In Vitro Oxidative Metabolism of 6-Mercaptopurine in Human Liver: Insights into the Role of the Molybdoflavoenzymes Aldehyde Oxidase, Xanthine Oxidase, and Xanthine Dehydrogenase

Kanika V. Choughule, Carlo Barnaba, Carolyn A. Joswig-Jones, and Jeffrey P. Jones

Department of Chemistry, Washington State University, Pullman, Washington

Received March 13, 2014; accepted May 13, 2014

ABSTRACT

Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TUA to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD+), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD+ in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC.

Introduction

6-Mercaptopurine (6MP) is a thiopurine drug with antitumor activity that has been in use as a remission-inducing agent for the treatment of childhood acute lymphoblastic leukemia (Burchenal et al., 1953). It has also been used as an immunosuppressive agent in combination with its prodrug, azathioprine, for the treatment of inflammatory bowel disease such as ulcerative colitis and Crohn’s disease (Nielsen et al., 2001). 6MP is structurally related to endogenous purine bases such as adenine, guanine, and hypoxanthine, and hence is metabolized by enzyme systems and pathways that metabolize endogenous purines (Aarbakke et al., 1997). Phosphoribosylation, oxidation, and methylation are the major metabolic pathways of 6MP metabolism (Fig. 1). Phosphoribosylation is an anabolic pathway that results in the production of active metabolites that exert the antitumor effect of 6MP by interfering with purine ribonucleotide synthesis. As opposed to phosphoribosylation, oxidation and methylation are catabolic pathways that produce inactive metabolites. It has been known that 6MP is converted to methylmercaptopurine (MeMP) by the action of thiopurine methyltransferase by a pathway that is almost exclusive for thiopurines (Giverhaug et al., 1999). Oxidative metabolism of 6MP results in 6-thiouric acid (6TUA), 6-thioxanthine (6TX), 8-oxo-6-mercaptopurine (8-oxo-6MP), and 6-methylmercaptop-8-hydroxypurine (6Me-8OH-MP). Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD+), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD+ in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC.
intermediate metabolite 6TX in partially purified guinea pig liver. Rashidi et al. also demonstrated that 6MP is metabolized to 6TX exclusively by XO and subsequently converted to 6TUA by a concerted action of XO and AO. One caveat to bear in mind is that all of these in vitro experiments were performed using AO/XO from nonhuman sources. Major species differences have already been reported for several compounds metabolized by AO and hence extrapolation of pharmacokinetic data from other mammalian species to humans is not advisable (Choughule et al., 2013; Dalvie et al., 2013). Moreover, mammalian xanthine oxidoreductase (XOR) exists in two interconvertible forms, xanthine oxidase (XO) and xanthine dehydrogenase (XDH). XDH preferentially reduces nicotinamide adenine dinucleotide (NAD⁺) and predominates in vivo, while XO cannot reduce NAD⁺ and prefers molecular oxygen as an electron acceptor (Harrison, 2002). It has already been established that XO plays a role in the metabolism of 6MP. However, the contribution of XDH to the metabolism of this thio-purine drug still remains largely unknown.

To understand the in vitro oxidative metabolism of this well established anticancer drug, we investigated the in vitro metabolism of 6MP to 6TUA via the 6TX intermediate in pooled human liver cytosol. The roles of XO and AO were explored using specific inhibitors raloxifene and febuxostat. We confirmed the roles by using purified human AO and *Escherichia coli* lysate containing expressed recombinant human XO. Finally, we assessed the metabolism in the presence and absence of NAD⁺ to determine the role of XDH to the overall metabolism of 6MP and 6TX.

Materials and Methods

6-Mercaptopurine was purchased from Sigma-Aldrich (St. Louis, MO), whereas 6-thioxanthine and 6-thiouric acid were purchased from Toronto Research Chemicals (Toronto, ON, Canada). Febuxostat was kindly donated by Dr. Eric Kelley from University of Pittsburgh (Pittsburgh, PA). Raloxifene was purchased from Enzo Life Sciences (Farmington, NY). Sequence grade trypsin was acquired from Promega (Madison, WI). Pooled mixed-gender human liver samples (*n* = 8) devoid of allopurinol were obtained from St Jude’s Children’s Hospital human liver bank (Barr et al., 2014). The samples were prepared and stored as described in (Barr et al., 2014). Table 1 contains information on the demographics of the liver samples used to prepare cytosol. Plasmid pTrc99A containing gene encoding for human XO was kindly provided by Tomohiro Matsumura from Nippon Medical School (Tokyo, Japan).

Expression of Recombinant Human XOR in TP1000 Cells. Human XOR containing plasmid DNA (10 ng) was transformed into TP1000 cells (a gift from John Enemark’s laboratory, University of Arizona). Transformants were plated on lysogeny broth (LB) agar plates containing 100 mg/ml ampicillin and grown overnight at 37°C. A single colony was used to inoculate 100 ml of LB containing 100 μg/ml ampicillin and 50 μM sodium molybdate. Cultures were grown at 37°C and 250 rpm for 2 hours until an absorbance of 1 at 600 nm was reached. Isopropyl β-D-thiogalactoside (IPTG) at a final concentration of 1 mM was added to the culture and the expression was induced. The cultures were further grown for 24 hours at 30°C before harvesting.

For expression of human XOD, glycerol stocks of TP1000 cells containing plasmid pRTC99A encoding human XOD were plated onto LB agarose plates containing 100 μg/ml ampicillin and grown overnight at 37°C. A single colony was picked and grown overnight at 30°C in 100 ml LB containing 100 μg/ml ampicillin and 50 μM sodium molybdate. A 10-ml aliquot of the culture was used to inoculate 500 ml fresh LB broth with 100 μg/ml ampicillin and 50 μM sodium molybdate. Cultures were grown at 37°C and 250 rpm for 2 hours until an absorbance of 1 at 600 nm was reached. Isopropyl β-D-thiogalactoside (IPTG) at a final concentration of 1 mM was added to the culture and the expression was induced. The cultures were further grown for 24 hours at 30°C before harvesting.

Fig. 1. Reaction scheme showing metabolites of 6-Mercaptopurine formed by phosphoribosylation (anabolic), methylation and oxidation (catabolic) pathways.
used to induce cells, which were then allowed to continue growing at room temperature for 24 hours at 150 rpm. Cells were harvested by centrifugation at 3500g at 4°C for 30 minutes in a swinging bucket rotor (Allegra 6R centrifuge; Beckman Coulter, Pasadena, CA). Cell paste was collected and resuspended in equal volumes of 1 g of tissue to 1 ml of buffer (100 mM potassium phosphate buffer, pH 7.4). Cell suspension was lysed by adding lysozyme (5 mg/ml), MgCl2 (28.6 µg/ml), RNase, and DNase (10 µg/ml each) followed by incubation at 4°C for 60 minutes. The cell suspension was then disrupted by sonication and subsequently subjected to centrifugation at 100,000g for 40 minutes at 4°C. Supernatant containing recombinant human AO was collected and stored at −80°C until further use.

Expression of Human AOX1 and Subsequent Protein Purification. The method of human AOX1 gene expression and purification previously developed in our laboratory was used in this study for the preparation of purified human AO (Alfaro et al., 2009). Human AOX1 was overexpressed as a fusion protein with an N-terminal hexa-His tag in TP1000 cells. Partial purification was achieved by lysing the cells and passing the lysate through 0.1 mM EDTA. The final concentration of dimethylsulfoxide in the reaction mixture was 1.5% (v/v). All incubations of dimethylsulfoxide were performed at 37°C for 15 and 30 minutes, respectively. The formation of 6TX and 6TUA formation were allowed to proceed at 37°C for 15 and 30 minutes, respectively. The formation of 6TX was observed to be linear with respect to time for 15 minutes and 6TUA for more than 30 minutes. The reaction was initiated by addition of pooled human liver cytosol (HLC) at a final concentration of 0.5 or 1 mg/ml and a known concentration of purified human AO and human XO lysate. The final reaction volume was 80 µl. The reaction was quenched by the addition of 20 µl of 1 M formic acid containing 1 µM 3,5 dibromo-4-hydroxybenzoic acid as internal standard. The samples were then centrifuged at 5000 rpm for 10 minutes in an Eppendorf centrifuge 5415D and the supernatant was collected for analysis.

HPLC-MSS/MS Assays. The samples were analyzed using an 1100 series HPLC system (Agilent Technologies, Santa Clara, CA) coupled to a API4000 tandem mass spectrometry system (Applied Biosystems/MDSci, Foster City, CA) on a turbospray interface (ESI) operating in negative ion mode. Chromatography was performed on a Zorbax Eclipse XDB-C8 column (4.6 × 150 mm; 5 µm; Agilent Technologies, Santa Clara, CA). Mobile phase A consisted of 0.05% formic acid and 0.2% acetic acid in water and mobile phase B contained 90% acetonitrile, 9.9% water, and 0.1% formic acid. The column was first equilibrated with 99% mobile phase A for 3 minutes. Chromatographic separation was achieved using a linear gradient to 25% mobile phase B over the next 1.5 minutes. Mobile phase A was then held constant for the next 1.5 minutes before a linear gradient back to 99% mobile phase A was achieved over a period of 1 minute. Finally, the column was re-equilibrated to starting conditions over the next 1 minute. The entire chromatographic assay was performed over 8 minutes per sample with a constant flow rate of 800 µl/min. The retention times for 6-thioxanthine, 6-thiouric acid, and the internal standard were 6.2, 4.5, and 6.8 minutes, respectively (see Supplemental Fig. 1). The optimized mass spectrometer tune parameters for 6TX and 6TUA were as follows: collision gas, 10; curtain gas, 30; ion source gas 1, 50; ion source gas 2, 30; ion spray voltage, 4500; desolvation temperature, 450; declustering potential, 70; entrance potential, 15; collision energy, 30; collision cell exit potential, 2. The analytes, 6TX, 6TUA, and the internal standard, were detected using multiple reaction monitoring mode by monitoring the m/z transition from 167.1 to 133.4, 183.0 to 140.2, and 294.8 to 251, respectively. Quantitation of the product was achieved by comparison with a standard curve ranging from 1 nM to 10 µM for 6TX and 0.1 to 10 µM for 6TUA.

Data Analysis. Experimental data were fitted to appropriate nonlinear regression models using GraphPad Prism (version 4.03; GraphPad Software Inc., San Diego, CA). Michaelis-Menten model:

\[V = \frac{V_{\text{max}}[S]}{K_m + [S]} \]

Substrate inhibition model:

\[V = \frac{V_{\text{max}}[S]}{K_m + [S] \left(1 + \frac{[S]}{K_I}\right)} \]

where \(V \) is the reaction velocity, \([S]\) is the substrate concentration, \(V_{\text{max}} \) is the maximum reaction velocity, \(K_m \) is the Michaelis-Menten constant, and \(K_I \) is the inhibition constant for the substrate.

Visual inspection of the velocity curve inflection (Figs. 3A and 5A), as well as the biphasic nature of the kinetic displayed by Edie-Hofstee plot (Fig. 3Aii), led us to fit the data to the equation for two or more enzymes catalyzing the same reaction. This kinetic approach considers the total velocity as the sum of the contribution by each enzyme (Segel, 1993):

\[V = \left(\frac{V_{\text{max}1}[S]}{K_m1 + [S]} \right) + \left(\frac{V_{\text{max}2}[S]}{K_m2 + [S]} \right) \]

Here, \(V_{\text{max}1} \) is the lower \(V_{\text{max}} \), \(V_{\text{max}2} \) is the higher \(V_{\text{max}} \), \(K_m1 \) is the lower \(K_m \), and \(K_m2 \) is the higher \(K_m \). Since nonlinear regression methods failed to converge, Lineweaver-Burk plots were used to estimate the kinetic constants \(V_{\text{max}} \) and \(K_m \) for biphasic reactions. Reciprocal plots generated using data points from the region below the first inflection of the biphasic curve were used to obtain \(K_m1 \) and \(V_{\text{max}1} \), and points above the first inflection were used to predict \(K_m2 \) and \(V_{\text{max}2} \).

Results and Discussion

Metabolism of 6MP to 6TUA by the molybdenum hydroxylases requires two sequential oxidations. Evidence in the literature suggests that 6MP can form 6TUA either via 6TX or 8-OH-6MP as an intermediate in vivo in humans, but the enzymes responsible for the reactions are not known (Bergmann and Ungar, 1960; Zimm et al.,

<table>
<thead>
<tr>
<th>Liver</th>
<th>Sex</th>
<th>Age</th>
<th>Disease History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>69</td>
<td>Hepatoma</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>62</td>
<td>Colorectal cancer, metastasis</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>68</td>
<td>Colorectal cancer, metastasis</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>63</td>
<td>Cholangio carcinoma</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>60</td>
<td>Colorectal cancer, metastasis</td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>70</td>
<td>Colorectal cancer, metastasis</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>24</td>
<td>No information given</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>57</td>
<td>Colorectal cancer, metastasis</td>
</tr>
</tbody>
</table>

TABLE 1
Demographics of individual liver samples pooled to generate human liver cytosol used in this study.

Liver Sex Age Disease History
1 Female 69 Hepatoma
2 Male 62 Colorectal cancer, metastasis
3 Female 68 Colorectal cancer, metastasis
4 Female 63 Cholangio carcinoma
5 Female 60 Colorectal cancer, metastasis
6 Female 70 Colorectal cancer, metastasis
7 Female 24 No information given
8 Male 57 Colorectal cancer, metastasis

Chougule et al.
1984; Van Scoik et al., 1985) (see Fig. 1). Studies using cow XO and guinea pig AO concluded that oxidation to the 6TX intermediate was mediated solely by XO. The second step was found to be mediated by both guinea pig AO and cow XO (Rashidi et al., 2007). Given that many studies have shown that animal models are poor predictor of molybdenum oxidase activity we decided to explore the in vitro metabolism with human XO and AO (Sahi et al., 2008; Choughule et al., 2013; Dalvie et al., 2013).

We initially explored the time course of 6MP metabolism by monitoring the production of the intermediate 6TX and the final product 6TUA in pooled human liver cytosol. The results are shown in Fig. 2. The intermediate 6TX is formed at a relatively linear rate for almost 25 minutes. Between 25 and 40 minutes the intermediate reaches steady-state concentrations. The final product is formed after an initial lag of about 25–40 minutes and produced in a linear fashion after the intermediate 6TX reached steady-state. These results are consistent with sequential oxidation with release of the intermediate prior to the second step. Thus, the intermediate 6TX must rebind to the enzyme and does not simply reorient in the active site. Due to the unavailability of the 8-OH-6MP metabolite standard, it was not possible to investigate the contribution of this intermediate. However, a recent crystallography study has shown that both 6MP and hypoxanthine bind in two orientations that could lead to either oxidation on the five-membered or six-membered ring of either substrate (Cao et al., 2010). While 6MP metabolism was not explored, this study concluded that xanthine (oxidation on the six-membered ring) was the major intermediate of hypoxanthine oxidation and that oxidation on the five-membered ring was not observed. Thus, the formation of 6TX (oxidation on the six-membered ring) is consistent with the results for hypoxanthine oxidation. Furthermore, the correlation between steady-state 6TX levels and 6TUA linear rates support 6TX as the major intermediate, or that 6TX and 8-OH-6MP are formed with nearly identical kinetics.

Fig. 2. Dynamics of the formation of the intermediate, 6TX and the final product, 6TUA in human liver cytosol over a period of 150 minutes.

1984; Van Scoik et al., 1985) (see Fig. 1). Studies using cow XO and guinea pig AO concluded that oxidation to the 6TX intermediate was mediated solely by XO. The second step was found to be mediated by both guinea pig AO and cow XO (Rashidi et al., 2007). Given that many studies have shown that animal models are poor predictor of molybdenum oxidase activity we decided to explore the in vitro metabolism with human XO and AO (Sahi et al., 2008; Choughule et al., 2013; Dalvie et al., 2013).

We initially explored the time course of 6MP metabolism by monitoring the production of the intermediate 6TX and the final product 6TUA in pooled human liver cytosol. The results are shown in Fig. 2. The intermediate 6TX is formed at a relatively linear rate for almost 25 minutes. Between 25 and 40 minutes the intermediate reaches steady-state concentrations. The final product is formed after an initial lag of about 25–40 minutes and produced in a linear fashion after the intermediate 6TX reached steady-state. These results are consistent with sequential oxidation with release of the intermediate prior to the second step. Thus, the intermediate 6TX must rebind to the enzyme and does not simply reorient in the active site. Due to the unavailability of the 8-OH-6MP metabolite standard, it was not possible to investigate the contribution of this intermediate. However, a recent crystallography study has shown that both 6MP and hypoxanthine bind in two orientations that could lead to either oxidation on the five-membered or six-membered ring of either substrate (Cao et al., 2010). While 6MP metabolism was not explored, this study concluded that xanthine (oxidation on the six-membered ring) was the major intermediate of hypoxanthine oxidation and that oxidation on the five-membered ring was not observed. Thus, the formation of 6TX (oxidation on the six-membered ring) is consistent with the results for hypoxanthine oxidation. Furthermore, the correlation between steady-state 6TX levels and 6TUA linear rates support 6TX as the major intermediate, or that 6TX and 8-OH-6MP are formed with nearly identical kinetics.

Fig. 3. (A) Biphasic curve showing the formation of the intermediate 6TX from 6MP in human liver cytosol in the absence of NAD⁺. Points represent mean and error bars show standard error for triplicate experiments. Shown as an inset are Eadie Hofstee plot (A-I) and Lineweaver-Burke plot (A-II) representation of the same data. Points represent an average of triplicate experiments. (B) Inhibition of 6TX formation from 100 μM 6MP by AO specific inhibitor raloxifene (1 μM) and XO specific inhibitor febuxostat (1 μM) in HLC. Each reaction was performed in duplicate and values are expressed as percentage activity relative to the activity observed in the control (No inhibitor added). Error bars represent ± SEM. (C) Saturation plot for 6MP oxidation to 6TX in purified human AO showing K_{cat} (min⁻¹) versus substrate concentration. Data are fit to a substrate inhibition model and are an average of duplicate experiments.
TABLE 2
Enzyme kinetic parameters for the conversion of 6-mercaptopurine to 6-thioxanthine and 6-thioxanthine to 6-thiouric acid in pooled human liver cytosol in the presence and absence of NAD⁺

Data are representative of at least duplicate measurements ± S.E.M.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Source</th>
<th>Enzyme Kinetics</th>
<th>(V_{\text{max}})</th>
<th>(K_{\text{m}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6MP → 6TX</td>
<td>HLC (+NAD)</td>
<td>Biphasic</td>
<td>0.08 ± 0.00</td>
<td>88.2 ± 4.4</td>
</tr>
<tr>
<td></td>
<td>HLC (+NAD)</td>
<td>Biphasic</td>
<td>0.2 ± 0.1</td>
<td>33.4 ± 2.9</td>
</tr>
<tr>
<td>6TX → 6TUA</td>
<td>HLC (+NAD)</td>
<td>Michaelis-Menten</td>
<td>7.2 ± 0.2</td>
<td>3.0 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>HLC (+NAD)</td>
<td>Michaelis-Menten</td>
<td>15.5 ± 0.7</td>
<td>8.0 ± 1.6</td>
</tr>
</tbody>
</table>

With 6TX established as an intermediate in the formation of 6TUA, the next step was to determine the kinetics of the 6TX formation. Fig. 3A shows that biphasic kinetics was observed for 6TX formation. The Eadie-Hofstee plot shown in Fig. 3Ai, also displays a biphasic profile. Biphasic profiles are generally a result of a single enzyme in possession of a low- and a high-affinity catalytic binding site or two distinct enzymes involved in the biotransformation of a single substrate, one having low and the other having high affinity toward the substrate (Hutzler and Tracy, 2002). After using Lineweaver-Burke plots to fit the data (Fig. 3Aii), \(V_{\text{max}}/V_{\text{max}2} \) and \(K_{i}/K_{i2} \) were estimated to be 0.08/0.2 nmol/min per milligram and 88/500 \(\mu \)M, respectively (Table 2).

Thus, one high-affinity enzyme/active site and one high-capacity enzyme/active site is involved in metabolism to the 6TX intermediate, but the identity of the specific enzymes are unknown.

Specific inhibitors were used to address whether both AO and XO are involved in 6TX production. Raloxifene and febuxostat specifically inhibit drug metabolism by AO and XO, respectively, at concentrations up to 1 \(\mu \)M. (Obach, 2004; Barr and Jones, 2013; Weidert et al., 2014). Raloxifene inhibited the formation of 6TX by approximately 39%, whereas febuxostat demonstrated 67% inhibition (Fig. 3B). When both inhibitors were used in the same incubation they inhibited 97% of the formation of 6TX (Fig. 3B). Neither raloxifene nor febuxostat independently resulted in complete inhibition of 6TX production, implying that both AO and XO are involved in the generation of this intermediate metabolite. (Table 2).

To identify the high- and low-\(K_{i} \) enzyme, 6MP was incubated with either purified recombinant human aldehyde oxidase or \(E. \ coli \) cell lysate containing recombinant human xanthine oxidase. Purified human AO metabolized 6MP to 6TX and showed substrate inhibition kinetics with a \(K_{\text{cat}} \) of 0.2 minute⁻¹ and a \(K_{\text{m}} \) of 572 \(\mu \)M (Fig. 3C). The \(K_{\text{m}} \) value of 572 \(\mu \)M obtained here (Table 3) is not significantly different from the \(K_{\text{m}} \) value of 500 \(\mu \)M reported for 6TX formation in human liver cytosol above and hence it is probable that AO is the high-\(K_{i} \) enzyme associated with 6TX formation in human liver cytosol. This also means that XO is the likely low-\(K_{i} \) enzyme associated with this reaction. *Escherichia coli* lysate containing human AO also converted 6MP to 6TX, but since the enzyme levels are very low in the unpurified lysate, it was not possible to perform saturation kinetics and subsequently obtain a \(K_{\text{m}} \) for this reaction for comparison with purified human AO. Thus, it appears that unlike guinea pig AO, human AO mediates the formation of 6TX, while both human and cow XO can also mediate this reaction.

Unlike 6TX formation, which followed biphasic kinetics, Michaelis-Menten kinetics were observed for the conversion of the intermediate 6TX to final product 6TUA in HLC. This indicates that a single enzyme, or more than one enzyme with similar \(K_{\text{m}} \) values, were involved in the catalysis of this step (Fig. 4A). Inhibition experiments with raloxifene indicated that AO was not involved in the conversion of this intermediate to the final product. Raloxifene inhibited only 9% of 6TUA formation, whereas the XO inhibitor febuxostat almost completely inhibited 6TUA formation from 6TX (Fig. 4B).

In addition to this, purified human AO did not turn over 6TX to produce 6TUA but *E. coli* lysate containing expressed human XO converted 6TX to 6TUA following Michaelis-Menten kinetics (Fig. 4C). These results underpin the importance of XO in the metabolism of the intermediate to the final product and the absence of AO contribution to this step. This is again in contrast with the 6TX metabolism by guinea pig AO and cow XO (Rashidi et al., 2007), both of which catalyze the reaction. Interestingly, human liver cytosol has a higher \(V_{\text{max}} \) and a lower \(K_{\text{m}} \) value of 3 \(\mu \)M than the *E. coli*-expressed enzyme (\(K_{\text{m}} \) 30 \(\mu \)M) (Table 3). Given the uncertainty in the protein concentration of XO, the rate differences between the cytosolic XO and the expressed XO cannot be explained. However, it is surprising that the \(K_{\text{m}} \) values are different for the two enzyme systems. One possibility is that the human liver cytosol may have a significant amount of xanthine dehydrogenase (XDH) as well as XO.

To assess the contribution, if any, of XDH to the formation of 6TUA from 6TX, we performed kinetic experiments on human liver cytosol in the presence of NAD⁺. The kinetics of 6TUA formation from 6TX in the presence of NAD⁺ showed Michaelis-Menten kinetics with a doubling of \(V_{\text{max}} \) from 7 to 15 nmol/min per milligram relative to no NAD⁺ (Fig. 5A). An increase in the \(K_{\text{m}} \) value from 3 to 8 \(\mu \)M was observed in the presence

TABLE 3
Enzyme kinetic parameters for the conversion of 6-mercaptopurine to 6-thioxanthine by purified recombinant human aldehyde oxidase and 6-thioxanthine to 6-thiouric acid by *E. coli* lysate containing recombinant human xanthine oxidase

Data are representative of at least duplicate measurements ± S.E.M.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Source</th>
<th>Enzyme Kinetics</th>
<th>(V_{\text{max}})</th>
<th>(K_{\text{i}})</th>
<th>(V_{\text{max}})</th>
<th>(K_{\text{i}})</th>
<th>(V_{\text{max}})</th>
<th>(K_{\text{i}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6MP → 6TX</td>
<td>Purified human AO</td>
<td>Substrate Inhibition</td>
<td>NA</td>
<td>NA</td>
<td>0.2 ± 0.0</td>
<td>572 ± 172</td>
<td>NA</td>
<td>244 ± 77</td>
</tr>
<tr>
<td>6TX → 6TUA</td>
<td>Human XO containing E. coli lysate</td>
<td>Michaelis-Menten</td>
<td>NA</td>
<td>NA</td>
<td>30 ± 2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
of NAD⁺ (Table 2). In short, adding NAD⁺ to human liver cytosol did increase the rate of the reaction for the formation of the final product from the intermediate 6TX and can explain, at least in part, the difference between the cytosolic and *E. coli*-expressed metabolism. This brings into question whether XDH may also play a role in the first rate-limiting step, the production of 6TX.

![Graph A](image1.png)
Fig. 4. (A) Michaelis-Menten kinetics for the formation of the final product 6TUA from the intermediate, 6TX in HLC and (C) lysate containing expressed human xanthine oxidase. Each experiment is an average of duplicate experiments (± SEM). (B) Inhibition of 6TUA formation from 100 μM 6TX in HLC by AO specific inhibitor raloxifene (1 μM) and XO specific inhibitor febuxostat (1 μM). Values are expressed as a percentage of activity relative to the activity observed in of the control (No inhibitor added). Data are an average of duplicate experiments ± SEM.

![Graph B](image2.png)
Fig. 5. (A) Metabolism of 6MP to form 6TUA from 6TX and (B) 6TX from 6MP in the presence (red) and absence (blue) of NAD⁺. HLC were used as a source of enzyme. Data points are an average of duplicate experiments ± SEM. Shown as (B-I) is a Lineweaver-Burke plot of the same data used for estimation of kinetic parameters such as V_{max} and K_m.

![Graph C](image3.png)
In the presence of NAD⁺, kinetics of 6TX was still biphasic (Fig. 5B) but the kinetic parameters indicate a 2.5-fold increase in V_{max}, with no significant difference in V_{max} (Table 2). (This would be expected since the second V_{max} value has been assigned to AO.) Thus, it appears that XDH and XO contribute to the high-affinity reaction, while AO is responsible for the high-capacity reaction.

In conclusion, 6MP is converted to 6TU via the intermediate 6TX. Three enzymes, AO, XO, and XDH, contribute to the production of the 6TX intermediate, whereas only XO and XDH are involved in the conversion of the intermediate to the final product. This is in direct contrast with studies using nonhuman tissue in which XO was found to be responsible for the first step, and both AO and XO where responsible for the second step. This study establishes the enzymes responsible for oxidation of 6MP, and underlines the potential problems associated with using other species to predict the role of human molybdenum oxidasess.

Acknowledgments

The authors thank Dr. Tomohiro Matsumura at Nippon Medical School (Tokyo, Japan) for providing us with the plasmid pTrc99A containing the gene encoding human XO.

Authorship Contributions

Participated in research design: Choughule, Joswig-Jones, Jones.

Conducted experiments: Choughule, Joswig-Jones.

Performed data analysis: Choughule, Jones, Barnaba.

Wrote or contributed to the writing of the manuscript: Choughule, Barnaba, Jones.

References

Address correspondence to: Dr. Jeffrey P. Jones, Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, WA 99164–6430. E-mail: jpl@wsu.edu.