of human AKRs, or in 50 μM ondansetron, which is an inhibitor of human AO (Fig. 5, B and C).

Correlation of between \(Cl_{int,a}\) Values in HIMs and HIS9 for CYP3A Substrates. To predict human \(F_a\) for substrates of cytosolic enzymes, a scaling factor from S9 to microsomes in human intestine is needed. The relationship of the \(Cl_{int,a}\) values between HIM and HIS9 for CYP3A substrates is shown in Fig. 1. The fitting line of the correlation for CYP3A substrates that might be metabolized only in microsomes was obtained from a report by Varma et al. (2010).

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>(Cl_{int,a})</th>
<th>(F_a)</th>
<th>(F)</th>
<th>(F_{a,\text{observed}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloperidol</td>
<td>7.72</td>
<td>1a</td>
<td>0.6</td>
<td>0.903</td>
</tr>
<tr>
<td>Mebendazole</td>
<td>14.84</td>
<td>1</td>
<td>0.22</td>
<td>0.620</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>5.05</td>
<td>0.9</td>
<td>0.6</td>
<td>0.854</td>
</tr>
</tbody>
</table>

\(a\) \(F_{a,\text{observed}}\) values were calculated using Eqs. 7–11.

Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>(Cl_{int,a})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIM</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>0.014</td>
</tr>
<tr>
<td>Mebendazole</td>
<td>—a</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>0.029</td>
</tr>
</tbody>
</table>

\(a\) \(Cl_{int,a}\) values were not calculated (\(Cl_{int,a}<0.0088\) ml/min per milligram protein).
microsomal fraction was 3.35-fold higher in HIM than in HIS9. Therefore, we calculated the F_g values of haloperidol, mebendazole, and ziprasidone using Eq. 6.

Calculation of $F_{g,\text{human(observed)}}$ for Haloperidol, Mebendazole, and Ziprasidone from I.V. and Oral Data. $F_{g,\text{human(observed)}}$ values were calculated using Eqs. 7–11 (Table 1). Calculated $F_{g,\text{human(observed)}}$ for haloperidol, mebendazole, and ziprasidone was 0.903, 0.620, and 0.854, respectively.

Prediction of $F_{g,\text{human}}$. Using $P_{\text{app,PAMPA}}$ and $CL_{\text{int,u,HIM}}$ calculated from $CL_{\text{int,u,HIS9}}$ in the presence of NADH and NADPH by Eq. 6, we predicted $F_{g,\text{human}}$ using Eq. 6 (Table 4). Using the model in this study, $F_{g,\text{human}}$ for the three compounds was predicted as $F_{g,\text{observed}}$ versus $F_{g,\text{predicted}} = 0.903$ versus 0.785 for haloperidol, 0.620 versus 0.722 for mebendazole, and 0.854 versus 0.838 for ziprasidone.

Discussion

The number of new drug candidates that are cleared via non-P450 enzymes has increased in recent years. However, unlike oxidation by P450, the roles of reductive enzymes are less well understood. The intestinal metabolic activities by reductive enzymes, and a quantitative prediction method of intestinal first-pass metabolism by cytosolic enzymes are especially not well known. The purposes of this study were to investigate the significance of reductive metabolism in human intestine, and to establish a quantitative prediction method for intestinal first-pass metabolism by cytosolic reductive enzymes, using haloperidol, mebendazole, and ziprasidone.

$CL_{\text{int,u}}$ values in HIM were lower than those in HLM for all three compounds (Table 2). Haloperidol and ziprasidone are mainly metabolized by CYP3A4 in microsomes (Someya et al., 1992; Beedham et al., 2003). The difference between $CL_{\text{int,u}}$ values in HLM and HIM might be due to difference of CYP3A4 expression level (von Richter et al., 2004). On the other hand, metabolic activities were detected in HIC for all three compounds, and the $CL_{\text{int,u}}$ values in HIC were higher than those in HLC for haloperidol and mebendazole (Table 2). Haloperidol and ziprasidone might be metabolized by CBR and AO in HLC, respectively (Someya et al., 1992; Beedham et al., 2003).

Carbonyl compounds, haloperidol and mebendazole, might be metabolized by intestinal cytosolic carbonyl-reducing enzymes, AKRs, or CBRs (Rosemond and Walsh, 2004). In fact, human CRBs can be detected in human tissues, including small intestine, by immunohistochemical staining (Wirth and Wermuth, 1992). The highest concentrations were found in the parenchymal cells of the liver and the epithelial cells of the stomach and small intestine. Ziprasidone is reductively metabolized by AO in liver (Beedham et al., 2003). The results of this study are consistent with the reports that AO is a cytosolic enzyme; however, they are not consistent with the reports that AO mRNA was scarcely expressed in intestine (Nishimura and Naito, 2006).

Mebendazole showed the highest $CL_{\text{int,u}}$ value in HIC among the three compounds, and no metabolic activity in HIM. Furthermore, the $CL_{\text{int,u}}$ value in HIS9 was higher than those in HLS9 only for mebendazole (Table 2). Reported major metabolic routes in humans were hydrolysis and reduction (Dawson et al., 1985) (Fig. 2). $F_{g,\text{human}}$ of mebendazole is relatively low at 0.62 (Varma et al., 2010). There is a possibility that hydrolysis is involved in the metabolic activity for mebendazole in HIC. Therefore, we investigated metabolic routes of mebendazole in HIM, HLM, HIC, HLC, HIS9, and HLS9. From HPLC data, the major metabolic route in HLM was hydrolysis. On the other hand, the major metabolic route in HIC, HIS9, and HLC was reduction.

![Fig. 2. The metabolism of mebendazole.](image-url)
Both hydrolysis and reduction occurred in HLS9 (Figs. 2–4). As a result, reduction was mainly involved in the metabolic activity for mebendazole in human intestine. In human liver, hydrolysis and reduction occurred in microsomes and in cytosol, respectively. Therefore, it was suggested that reduction mainly contributes to lower F_g of mebendazole.

Metabolic activities in HIS9 were not detected in the absence of both NADH and NADPH for all three compounds. On the other hand, metabolic activities were detected in the presence of only NADPH for all three compounds. In the presence of only NADH, haloperidol and mebendazole were not metabolized, whereas ziprasidone was metabolized (Table 3). Carbonyl reduction by AKRs and CBRs is NADPH- and/or NADH-dependent (Rosemond and Walsh, 2004). Therefore, the results of this study for haloperidol and mebendazole supported our speculation that these two compounds are metabolized by AKRs or CBRs. In addition, the initial metabolic pathways of haloperidol in human liver are oxidation, glucuronidation, and reduction. The oxidation is catalyzed by CYP3A4 and the reduction occurs in HLC (Kudo and Ishizaki, 1999). This information supports our speculation that the metabolic activity for haloperidol in HIC might be reductively metabolized by AKRs or CBRs. On the other hand, AO is a cofactor-independent enzyme (Zientek et al., 2010). Therefore, unlike in the liver, AO might not be involved in the intestinal metabolism of ziprasidone. This might be because AO is scarcely expressed in intestine (Nishimura and Naito, 2006). Characterization of the metabolism of ziprasidone in human liver preparations has suggested that two enzymes are important in the initial pathways of ziprasidone: CYP3A4 and AO (Beedham et al., 2003). Therefore, it has not been reported that ziprasidone was metabolized by a cytosolic enzyme other than AO. There is a possibility that unknown reductive metabolism of ziprasidone occurs in HIC.

The metabolic activities for all three compounds in HIC were not inhibited by 20 μM flufenamic acid or 50 μM ondansetron (Fig. 5, B and C). It has been reported that flufenamic acid has been used as a selective chemical inhibitor of AKRs, and that 20 μM flufenamic acid largely inhibited purified AKRs (Atalla et al., 2000; Rosemond and Walsh, 2004). Ondansetron is a chemical inhibitor of AO. Obach et al. (2011) reported that 50 μM ondansetron largely inhibited the metabolic activities by AO in human liver. On the other hand, the metabolic activities for all three compounds in HIC were largely inhibited by 200 μM menadione (Fig. 5A). Menadione has been used as a CBR-selective chemical inhibitor (Atalla et al., 2000; Porter et al., 2000; Rosemond and Walsh, 2004). As a result, these data suggested that these compounds were metabolized by CBRs in human intestine.

CBR, which showed metabolic activities for haloperidol and mebendazole, might be expressed more readily in HIC than in HLC, although there has been no report regarding expression levels of CBR proteins in human liver or intestine. These results are important because most metabolic enzymes, including CYP3A4, show higher metabolic activities in liver than in intestine.

Our prediction method for the intestinal first-pass metabolism in humans uses metabolic stabilities in HIM (Nishimuta et al., 2011). However, we had previously not yet investigated whether this method is applicable to cytosolic enzymes using HIC or HIS9. Therefore,
a scaling factor from S9 to microsomes is needed to apply to compounds that are metabolized both in microsomal fraction and cytosolic fraction. Scaling factors of from S9 to microsomes or from cytosol to microsomes in human liver were reported (Houston and Galetin, 2008); however, those in human intestine had not yet been reported. In this study, we investigated the relationship between metabolic activities in HIM and those in HIS9 for CYP3A substrates that might be metabolized only in microsomal fraction although it is indirectly method (Eq. 4). The fitting line of the correlation was 3.35-fold higher in HIM than in HIS9 (Fig. 1). Therefore, we established Eq. 6 using the scaling factor as 3.35.

We predicted $F_{g,human}$ using the metabolic activities in HIS9 to estimate intestinal metabolism in both cytosolic and microsomal enzymes. Using $P_{app,PAMPA}$ and $CL_{int,u,HIM}$ calculated from $CL_{int,u,HIS9}$ in the presence of NADH and NADPH, we predicted $F_{g,human}$ using Eq. 6 (Table 4). The model in this study could predict $F_{g,human}$ for three compounds well. Our prediction method using HIS9 was applicable to the substrates of cytosolic enzymes although the prediction is only conducted with three compounds; further study with more compounds is required. To facilitate selection of candidates with high bioavailability in humans through exploratory screening, we propose that intestinal first-pass metabolism for new chemical entities that are
Reductive Metabolism in Human Intestine

