Hepatoselective Nitric Oxide (NO) Donors, V-PYRRO/NO and V-PROLI/NO, in Nonalcoholic Fatty Liver Disease: A Comparison of Antisteatotic Effects with the Biotransformation and Pharmacokinetics

Kamil Kus, Maria Walczak, Edyta Maslak, Agnieszka Zakrzewska, Anna Gonciarz-Dytman, Piotr Zabielski, Barbara Sitek, Krystyna Wandzel, Agnieszka Kij, Adrian Chabowski, Ryan J. Holland, Joseph E. Saavedra, Larry K. Keefer, and Stefan Chlopicki

Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Białystok, Białystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)

Received January 17, 2015; accepted April 9, 2015

ABSTRACT

V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazien-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl]diazien-1-ium-1,2-diolate), two structurally similar diazeniumdiolate derivatives, were designed as liver-selective prodrugs that are metabolized by cytochrome P450 isoenzymes, with subsequent release of nitric oxide (NO). Yet, their efficacy in the treatment of nonalcoholic fatty liver disease (NAFLD) and their comparative pharmacokinetic and metabolic profiles have not been characterized. The aim of the present work was to compare the effects of V-PYRRO/NO and V-PROLI/NO on liver steatosis, glucose tolerance, and liver fatty acid composition in C57BL/6J mice fed a high-fat diet, as well as to comprehensively characterize the ADME (absorption, distribution, metabolism and excretion) profiles of both NO donors. Despite their similar structure, V-PYRRO/NO and V-PROLI/NO showed differences in pharmacological efficacy in the murine model of NAFLD. V-PYRRO/NO, but not V-PROLI/NO, attenuated liver steatosis, improved glucose tolerance, and favorably modified fatty acid composition in the liver. Both compounds were characterized by rapid absorption following i.p. administration, rapid elimination from the body, and incomplete bioavailability. However, V-PYRRO/NO was eliminated mainly by the liver, whereas V-PROLI/NO was excreted mostly in unchanged form by the kidney. V-PYRRO/NO was metabolized by CYP2E1, CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was metabolized mainly by CYP1A2. Importantly, V-PYRRO/NO was a better NO releaser in vivo and in the isolated, perfused liver than V-PROLI/NO, an effect compatible with the superior antisteatotic activity of V-PYRRO/NO. In conclusion, V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO showed low effectiveness, was not taken up by the liver, and was eliminated mostly in unchanged form by the kidney.

Introduction

Many commonly used drugs do not possess biologic activity per se, but are metabolized into active metabolites that exert a therapeutic effect. Increasing bioavailability, reducing toxicity, and achieving organ-selective delivery represent the major aims of prodrg development (Han and Amidon, 2000; Huttunen et al., 2008; Testa, 2009). One of the strategies for achieving hepatoselectivity in drugs is to develop prodrugs that are metabolized by specific enzymes in the liver (Han and Amidon, 2000; Erion et al., 2005; Zawilska et al., 2013). Since cytochrome P450-dependent enzymes represent a large family of enzymes responsible for metabolizing a vast number of xenobiotics, and are located mainly in the liver, they constitute an excellent target for liver-specific prodrugs (Huttunen et al., 2008; Ortiz de Montellano, 2013). V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazien-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl)diazien-1-ium-1,2-diolate] (Fig. 1) are both diazeniumdiolates that were designed to deliver nitric oxide (NO) directly to the liver via cytochrome P450-dependent metabolism. The structure of these prodrgs was designed to avoid spontaneous decompsnsation under physiological conditions and to facilitate cytochrome P450-related biotransformation into their respective epoxides. These unstable intermediates are formed in hepatocytes and hydrolyze, either spontaneously or via enzymatic reaction by hepatic epoxide hydrolase, to generate diazeniumdiolate ions, which spontaneously release...
NO (Saavedra et al., 1997). It has been demonstrated that V-PYRRO/NO metabolizes into biologically active NO in isolated hepatocytes but not in liver sinusoidal endothelial cells, Kupffer cells, arterial vascular smooth muscle cells, systemic endothelial cells, or murine macrophages, underscoring the hepatocyte selectivity of NO delivery by V-PYRRO/NO (Saavedra et al., 1997).

In turn, V-PROLI/NO is a novel proline-based analog of V-PYRRO/NO with additional carboxylic acid moiety attached to the molecule to improve the water solubility. Furthermore, the additional functionality makes naturally occurring metabolite N-nitrosoproline the major product of decomposition of V-PYRRO/NO, resulting in a favorable toxicological profile (Chakrapani et al., 2007; Hong et al., 2010). V-PYRRO/NO, on the other hand, is metabolized to N-nitrosopyrrolidine, which is burned with toxicity. To our knowledge, up to now, only one report has demonstrated that V-PROLI/NO is metabolized to NO in human hepatocytes, and in that report, immortalized human HepG2 cells were used (Qu et al., 2009).

In turn, in numerous reports, V-PYRRO/NO has been shown to possess hepatoprotective effects, e.g., in tumor necrosis factor-α–induced hepatitis (Saavedra et al., 1997) or acetaminophen-induced toxicity (Liu et al., 2003), as well as in other in vitro and in vivo models of hepatocyte injury (Kim et al., 2000b; Ricciardi et al., 2001; Liu et al., 2002, 2004, 2005; DeLeve et al., 2003; Li et al., 2003; Gong et al., 2004; Liu and Wailkes, 2005; Qu et al., 2005, 2007; Edwards et al., 2008; Holownia et al., 2009; Gonzalez et al., 2011; Hu et al., 2013). Moreover, V-PYRRO/NO–derived NO release in the liver was shown to be followed by the elevation of liver cGMP with minimal systemic hypotensive effects (Saavedra et al., 1997). In contrast, hepatoprotective activity by V-PROLI/NO has only been reported in one study, which used the model of arsenic-induced toxicity in human HepG2 cells (Qu et al., 2009).

The evidence shows that NO regulates lipogenesis/fatty acid oxidation, ketogenesis, and controls gluconeogenesis/glycolysis pathways (Duplain et al., 2001; Ijaz et al., 2005; Jobgen et al., 2006). Overexpression of endothelial nitric oxide synthase has consistently been demonstrated to protect against obesity, hyperinsulinemia, adipocyte hypertrophy, decreased plasma triglycerides, and free fatty acid plasma concentration (Sансbury et al., 2012). On the other hand, impaired NO bioavailability has been shown to result in the development of hypertension, insulin resistance, and obesity—being at least in part a consequence of impaired fatty acid oxidation (Duplain et al., 2001; Cook et al., 2003; Le Gouill et al., 2007). Accordingly, liver-selective release of NO could represent an effective novel strategy for preventing nonalcoholic fatty liver disease (NAFLD).

The aim of the present study was to compare the therapeutic effects of V-PYRRO/NO and V-PROLI/NO against high-fat diet (HFD)–induced liver steatosis and insulin resistance, as well as to comprehensively characterize the pharmacokinetic and metabolic profiles of these compounds in mice.

Materials and Methods

Chemicals

Chemicals such as high-performance liquid chromatography–grade acetonitrile, formic acid, and methanol were purchased from Merck (Darmstadt, Germany). Ketamine, heparin, and isoflurane were bought from PGP Cefarm (Kraków, Poland). Xylazine, sodium chloride, calcium chloride, magnesium sulfate, sodium bicarbonate, potassium dihydrogen phosphate, glucose, pyruvic acid, EDTA, Tris base, potassium chloride, sucrose, sodium phosphate dibasic, acetone, magnesium chloride, NADPH, Folin & Ciocalteau’s phenol reagent, potassium-sodium tartarate/tartrate, copper sulfate, sodium hydroxide, phenacetin, acetaminophen, tolbutamide, 4-hydroxytolbutamide, bufuralol, 1-hydroxybufuralol, chloroxazone, 6-hydroxychloroxazone, midaizolam, 1-hydroxymidaizolam, 4-hydroxymidaizolam, dextrophan, farfylline, sulfaphenazole, (+)-N-benzylhydravol, quinidine, disulfiram, and ketocisonazole were purchased from Sigma-Aldrich (St. Louis, MO). Water used in the study was prepared using a Milli-Q system (Millipore, Billerica, MA). V-PYRRO/NO and V-PROLI/NO (>99% pure) were synthesized at the Center for Cancer Research at the National Cancer Institute in Frederick, MD, as described previously (Saavedra et al., 1997; Chakrapani et al., 2007).

Animals

Male C57BL/6j mice (16–25 g) and Wistar rats (180–220 g) were purchased from Charles River Laboratories (Raleigh, Germany). Animals were housed in colony cages in a room with constant temperature (21–25°C), a relative humidity of 40–65%, a standard light/dark cycle, and access to food and water ad libitum. Prior to experiments, the animals were fasted overnight with free access to water. All procedures involving animals were conducted according to the Guidelines for Animal Care and Treatment of the European Union and were approved by the Local Ethical Committee for Experiments on Animals at the Jagiellonian University (Krakow, Poland).

Pharmacological Study

Six-week-old, male, C57BL/6j mice were fed a HFD (60 kcal% of fat; Research Diets, New Brunswick, NJ) for 15 weeks. After 10 weeks of HFD feeding, treatment with V-PYRRO/NO at 5 mg/kg (32 μmol/kg; i.p. bolus two times per day) or V-PROLI/NO at 6 mg/kg (29 μmol/kg; i.p. bolus two times per day) was carried out for an additional 5 weeks. At the end of the experiment, the animals were anesthetized with ketamine (100 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.).

Glucose Tolerance Test. For the glucose tolerance test, the mice were fasted for 4 hours and then injected intraperitonially with saturated glucose solution (at 2 g/kg body weight). Blood was collected from the tail veins prior to glucose administration (0 minute) and at 15, 30, 45, 60, and 120 minutes following administration. Plasma glucose concentrations were measured by the enzymatic photometric method using an automatic biochemistry analyzer Pentra 400 (Horiba, Kyoto, Japan) according to the manufacturer’s instructions. Area under the curve (AUC) of blood glucose concentration versus time was calculated using the trapezoidal method.

Histologic Evaluation. Liver samples were fixed in 4% buffered formalin. Samples were embedded in OCT (optimal cutting temperature) medium and frozen at −80°C for 2 hours and then injected intraperitonially with saturated glucose solution (at 2 g/kg body weight). Blood was collected from the tail veins prior to glucose administration (0 minute) and at 15, 30, 45, 60, and 120 minutes following administration. Plasma glucose concentrations were measured by the enzymatic photometric method using an automatic biochemistry analyzer Pentra 400 (Horiba, Kyoto, Japan) according to the manufacturer’s instructions. Area under the curve (AUC) of blood glucose concentration versus time was calculated using the trapezoidal method.

Lipid Analysis. Liver samples (ca. 100 mg) were powdered in a mortar precooled with liquid nitrogen followed by extraction of lipids in a chloroform-methanol solution. The fractions of triacylglycerols (TAGs) were separated using thin-layer chromatography, according to the methodology of Baranowski et al. (2013) and Zabielinski et al. (2010). Individual fatty acid methyl esters were liberated by acid methanolysis using BF3-MeOH, and were identified and quantified according to the retention times of standards by gas-liquid chromatography (Agilent 5890 Series II gas chromatograph with flame ionization detector, Agilent CP-Sil88 capillary column, 50 m, 0.25 mm i.d., 0.2 μm film; Agilent Technologies, Santa Clara, CA). Total TAG content was estimated as the sum of the particular fatty acid species of the assessed fraction and expressed in nanomoles per gram of tissue. The content of saturated fatty acids (SFA, C14:0, C16:0, C18:0, C20:0, C22:0, C24:0), monounsaturated fatty acids (C16:1, C18:1, C24:1), and polyunsaturated fatty acids (UFA, C18:2, C18:3, C20:3, C20:4, C22:5, C22:6)}.
Ae

Ae

Cin

Cb

residence time, AUC, systemic clearance (ClT), and volume of distribution at

was applied to calculate the basic pharmacokinetic parameters such as mean

stored at

separated into clean tubes and frozen at

microfuge tubes and centrifuged at 1000 rpm for 15 minutes. The plasma was

dosing) and 2, 5, 7, 10, 15, 20, 25, 30, 45, 60, 90, 120, and 240 minutes after

3

respectively. Animals were anesthetized with isoflurane at a concentration of

4% in 100% oxygen and sacrificed at the following time intervals: 0 (before
dosing) and 2, 5, 7, 10, 15, 20, 25, 30, 45, 60, 90, 120, and 240 minutes after

compound administration. Blood samples were collected into heparinized microfuge
tubes and centrifuged at 1000 rpm for 15 minutes. The plasma was

was placed into clean tubes and frozen at −20°C prior to analysis. The liver
tissues were collected and rinsed with phosphate-buffered saline (pH 7.4) and

stored at −80°C until analysis.

All data in the pharmacokinetic experiments were processed using Phoenix

WinNonlin 6.3 software (Certara, St. Louis, MO). The noncompartamental

approach was calculated to apply the basic pharmacokinetic parameters such as mean

residence time, AUC, systemic clearance (ClT), and volume of distribution at

steady state.

Renal Clearance

After a single i.v. injection of V-PYRRO/NO (5 mg/kg) or V-PROLI/NO (6 mg/kg), the 6-week-old mice (n = 7) were individually placed in stainless

steel metabolic cages for collection of urine. The urine samples were collected at 0–6, 6–12, and 12–24 hours post dosing. The volumes of the urine samples

were recorded, and samples were stored at −20°C until analysis.

Renal elimination was assessed based on the fraction of administered dose excreted in the urine in unchanged form:

\[f_R = \frac{Ae^{\infty}}{D_R} \]

where \(f_R \) is the fraction of dose excreted by the kidney, \(Ae^{\infty} \) is the total amount of

studied substance in the urine, and \(D_R \) is the administered dose. Renal clearance (ClK) of V-PYRRO/NO and V-PROLI/NO was calculated as follows:

\[Cl_K = f_R \times Cl_T \]

\[Cl_K = \frac{Ae^{\infty}}{AUC_T^{\infty}} \]

Hepatic Extraction Ratio

Hepatic elimination was determined using the ex vivo model of perfused mouse liver. Following i.p. injection of ketamine (100 mg/kg), xylazine (10 mg/kg),

and 0.8 mg/kg of heparin, the vena portae and the vena cava inferior were cannulated and ligated, and the liver was perfused using the U-100 system for organ perfusion (Hugo Sachs Elektronik, Harvard Apparatus, March-Hugstetten, Germany) until effluent was blood-free. The liver was then excised and moved to a moist chamber. Perfusion was carried out with Krebs-Hanselet buffer of the following composition: 118.0 mM NaCl, 2.52 mM CaCl₂, 1.16 mM MgSO₄, 24.88 mM NaHCO₃, 1.18 mM KH₂PO₄, 4.7 mM KCl, 10.0 mM glucose, 2.0 mM pyruvic acid, and 0.5 mM EDTA. After the initial stabilization period (15 minutes), either V-PYRRO/NO or V-PROLI/NO was added at a final concentration of 10 or 50 μM, respectively. The experiments were completed within 1 hour after starting perfusion. The perfusion flow rate was 4.3 ml/min, and samples were collected as follows: inlet samples every 20 minutes, and outlet effluents every 1 minute, between 5 and 20 minutes, and then every 10 minutes. After the experiments, the livers were excised, dried, and weighed.

To ensure the viability of the liver, alanine aminotransferase and lactate dehydrogenase activity in the effluents were measured every 15 minutes for the duration of the experiment by the enzymatic photometric method, using the automatic biochemical analyzer Pentra 400 (Horiba, Kyoto, Japan), according to the manufacturer’s instructions.

A control experiment to exclude the binding of V-PYRRO/NO or V-PROLI/NO to the experimental setup was conducted. For this purpose, buffer containing

V-PYRRO/NO or V-PROLI/NO was perfused through the perfusion system without mounting of the isolated liver. Buffer samples were collected the same way as in the experiments with the isolated liver.

The hepatic extraction ratio was calculated based on the V-PYRRO/NO and V-PROLI/NO concentrations in the inlet and outlet effluents:

\[E = \frac{C_{in} - C_{out}}{C_{in}} \]

where \(E \) is the hepatic extraction ratio and \(C_{in} \) and \(C_{out} \) are concentrations of studied compounds in inlet or outlet liver effluent.

Protein Binding

Binding of V-PYRRO/NO and V-PROLI/NO to bovine serum albumin (BSA) and α-acid glycoprotein (AGP) was determined using capillary electrophoresis in frontal analysis mode on a Beckman Coulter P/ACE MDQ CE system with a photodiode array detector fixed at 230 nm (Beckman Coulter, Brea, CA). The working conditions were as follows: uncoated fused silica capillary length 60.2 cm (50 cm to the detector) with 50-μm i.d. and 360-μm o.d.; temperature of the capillary 37°C; applied voltage of 15 kV; observed currents of about 56 μA. Following the standard rinsing procedure, the samples were injected at 0.5 psi for 40 seconds (injected sample volume represented 5% of the total capillary volume). The unbound concentrations of V-PYRRO/NO and V-PROLI/NO were determined by comparing the plateau peak height of the equilibrated samples with the peak height of V-PYRRO/NO or V-PROLI/NO in the absence of BSA or AGP. The results were expressed as the saturation fraction (r), representing the number of moles of compound bound (Cₙ) per mole of protein (P):

\[r = \frac{C_n}{P} \]

The percentage of binding was determined using eq. 6:

\[\% \text{ bound} = \frac{C_i - C_u}{C_i} \times 100 \]

where \(C_i \) is the total concentration of compound in the protein solution, and \(C_u \) is the free analyte concentration.

The equilibrium association constant (\(K_a \)) in the binding class (m) and the number of binding sites (\(n \)) were determined by a nonlinear regression analysis using Wolfram Mathematica 8.0 software (La Jolla, CA) to fit the data to eq. 7:

\[r = \frac{n}{m \text{ } K_a + C_u} \]

where \(r \) is the number of moles of drug per mole of protein (Ch/Pt; where \(Pt \) is the total protein concentration), \(m \) is the number of independent classes of binding sites, \(K_{di} \) is the dissociation constant for the ith class, and \(n_i \) is the number of binding sites in the ith class.

In Vitro Metabolism by Cytochrome P450

Rats were sacrificed by decapitation, and liver microsomes were prepared by differential centrifugation. In brief, liver fragments were washed with 20 mM Tris/KCl buffer (pH 7.4) and homogenized (IKA-Werke GmbH & Co. KG Staufen, Janke, Germany). The homogenate was centrifuged (Sorvall WX Ultra Series; Thermo Scientific, Waltham, MA) at approximately 11,500 × g for 20 minutes at 4°C. The supernatant (S9 fraction) was transferred to new tubes and centrifuged at 100,000 × g for 1 hour at 4°C. The pellet was suspended in 0.15 M KCl and centrifuged again at 100,000 × g for 1 hour at 4°C. The obtained pellet was dispersed in Tris/sucrose buffer and stored at −80°C until use. Protein concentration in the microsomal fraction was determined by Lowry protein assay (Lowry et al., 1951).

V-PYRRO/NO or V-PROLI/NO at a concentration range of 0.5–50 μM was incubated with the rat liver microsomes (1 mg/ml) in 0.1 M phosphate buffer (pH 7.4) containing 10 mM MgCl₂. After 5 minutes of preincubation at 37°C, the incubation reaction was initiated with the addition of NADPH to a final concentration of 1 mM and were stopped after 20 minutes by placing samples on ice and adding ice-cold acetonitrile containing internal standard (4-hydroxymephenytoin.
at a concentration of 20 ng/ml. Basic kinetic parameters, V_{max} and K_m, for V-PYRRO/NO and V-PROLI/NO, were calculated with GraphPad Prism 6.02 software (La Jolla, CA) using nonlinear regression.

To test the involvement of cytochrome P450 isoenzymes in V-PYRRO/NO and V-PROLI/NO metabolism, the following cytochrome P450-dependent isoenzyme inhibitors were used: furafylline (1.5 μg/ml) for CYP1A2, sulfaphenazole (15 μg/ml) for CYP2C9, (+)-N-3-benzylvinanol (1 μg/ml) for CYP2C19, quinidine (15 μg/ml) for CYP2D6, disulfiram (15 μg/ml) for CYP2E1, and ketoconazole (5 μg/ml) for CYP3A4.

To study the effects of V-PYRRO/NO and V-PROLI/NO on cytochrome P450 isoenzyme activity, a “cocktail” method was used based on measurement of the concentration of metabolites derived from cytochrome P450 isoenzyme-specific substrates. In brief, V-PYRRO/NO or V-PROLI/NO, in the concentration range of 0.1 μM to 1 mM, was incubated with rat liver microsomes suspended in 0.1 M phosphate buffer (pH 7.4), 10 mM MgCl₂, and substrate cocktail, phenacetin (7.5 μg/ml) for CYP1A2, tolbutamide (2.5 μg/ml) for CYP2C9, bufuralol (12.5 μg/ml) for CYP2D6, chlorozoxazone (12.5 μg/ml) for CYP2E1, and midazolam (7 μg/ml) for CYP3A4. After addition of V-PYRRO/NO or V-PROLI/NO, the reaction mixtures were preincubated for 5 minutes at +37°C in a shaking water bath (Grant Instruments, Royston, UK), and next the reaction was initiated by addition of 1 mM NADPH. Following a 10-minute incubation, the reaction was terminated with an ice-cold mixture of acetonitrile: acetone (1:1; v/v) containing the internal standard dextrorphan (50 ng/ml). Samples were subsequently cooled on ice for 20 minutes to precipitate the protein, and then centrifuged at approximately 15,000 × g for 15 minutes at 4°C. The supernatant was analyzed immediately after incubation.

Chromatographic and Mass Spectrometric Analysis

V-PYRRO/NO and V-PROLI/NO concentrations in plasma, liver homogenates, urine, liver effluents, and in the incubation mixture of microsomes (50 μl) were measured after deproteinization using ice-cold acetonitrile (500 μl) containing internal standard (4-hydroxyphenytoin, 20 ng/ml). Samples were subsequently cooled on ice for 20 minutes to precipitate the protein and then centrifuged at approximately 15,000 × g for 15 minutes at 4°C. The supernatant was transferred to a high-performance liquid chromatography vial, and 5 μl of supernatant was injected into the analytical column. The analytical column consisted of UFLC Nexera (Shimadzu, Kyoto, Japan) coupled with a QTran 5500 mass spectrometer (AB Sciex, Framingham, MA). Chromatographic separation was achieved by using the Acuity UPLC BEH C18 (1.7 μm, 5.0 × 100 mm; Waters, Milford, MA) analytical column, with acetonitrile and water containing 0.1% formic acid in the isocratic elution (45:55 v/v), at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile containing 0.1% formic acid (eluent B) and water (eluent A) at a concentration of 20 ng/ml. Basic kinetic parameters, V_{max} and K_m, for V-PYRRO/NO and V-PROLI/NO, were calculated with GraphPad Prism 6.02 software (La Jolla, CA) using nonlinear regression.

To test the involvement of cytochrome P450 isoenzymes in V-PYRRO/NO and V-PROLI/NO metabolism, the following cytochrome P450-dependent isoenzyme inhibitors were used: furafylline (1.5 μg/ml) for CYP1A2, sulfaphenazole (15 μg/ml) for CYP2C9, (+)-N-3-benzylvinanol (1 μg/ml) for CYP2C19, quinidine (15 μg/ml) for CYP2D6, disulfiram (15 μg/ml) for CYP2E1, and ketoconazole (5 μg/ml) for CYP3A4.

To study the effects of V-PYRRO/NO and V-PROLI/NO on cytochrome P450 isoenzyme activity, a “cocktail” method was used based on measurement of the concentration of metabolites derived from cytochrome P450 isoenzyme-specific substrates. In brief, V-PYRRO/NO or V-PROLI/NO, in the concentration range of 0.1 μM to 1 mM, was incubated with rat liver microsomes suspended in 0.1 M phosphate buffer (pH 7.4), 10 mM MgCl₂, and substrate cocktail, phenacetin (7.5 μg/ml) for CYP1A2, tolbutamide (2.5 μg/ml) for CYP2C9, bufuralol (12.5 μg/ml) for CYP2D6, chlorozoxazone (12.5 μg/ml) for CYP2E1, and midazolam (7 μg/ml) for CYP3A4. After addition of V-PYRRO/NO or V-PROLI/NO, the reaction mixtures were preincubated for 5 minutes at +37°C in a shaking water bath (Grant Instruments, Royston, UK), and next the reaction was initiated by addition of 1 mM NADPH. Following a 10-minute incubation, the reaction was terminated with an ice-cold mixture of acetonitrile: acetone (1:1; v/v) containing the internal standard dextrorphan (50 ng/ml). Samples were subsequently cooled on ice for 20 minutes to precipitate the protein, and then centrifuged at approximately 15,000 × g for 15 minutes at 4°C. The supernatant was analyzed immediately after incubation.

Statistical Analysis

Data are expressed as the mean ± S.E.M. The assessment of normality and heterogeneity of variances was performed using the Shapiro-Wilk test and Figner-Killeen test, respectively. To assess the statistical significance of the pharmacokinetics results, Student’s t-test and the nonparametric Mann-Whitney test were used. For pharmacological experiments, the nonparametric Kruskal-Wallis test or one-way analysis of variance and Tukey’s post-hoc test were used. The results were analyzed using Statistica 10.0 software (Statsoft, Tulsa, OK).

Effects of Two NO Donors on NAFLD and Their ADME Profiles

The mean plasma concentration versus time profiles of V-PYRRO/NO and V-PROLI/NO after i.v. and i.p. administration are depicted in Fig. 2. The pharmacokinetic profiles are given in Table 1. V-PYRRO/NO was eliminated more rapidly than V-PROLI/NO, as evidenced by a lower mean residence time and higher clearance values. V-PYRRO/NO was detectable in plasma for up to 60 minutes after i.v. administration and 30 minutes after i.p. administration, whereas V-PROLI/NO was measurable over the entire sampling period. Moreover, V-PYRRO/NO was widely distributed in the intra- and extracellular water (Vd_{in} [steady-state volume of distribution] = 0.88 l/kg), whereas V-PROLI/NO distribution was limited to the extracellular fluid (Vd_{in} = 0.15 l/kg). In view of the fact that the pharmacological effects were studied following intraperitoneal administration of V-PYRRO/NO and V-PROLI/NO, pharmacokinetic studies following i.p. dosing were also conducted. Both compounds were rapidly absorbed after i.p. administration, with lower bioavailability for V-PYRRO/NO as compared with V-PROLI/NO (about 28 and 51%, respectively). Systemic NO release following i.v. administration of V-PYRRO/NO was higher than with V-PROLI/NO, as evidenced by nitrate and nitrite plasma concentrations (Fig. 3, B and C).
Hepatic Metabolism of V-PYRRO/NO and V-PROLI/NO. To assess the liver disposition of V-PYRRO/NO and V-PROLI/NO, the concentration of each compound in liver homogenates was measured following i.v. or i.p. administration of the compounds. V-PYRRO/NO was not detectable, whereas V-PROLI/NO was distributed in the liver with maximum concentrations of 35.8 nmol/g (t_{max}) time to reach the...

Fig. 2. Representative pictures of liver sections stained with H&E (A), one-step Gomori’s trichrome (B), and Oil Red O (C). Liver fat content calculated from Oil Red O pictures (D), liver triglyceride (TG) concentration (E), and PUFASFA ratio (F) in the liver of mice. Glucose tolerance curve (G) and AUC of blood glucose concentration versus time (H). Values are the means ± S.E.M. ($n= 6$). Values with different superscript letters within each animal group are significantly different ($P \leq 0.05$). HF, high-fat group; HF+V-PYRRO/NO, high-fat group treated with V-PYRRO/NO; HF+V-PROLI/NO, high-fat group treated with V-PROLI/NO.

Fig. 3. Comparison of plasma pharmacokinetic profiles of V-PYRRO/NO and V-PROLI/NO after i.v. and i.p. administration in mice (A), and NO$_2^-$, NO$_3^-$ concentrations in plasma after i.v. administration of each compound (B and C). Values are expressed as the mean ± S.E.M. ($n= 3$ for i.p. and $n= 4$ for i.v. administration).
shown in Fig. 4C, less than 0.1% of V-PYRRO/NO was eliminated in of V-PYRRO/NO, with subsequent NO release, but not of V-PROLI/NO.

Altogether, these results confirm considerable liver metabolism of V-PROLI/NO, in contrast with V-PYRRO/NO. The hepatic extraction ratio for V-PROLI/NO was below 0.05 (about 0.05) and hepatic clearance was 0.0005 ml/min/kg, suggesting negligible liver metabolism of V-PROLI/NO, in contrast with V-PYRRO/NO.

Renal Elimination of V-PYRRO/NO and V-PROLI/NO. As shown in Fig. 4C, less than 0.1% of V-PYRRO/NO was eliminated in the urine, whereas approximately 61% of V-PROLI/NO was excreted in the urine as unmodified compound. The calculated renal clearance for V-PYRRO/NO was very low and without physiologic significance, whereas the renal clearance for V-PROLI/NO was significantly higher and amounted to 0.0032 l/min/kg.

Protein Binding of V-PYRRO/NO and V-PROLI/NO. Both analogs bound to BSA with one class of binding site, and the percentage of binding amounted to 25.13 ± 4.5% and 53.33 ± 7.1% for V-PYRRO/NO and V-PROLI/NO, respectively. However, binding affinity to BSA was relatively low ($K_b = 1.93 \times 10^5$ and 7.57 \times 10^4 M$^{-1}$ for V-PYRRO/NO and V-PROLI/NO, respectively). Binding of studied analogs to AGP was also very low and not of physiologic significance (3.15 ± 2.9 and 3.05 ± 1.43 for V-PYRRO/NO and V-PROLI/NO, respectively), probably due to the acidic character of these molecules.

Role of Cytochrome P450 in V-PYRRO/NO and V-PROLI/NO Metabolism. The calculated kinetic parameters derived using the Michaelis-Menten transformation (Fig. 5A) for V-PYRRO/NO were $K_m = 131.6 \pm 38.15 \mu M$ and $V_{max} = 6.35 \pm 1.41 \mu mol/min/mg$ protein. Based on the kinetic plots, V-PROLI/NO seems to have a low affinity for the cytochrome P450 isoenzymes. The Eadie-Hofstee plots were nonlinear, suggesting multiple-enzyme catalysis (data not shown).

The effect of selective cytochrome P450 inhibitors on the bio-transformation of V-PYRRO/NO and V-PROLI/NO using isoenzyme-selective chemical inhibitors is shown in Fig. 5B. As evidenced by the effects of their respective inhibitors, V-PYRRO/NO was metabolized mainly by CYP2E1, but also by CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was biotransformed mainly by CYP1A2 and CYP2C9.

Neither V-PYRRO/NO nor V-PROLI/NO inhibited cytochrome P450 isoforms as evidenced by the lack of inhibition of phenacetin-O-deethylation (CYP1A2), tolbutamide-4-hydroxylation (CYP2C9), bufuralol-1-hydroxylation (CYP2D6), chloroxazone-6-hydroxylation (CYP2E1), and midazolam-1- and -4-hydroxylation (CYP3A4), up to a concentration of 1 mM V-PYRRO/NO and V-PROLI/NO (data not shown).

Discussion

In the present study, we compared two NO donors (V-PYRRO/NO and V-PROLI/NO) that were designed to deliver NO to the liver via cytochrome P450-dependent metabolism by looking at their effects on liver steatosis, liver fatty acid composition, and insulin resistance, and comprehensively analyzing their pharmacokinetics and metabolism profiles. In the study, we demonstrated that, despite having similar chemical structures, only V-PYRRO/NO attenuated liver steatosis, increased the liver PUFA/SFA ratio, and improved postprandial glucose tolerance, whereas V-PROLI/NO was ineffective. Pharmacokinetic studies revealed rapid absorption following i.p. administration.
intense elimination, and incomplete bioavailability for both V-PYRRO/NO and V-PROLI/NO. However, it was noticed that V-PYRRO/NO was metabolized in the liver by CYP2E1, CYP2C9, and CYP3A4, whereas V-PROLI/NO was eliminated mostly in unchanged form by the kidney. Importantly, V-PYRRO/NO proved to be a better NO releaser in the mouse in vivo and in the isolated liver as compared with V-PROLI/NO. These results were consistent with superior antisteatotic activity for V-PYRRO/NO. In conclusion, we provide clear-cut evidence that V-PYRRO/NO displays a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO is not effective, is not taken up by the liver, and is eliminated mostly unchanged by the kidney. In physiological conditions, NO generated mainly by endothelial nitric oxide synthase (Förstermann and Sessa, 2012) plays a crucial role in liver homeostasis. NO activates soluble guanylyl cyclase, which activates cGMP-dependent protein kinase (Pfeifer et al., 2013), and its role is not limited to the regulation of hepatic arterial resistance (Rockey and Shah, 2004). In fact, the NO/cGMP-dependent signaling pathway exerts an anti-inflammatory and antibiobiotic effect by limiting Kupffer cell and hepatic stellate cell activation (Tateya et al., 2011). NO also inhibits caspase activation, and therefore apoptosis, in hepatocytes (Kim et al., 2000a). Furthermore, the remarkable regenerative ability of the liver is linked to NO activity (Carnovale and Ronco, 2012). NO also regulates glucose and lipid metabolism (Jobgen et al., 2006), decreases fatty acid storage by improving their catabolism, and attenuates de novo fatty acid synthesis. Moreover, NO regulates glucose metabolism by increasing glucose transport and metabolism as well as inhibiting gluconeogenesis and glycogen deposition (Jobgen et al., 2006).

Clearly, inadequate NO production by liver sinusoidal endothelial cells results in unopposed hepatic stellate cell activation and promotion of liver inflammation, which may contribute to the progression of portal hypertension (Hu et al., 2013), sinusoidal obstruction syndrome (DeLeve, 2008), ischemia-reperfusion injury (Srirussawakul et al., 2010), and liver steatosis (Maslak et al., 2015). In fact, impairment of NO signaling resulted in decreased glucose uptake, fasting hyperglycemia, and the development of insulin resistance (Lutz et al., 2011; An et al., 2012).

In line with the importance of NO in the maintenance of metabolic homeostasis, the beneficial effect of NO-based therapy has been demonstrated in obesity (Jobgen et al., 2009), insulin resistance (Sadri and Lautt, 1999), and liver steatosis (de Oliveira et al., 2006). However, in contrast to the present paper, none of these reports concerned the direct delivery of NO to the liver (Ricardo et al., 2002). In the current study, we aimed at comparing the antisteatotic efficacy of two structurally related hepatocyte-specific NO donors, and revealed a hepatospecific and hepatoprotective action of V-PYRRO/NO, but not of V-PROLI/NO, against NAFLD. Moreover, the liver-specific effects of V-PYRRO/NO-derived NO release not only attenuated liver steatosis, but were also associated with changes in fatty acid composition, in particular the amelioration of the PUFA/SFA ratio, most likely due to inhibition of endogenous fatty acid synthesis. Our findings are of particular importance because fatty acid saturation has been shown to be involved in the pathogenesis of insulin resistance (van den Berg et al., 2010) and metabolic syndrome (Warenso et al., 2005). In fact, in our previous work, we demonstrated that the effect of V-PYRRO/NO on insulin resistance and steatosis was mediated by NO-dependent Akt activation and inhibition of de novo fatty acid synthesis by Acetyl-CoA carboxylase (ACC) phosphorylation (Maslak et al., 2015). Interestingly, despite previously reported data indicating NO release in vitro (Hong et al., 2010) and favorable toxicity (Chakrapani et al., 2007), V-PROLI/NO did not influence insulin resistance and fatty acid composition in mice in the present study.

The superior pharmacological activity of V-PYRRO/NO was not associated with higher bioavailability than V-PROLI/NO following i.p. administration. In fact, V-PROLI/NO showed greater bioavailability (51%) than V-PYRRO/NO (27%). Similar results for the bioavailability of V-PYRRO/NO were reported by Stinson et al. (2002). The incomplete bioavailability, besides the first-pass effect, might be a result of extrahepatic metabolism of V-PYRRO/NO and V-PROLI/NO, since the cytochrome P450 enzyme system is also located in other extrahepatic tissues, including the lungs, kidneys, and small intestine (Guengerich, 1992; Nebert and Russell, 2002; Ding and Kaminsky, 2003; Paine et al., 2006; Pavek and Dvorak, 2008). Partial decomposition of V-PYRRO/NO and V-PROLI/NO in other organs may explain the increased nitrite and nitrate plasma concentrations detected following i.v. administration of the compounds. However, we are confident that, even though V-PYRRO/NO was partially metabolized in extrahepatic tissues, its pharmacological effect came mostly, if not entirely, from liver-specific NO release.

The results from the specific cytochrome P450 inhibitors demonstrated that V-PYRRO/NO was mainly a substrate for CYP2E1, as well as for CYP1A2, CYP2C9, and CYP3A4, whereas V-PROLI/NO was shown to be metabolized mainly by CYP1A2 and CYP2C9 in the liver. These results are partially in line with the findings of Inami et al. (2006), who showed that CYP2E1, CYP2A6, and CYP2B6 are responsible for V-PYRRO/NO metabolism in human liver microsomes. On the other hand, V-PROLI/NO was metabolized mainly by CYP1A2 and, to a lesser extent, by CYP2E1 and CYP3A4, as reported previously (Chakrapani et al., 2007), but with low enzyme affinity.

Increased metabolism and NO production in V-PROLI/NO–treated HepG2 cells, as compared with V-PYRRO/NO treatment, was previously demonstrated by Hong et al. (2010). However, high concentrations of...
V-PYRRO/NO and V-PROLI/NO were generated to determine low concentrations of nitric oxide [reported by Hong et al., 2010 and confirmed by us (unpublished results)], suggesting a relatively low biotransformation of the compounds in HepG2 cells. This notion seems to be in line with recent studies showing that, in human hepatoma cells (e.g., HepG2), the expression of most of cytochrome P450 isoforms is substantially reduced as compared with primary human hepatocytes (about 100- to 1000-fold lower) (Westerink and Schoonen, 2007; Pawlowska and Augustin, 2011; Lin et al., 2012). Moreover, in HepG2 cell lines, the activity of cytochrome P450 enzymes is much lower than in ex vivo isolated primary hepatocytes (Westerink and Schoonen, 2007; Lin et al., 2012). Additionally, since the expression and activity of CYP1A2 are higher than those of CYP2E1 in HepG2 cells (Westerink and Schoonen, 2007), Hong et al. (2010) found high release of NO from V-PROLI/NO, as compared with V-PYRRO/NO. In our hands, bio-

V-PYRRO/NO, V-PROLI/NO, and their ADME profiles

Conclusions

V-PYRRO/NO, but not V-PROLI/NO, protected against high fat diet-induced liver steatosis and improved insulin resistance in mice fed a high-fat diet. The compounds’ distinct pharmacological effects can be explained by their pharmacokinetic and metabolic profiles. V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO was ineffective, not taken up by the liver, and was eliminated mostly unchanged by the kidney. It is worth adding that therapy with liver-targeted NO donors, free of systemic hypotensive effects, represents a promising therapeutic strategy not only in NAFLD but also in other liver disorders, such as liver cirrhosis, liver fibrosis, and postischemic injury (Riccirardi et al., 2001; Moal et al., 2002; Edwards et al., 2008) that warrants further studies.

Address correspondence to: Stefan Chlopicki, Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University. Bobrzynskiego 14, 30-348 Krakow, Poland. E-mail: stefan.chlopicki@jcet.eu