Perspective

Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions—an Industry Perspective

Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)

Received December 18, 2015; accepted March 31, 2016

ABSTRACT

Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fME), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fME; 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.

Introduction

Metabolism-based drug-drug interactions (DDI) remain a safety concern, as observed by the number of drugs that have been withdrawn from the market due to severe toxicities arising from metabolic DDIs (http://www.fda.gov/Drugs/DrugSafety/DrugRecalls/default.htm). It is therefore extremely important to assess and avoid, if possible, the potential of a drug to cause or be affected by such DDIs. Regulatory agencies such as the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) require that potential drug interaction risks be investigated before large scale clinical trials are conducted. During the assessment of metabolism-based DDIs, new molecular entities (NME) are classified as perpetrators, drugs (inhibitor/inducer) that alter the metabolic clearance of

Abbreviations: ADME, absorption distribution metabolism excretion; AMS, accelerator mass spectrometer; AO, aldehyde oxidase; AUC, area under curve; BDC, bile duct cannulated; CES, carboxylesterase; CL, clearance; CL\textsubscript{int}, intrinsic clearance; DDI, drug-drug interactions; DME, drug metabolizing enzyme; EMA, European Medicines Agency; fCL, fraction of clearance; FDA, US Food and Drug Administration; fME, fraction escaping gut metabolism; FIM, first in human; fME, fraction metabolized; FMO, flavin-containing monooxygenase; fUB, fraction unbound; fUR, fraction unbound enterocytes; GSH, glutathione; HLM, human liver microsomes; IQ, International Consortium for Innovation and Quality in Pharmaceutical Development; ISEF, intersystem extrapolation factor; IVIVC, in vitro-in vivo correlation; K\textsubscript{ss}, substrate concentration at which the reaction rate is half of maximal velocity; LC/MS, liquid chromatography–mass spectrometry; MAO, monoamine oxidase; MAD, multiple ascending dose; NADPH, nicotinamide adenine dinucleotide phosphate reduced; NAT, N-acetyl transferase; NME, new molecular entity; PBPK, physiologically based pharmacokinetics; P450, cytochrome P450; PK, pharmacokinetics; PM, poor metabolizer; RA, relative activity factor; rh, recombinant CYP; SAD, single ascending dose; SULT, sulfotransferase; UGT, uridine diphosphoglucuronosyltransferase; UV, ultraviolet; V\textsubscript{ss}, steady state volume of distribution; V\textsubscript{max}, maximum reaction velocity; XO, xanthine oxidase.
another coadministered drug, and victims, coadministered drugs whose metabolic clearance is affected.

In 2003, the Pharmaceutical Research and Manufacturers of America consortium published a comprehensive DDI manuscript, which provided best practices for the conduct of in vitro and clinical DDI studies required for registration dossiers of drugs in clinical development (Bjornsson et al., 2003). The manuscript described technical and strategic aspects of experimental assays pertaining to both perpetrator and victim DDI assessment, with a focus on cytochrome P450 (P450)-mediated DDIs. The current working group comprised of pharmaceutical company members of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) was formed with a similar intent but with the focus to expand on the solid foundation of the earlier manuscript with regard to victim DDI risk assessment. Every NME has the potential to be a victim of some DDI (drug-drug, genetic polymorphism, food-drug, disease-drug interactions), because it has to be cleared by a certain pathway. Unlike the liability of a perpetrator drug that can potentially be dialed out before final clinical candidate nomination via structural modifications, victim drug liability can at best be managed by thorough assessment of a NME’s clearance pathway and identifying those that will be most sensitive to modulation. Additionally, definitive clinical studies to confirm the victim DDI risk of a NME are usually not done until later stages (post proof of concept clinical studies) of development. However, early evaluation of victim DDI risk of a NME is deemed crucial and is a routine practice among companies as part of the drug development paradigm. Therefore, a manuscript outlining holistic strategies dedicated to victim DDI risk assessment of NMEs, through various stages of preclinical to clinical development, was merited.

Drug metabolizing enzymes (DME) and transporters have both emerged to play a prominent role in clearance of NMEs, and modulation of either of these can result in exposure change of a victim NME. Because of the expansive scope of both DMEs and transporters in drug disposition and to avoid duplication of efforts by other transporter-focused working groups (Hillgren et al., 2013; Tweedie et al., 2013), the current working group’s focus was on metabolism-based victim DDI assessment only. Researchers are also encouraged to read comprehensive recent publications on victim DDIs resulting from modulation of transporters (Lai and Hsiao, 2014; Nakanishi and Tamai, 2015). Other topics not within the scope of this manuscript but comprehensively covered in recent publications include evaluation of NMEs as perpetrators of DDIs (Zhao et al., 2014; Varma et al., 2015) and assessment of performance of static and dynamic models commonly used for successful prediction of clinical DDIs (Vieira et al., 2014).

This manuscript will summarize the commonly adopted industry practices, which include in vitro methods, in combination with in vivo preclinical and clinical studies, along with modeling and simulation, to best estimate the potential of a NME to be a victim of P450 and non-P450-mediated metabolic DDIs in the clinic. The compilation of non-P450 enzymes discussed here is not an exhaustive list of reported non-P450 enzymes, rather a list of non-P450 enzymes that are commonly evaluated and have been encountered in recent years by working group member companies during assessment of NME metabolism. The intent of the manuscript is not to define the timing or stage of drug development when certain studies need to be conducted but to recommend what studies may provide the best estimate of the experimentally determined parameters viewed as the key elements of a victim DDI liability. Challenges commonly encountered in the estimation of the key parameters, including limitations in evaluating non-P450 mediated metabolic DDIs, will be discussed. Application of modeling and simulation via case studies to highlight the importance and the impact of victim DDI input parameters on clinical DDI study design and outcome as well as strategies for managing uncertainties in key parameters will be presented.

A substantial amount of detailed information on RAF/ISEF scaling method for the P450 and IVIVC of overall clearance prediction via UGT and AO/XO enzymes that the working group compiled during their review has been intentionally placed in the Supplemental Material. Including such compiled up-to-date information in Supplemental Material is deemed advantageous to maintain optimum length of main manuscript, while providing such useful information to interested readers without having to do exhaustive literature search. Analysis of optimization of experimental assay conditions required for P450 and non-P450 enzymatic reactions were also not the intent of this manuscript, and key references have been provided for interested readers in appropriate sections of the main text. This working group of pharmaceutical companies acknowledges the need for such a comprehensive manuscript that summarizes universal strategies and currently available tools that are routinely used to guide decision-making through various stages of preclinical and clinical development, encompassing both P450 and non-P450 mediated metabolic victim DDI risk potential of NMEs.

Metabolic victim DDIs discussed in this manuscript represent pharmacokinetic DDIs, resulting in exposure change of the victim drug. Because of complex underlying mechanisms for pharmacodynamic drug-drug interactions (e.g., synergistic, additive, or antagonistic effect of coadministered drugs on a target receptor), this manuscript does not attempt to address these types of interactions. It is worthwhile to note that in cases where a drug forms pharmacologically active metabolites (e.g., acetabutol, alpenrolol, diltiazem; carbamazepine, valproic acid, diazepam, fluoxetine), pharmacokinetic change in exposure of parent drug may not reflect parallel change in overall pharmacodynamic response.

A victim drug’s metabolic clearance and exposure may undergo significant fluctuation due to modulation of the DME primarily responsible for its clearance. Modulation of a DME can result from either inhibition and/or induction of its enzyme activity in the presence of a coadministered drug in certain disease states (Cheng and Morgan, 2001; Harvey and Morgan, 2014; Jiang et al., 2016) or due to inherent variability associated with the abundance or polymorphic nature of the DMEs [e.g., CYP2D6, N-acetyltransferase1 (NAT1), UDP-glucuronosyltransferase (UGT)1A1]. Several representative examples are presented in Supplemental Table 1S. For instance, a drug primarily metabolized by a polymorphic DME is more susceptible to substantial exposure change in poor metabolizers (PMs) in the presence of inhibitors of a minor non-polymorphic pathway (Collins et al., 2006).

To accurately assess the magnitude of exposure change of a victim NME due to modulation of its metabolic clearance it is important to understand the role of metabolism toward the victim NME’s overall clearance and contribution of a DME(s) to its overall metabolic clearance. These parameters are represented by the terms fCL,metabolism and fCL,renal throughout this manuscript. The term fCL,metabolism is defined as the fraction of drug cleared by a pathway representing its route of clearance, where fCL,metabolism represents the fraction of drug cleared through metabolism, fCL,renal represents the fraction of drug cleared unchanged renal, and fCL,biliary refers to the fraction of drug cleared unchanged via biliary excretion. For any drug, systemic clearance is the sum of metabolism, renal excretion, and hepatic uptake by transporters followed by metabolism and/or subsequent excretion into bile (and then feces): fCL,metabolism + fCL,renal + fCL,biliary = 1. Some drugs may also be cleared via intestinal secretion but it is often not possible to distinguish this from biliary clearance. The term fCL,metabolism is defined as the fraction of drug metabolized by an enzyme. To illustrate, a drug that is metabolically
cleared primarily by CYP3A4, CYP2C9, and UGT2B7 can be illustrated as: \(f_{m,CYP3A4} + f_{m,CYP2C9} + f_{m,UGT2B7} = f_{CL, metabolism} \), where sum total of fractional metabolism via each of these enzymes is equal to the total fraction of a NME cleared by metabolism.

The parameters \(f_{CL, metabolism} \) and \(f_m \) are considered key for a victim DDI risk assessment, because the sensitivity/dependency of the AUC value for a victim NME significantly depends on \(f_{CL, metabolism} \times f_m \) (Zhang et al., 2007). It is widely recognized that when \(f_{CL, metabolism} \) and/or \(f_m \) attain higher values such that \(f_{CL, metabolism} \times f_m \geq 0.5 \), the victim drug AUC ratio is predicted to be \(\geq 2 \) and increases with \(f_m \) exponentially. The predicted AUC ratio of a victim drug also increases sharply with increasing potency and concentration of the inhibitor (e.g., \([I] / K_i = 5, 10, 20, 50, 100 \)), especially when \(f_{CL, metabolism} \times f_m > 0.8 \). In the absence of well-defined clinical safety margins and for compounds with narrow therapeutic indices, when the NME is cleared by a single metabolic pathway, impairment of that pathway can result in a potentially undesirable adverse outcome, especially when the value of \(f_{CL, metabolism} \times f_m \) of the NME \(\geq 0.5 \). Most definitive human studies to quantitatively determine \(f_{CL, metabolism} \) and \(f_m \) are not conducted until later stages of clinical development (e.g., post-approval of concept, mostly Phase II or Phase III). It is therefore necessary to obtain best estimates of \(f_{CL, metabolism} \) and \(f_m \) early on to allow investigators to ensure the safe conduct of Phase I and Phase II studies with consideration of certain clinical exclusion criteria. Clinical exclusion criteria to mitigate victim DDI risk in Phase I/first in human (FIH) studies are especially important in cases where FIH studies are conducted in patients with healthy volunteers (who are not on any medications) and in Phase II in patients who are taking concomitant medications.

Metabolism continues to be the predominant route of clearance of small molecule NMEs as experienced by pharmaceutical companies. This is also confirmed via assessment of clearance information of NMEs approved over the years between 2010 and 2014, as available from New Drug Applications, which reveal that metabolism accounted for at least 25% of total clearance (Fig. 1) for \(>80\% \) of the 95 approved NMEs (assessment included NMEs administered via oral, intravenous, or inhalation route and excluded imaging agents, enzyme replacement therapies, sclerosing agents, and topical applications). Of the drugs that were primarily cleared by metabolism, P450s were involved in the metabolism of approximately 75% of the NMEs approved during 2010–2014 (Fig. 1), supporting the current view of a potentially higher risk of P450-mediated victim DDI compared with other non-P450 enzymes. Hence, it is routine practice among pharmaceutical companies to start preliminary assessment of overall role of metabolism and understand DMEs involved in a NME’s clearance, starting in the preclinical stages of drug development. This is commonly done via evaluation of: 1) in vitro \(f_m \) in human-derived matrices to understand whether one or multiple P450 or non-P450 enzymes are involved in a NME’s metabolism and 2) in vivo \(f_m \) information in preclinical species and whether in vitro- in vivo correlation (IVIVC) holds in preclinical species to gain qualitative understanding of whether metabolism or biliary or renal excretion is predominant. The combined information obtained is used as an early guide to evaluate victim DDI risk in the clinic using various predictive models (Vieira et al., 2014). Once the \(f_{CL, metabolism} \) is available from human \(^{14} \)C-ADME study and \(f_{m,enzyme} \) is quantitatively available from a clinical DDI study (or PK study in genotyped population), the victim DDI predictions are further refined to predict additional and/or potentially complex DDIs before the NME being administered in larger clinical trials (Lu et al., 2014). The next two sections will focus on discussing how companies rely on currently available in vitro assays and in vivo data to best estimate \(f_m \) and \(f_{CL, metabolism} \) along with some of the pitfalls encountered through various stages of drug development.

In Vitro Determination of the Enzymes Involved in Metabolizing of a NME and Their Relative Contribution \(f_{m,Enzyme} \)

Quantitative determination of \(f_m \) in the clinic is obtained with studies conducted either: 1) in a genotyped population where \(f_m \) can be estimated from the change in exposure of a victim drug in extensive metabolizers compared with poor metabolizers (Lio et al., 2005) or 2) with selective inhibitors of a metabolizing enzyme (responsible for the primary metabolic pathway of victim drug) (Shou et al., 2008):

\[
f_m = 1 - \frac{AUC_{with inhibitor}}{AUC_{without inhibitor}} \times \frac{AUC_{extensive metabolizer}}{AUC_{poor metabolizer}}
\]

(1)

Before such definitive clinical studies are conducted, reliance on in vitro methods to estimate \(f_m \) common during early stages of development. “Enzyme mapping” is commonly the first step conducted to identify DMEs involved in the major metabolic pathways of a NME. The second step often referred to as “reaction phenotyping” allows for the quantitative determination of the fraction metabolized (\(f_m \)) by a specific enzyme or isoform in appropriate human liver matrices. After preliminary in vitro enzyme mapping, detailed reaction phenotyping experiments are recommended when the contribution of a particular enzyme family is estimated to be \(\geq 25\% \) toward overall metabolism of a NME. In the absence of quantitative information on \(f_{CL, metabolism} \) from \(^{14} \)C-ADME studies, the worst-case scenario for victim DDI risk assessment is the assumption that metabolism is responsible for 100% of the NME clearance (consistent with the current observed trend of metabolism accounting for \(>80\% \) clearance of NMEs registered between 2010 and 2014). The conservative \(\geq 25\% \) cutoff from in vitro studies is deemed to be a reasonable starting point to warrant further investigation of \(f_m \). Some of the reasons behind this approach include a consideration for the experimental errors in in vitro determination of \(f_m \) due to unoptimized assay conditions, reduced enzyme activity in vitro systems, difficulty of extrapolation of in vitro \(f_m \) to in vivo \(f_m \), especially in cases where extrahepatic metabolizing enzymes are involved.

General Guidelines for Enzyme Reaction Phenotyping

Comprehensive metabolite profiling in complete human liver systems such as hepatocytes to capture major metabolic pathways should be obtained before conducting detailed \(f_m \) studies. Whether a NME is cleared via oxidation, reduction, hydrolysis, or direct conjugation guides the selection of metabolizing enzymes to be prioritized for phenotyping studies. After major metabolic pathways have been identified, it is recommended to determine metabolite formation kinetics over a range of NME concentrations to establish \(K_{m,apparent} \) (apparent/observed Michaelis-Menten constant) value for the metabolic pathways of interest, particularly if using chemical inhibitor method. Once \(K_{m,apparent} \) has been established, \(f_m \) experiments are conducted maintaining NME/substrate concentration at approximately 1/10th value of \(K_{m,apparent} \) to capture accurate contribution of the physiologically relevant high-affinity enzymes toward the metabolic pathway of interest. Because most of the P450 substrates have \(K_{m,apparent} \) values in 1–100 \(\mu \)M range, 0.1–10 \(\mu \)M is an appropriate concentration range to investigate metabolite formation kinetics while maintaining linear first-order kinetics. Investigators are encouraged to consider nonspecific binding of a NME to microsomes (and hepatocytes) in incubation mixture. For NMEs with high nonspecific binding (as in cases of lipophilic basic drugs), although the \(V_{max} \) values are unaffected, the observed \(K_{m,apparent} \) can be substantially higher than \(K_{m,apparent} \) (column 1, incubation \(K_{m,apparent} \)), which represents the true unbound/pharmacologic drug concentration at the enzyme active site and is key determinant of in vitro CL\(_{int}\). Challenges in assay sensitivity of metabolite monitoring at such low \(K_{m,apparent} \) concentration is a practical hurdle, and most in vitro
experiments are conducted at approximately 1/10th value of $K_{m,\text{apparent}}$ or in cases where $K_{m,\text{apparent}}$ has not been fully characterized at three concentrations, typically 0.1, 1, and 10 μM. Generally, under optimal/low protein (e.g., microsomal) concentration (ideally 0.05–0.2 mg/ml), linear first-order kinetics are still maintained in these $K_{m,\text{apparent}}$ concentration ranges. Graphical analysis of metabolite formation kinetics (using Eadie-Hofstee or Lineweaver-Burke plots) may allow one to determine involvement of multiple enzymes and saturable high affinity pathway in some cases. Enzyme-selective inhibitor or RAF/ISEF scaling methods (Supplemental Materials) are then applied to quantitatively determine f_m for each of the major metabolic pathways tested. This overall process is best done quantitatively with radiolabeled NME or with authentic metabolite standards if they are available. During early stages of drug discovery, radiolabeled NME or metabolite standards are rarely available and reliance on identifying metabolic pathways using unlabeled NME is commonly used for decision making and early victim DDI risk assessment.

When unlabeled NME is used, “relative” contribution of metabolic pathways is estimated using either UV-absorption or LC/MS/MS methods. Underlying assumption is that either the UV-absorption (when using UV) or the ionization efficiency (in LC/MS/MS) of the metabolite(s) is similar to the parent NME. Both the assumptions warrant cautious evaluation (Dahal et al., 2011) depending on the nature of the biotransformation of the NME.

When radiolabeled NME is available, the contribution of various metabolic pathways can be quantitatively assessed when radiolabeled NME is available. Metabolites can be separated and quantified via HPLC-radiometric detection device, whereas LC/MS techniques can be used to confirm the identity of the metabolites. If several minor metabolites are formed, the sensitivity of an inline radiochemical detector may not be sufficient to provide a quantitative measurement of all the metabolites, and a scintillation counter is often used after fraction collection from the HPLC separation. For extremely low turnover NMEs, a combined approach of radiometric detector and LC/MS can be used (Yi and Luffer-Atlas, 2010) (discussed further in Special Considerations: Low Turnover, Extrahepatic Metabolism, Inhibition of Parallel Metabolic Pathways).

When biotransformation pathways have not been fully characterized, monitoring total parent NME disappearance is also commonly done. Enzyme-selective inhibitors or RAF/ISEF scaling methods (Supplemental Materials) are then applied to determine semiquantitatively f_m for overall NME disappearance. The parent disappearance approach is limited by the challenge to monitor accurately depletion of NME, especially when percent depletion is low with assays usually being conducted under initial rate conditions (NME depletion is maintained at $\leq 15–20\%$ to ensure metabolite formation is linear with protein concentration and incubation time). When using enzyme-selective inhibitors, at least 40% of parent NME disappearance has been reported to be desirable (Lu et al., 2008) to capture maximum sensitivity of inhibition of NME metabolism. In comparison, when using the RAF or ISEF approaches, $\sim 15–20\%$ of parent NME disappearance has been demonstrated to give acceptable results (Uttamsingh et al., 2005). These are in contrast to the level of sensitivity achieved when monitoring metabolites that can be measured at $\leq 5\%$ of parent turnover with reasonable accuracy. The parent disappearance approach provides an advantage that allows the researcher to easily monitor the total NME metabolism rather than individual metabolite-formation kinetics, which is significantly more labor intensive and usually not done until a candidate is identified for clinical development. However monitoring

<table>
<thead>
<tr>
<th>Year</th>
<th>Total number of NDAs*</th>
<th>Number of typical SMD</th>
<th>Number of drugs cleared via metabolism*</th>
<th>Number of drugs cleared by CYP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>2011</td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>2012</td>
<td>33</td>
<td>22</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>2013</td>
<td>25</td>
<td>18</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>2014</td>
<td>29</td>
<td>23</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

*NDAs = New Drug Application; Assessments made on drugs cleared via intravenous, oral, or inhaled routes and excluding imaging agents, enzyme replacement therapies, sclerosing agents, and topical applications.

*SMD = Small Molecule Drugs

*Contribution of metabolism towards total clearance was $\geq 25\%$ as reported or inferred from exposure changes in reported clinical DDI studies.

*Contribution of CYP towards total metabolism was $\geq 25\%$ as reported or inferred from exposure changes in reported clinical DDI studies.

Fig. 1. (A) Percent of small molecule drugs approved between 2010 and 2014 where metabolism contributed to at least 25% of total clearance. (B) Percent of metabolically cleared small molecule drugs approved between 2010 and 2014 that had involvement of P450s in their metabolism as either the primary enzyme or one of the primary enzymes (at least 25% contribution via P450 toward overall metabolism).
NME disappearance does not yield a complete picture of metabolic pathways and enzymes involved in each of the pathways that could have important implications in victim DDI risk predictions. This can be demonstrated with an example of a NME metabolized predominantly through a major metabolic pathway, which has significant contribution from two distinct isozymes CYP3A4 and CYP2C9, each with different kinetic behaviors ($K_{\text{m,CYP2C9}} = 5 \, \mu M$, $V_{\text{max,CYP2C9}} = 18 \, \text{pmol min}^{-1} \, \text{mg}^{-1}$; $K_{\text{m,CYP3A4}} = 100 \, \mu M$, $V_{\text{max,CYP3A4}} = 170 \, \text{pmol min}^{-1} \, \text{mg}^{-1}$). When overall NME disappearance is monitored, the apparent observed kinetic parameters obtained for the NME will be a result of hybrid of the kinetic parameters for both isoforms. At low NME concentration (usually therapeutically relevant concentrations), contribution of the high-affinity isozyme CYP2C9 will be predominant toward NME metabolism. At high NME concentration due to higher V_{max} of CYP3A4-mediated pathway, contribution of CYP3A4 will be primary. Several drugs demonstrate such biphasic kinetics (bufuralol, dextromethorphan, diazepam, omeprazole, lansoprazole, voriconazole) (Griffin and Houston, 2004; Pelkonen et al., 2008) where in vivo metabolism is dominated by the high-affinity/low-capacity enzymes (e.g., 2D6 or 2C19) although in vitro, contribution of low-affinity/high-capacity enzyme (e.g., 3A4) may be predominant at high substrate concentrations. It is important to understand such mechanistic aspects in DDI risk assessment at clinically efficacious doses of a NME so as to not underestimate or miss contribution of the physiologically relevant high-affinity enzyme under supratherapeutic in vitro assay conditions. In the next few sections, summary of current tools and approaches for f_m determination of P450 and non-P450 enzymes will be provided. The approaches can be evaluated by monitoring C_{out} of a NME via either major metabolite formation or overall NME depletion, depending on the sensitivity of assays available to investigators that imparts data interpretation with high level of confidence. Technical details of typical incubation conditions for P450- and non-P450-mediated in vitro metabolism assays are beyond the scope of this manuscript. Interested readers are referred to past reviews of this topic (Johnson and Waterman, 1996, Venkatarkrishnan et al., 2001; Kramer and Tracy, 2008, Ogilvie et al., 2008; Sensenhauser, 2014; Korzekwa, 2014) and citations made throughout this document.

Early Enzyme Mapping: Identifying P450 and Non-P450 Enzymes Involved in NME Metabolism

P450 and non-P450 enzymes such as flavin-containing monooxygenase (FMO), monoamine oxidase (MAO), and aldehyde oxidase (AO)/xanthine oxidase (XO), all catalyze oxidative metabolism of xenobiotics with differential preference based on the chemical nature of their substrates. AO/XO preferentially oxidize electron-deficient carbons (Beedham, 1985; Pryde et al., 2010) compared with the P450s that prefer electron rich C-oxidaitions. Hence aldehyde, imine, or heteroaromatic functional groups are typical substrates of AO/XO. FMO is another NADPH-dependent oxidative enzyme like P450 enzymes but preferentially mediates N- and S- oxidations, typical peroxy acid reactions (e.g., Baeyer-Villiger oxidation) but not C-oxidation or heteroatom-dealkylations like P450 enzymes (Hines et al., 1994; Cashman, 1995; Ziegler, 2002; Harper and Brassil, 2008; Lang and Kalogutkar, 2003). MAO-mediated metabolism often occurs on compounds containing basic amine (Geha et al., 2001). Glucuronidation and sulfation commonly occurs on phenol and aliphatic alcohol groups forming O-glucuronides and O-sulfates, respectively. Glucuronidation may also occur on amines and carboxylic acids forming N-glucuronides and acyl glucuronides, respectively, whereas NAT has been observed to acetylate both aromatic and aliphatic amines. Carboxylesterase (CES) is usually involved in ester hydrolysis, although some amide and ketones with α-CF3 have been reported to be substrates of CES (Wadkins et al., 2007).

Knowledge of the NME structure combined with information about major metabolic pathways (oxidation, reduction, hydrolysis, or direct conjugation) guides the nature of enzyme mapping assays. High level outlines of these studies are described in Figs. 2–4. If major metabolic pathways are identified to be phase 1 in nature then involvement of NADPH-dependent enzymes such as P450 and FMO (Fig. 3, Scheme A) and the NADPH-independent enzymes such as MAO or AO/XO (Fig. 4, Scheme B) are evaluated. When the NME undergoes direct conjugation, involvement of enzymes such as UGT, SULT, NAT, or GST is evaluated depending on the major metabolites identified. For a NME that primarily undergoes hydrolysis, enzymes such as carboxylesterases (CES) and amidases are further investigated. These studies may be conducted in conjunction with preliminary assessments in recombinant enzymes when available to identify better the enzymes responsible for major metabolic pathways. In the case of AO/XO, because commercial availability of recombinant enzymes is very limited, assessments are best made in cytosol (details in the following section of “Estimating Fractional Contribution of Aldehyde Oxidase/Xanthine Oxidase”).

Preliminary assessment of relative contribution of FMO and P450 enzymes toward N- or S-oxidation (Fig. 3) can be assessed by 1) treating HLM with a nonionic detergent (e.g., Triton X-100) or pan-P450 inhibitor (e.g., 1-aminobenzotriazole) (both of which selectively suppress the majority of P450 activities but not FMO activity); or 2) incubating HLM at 50°C for 2–3 minutes without NADPH. FMO is heat inactivated in the absence of NADPH but P450 activity is not significantly compromised. Although none of these methods is ideal (e.g., P450 and FMO activity may not be fully inhibited with 1-aminobenzotriazole and heat inactivation, respectively), results obtained from combined studies are acceptable for early estimates of the relative contribution of P450 versus FMO to then initiate detailed studies described in sections below for “Determining Fractional Metabolism by P450: P450 Reaction Phenotyping”.

Identification of NADPH-independent oxidative enzymes AO/XO and MAO is outlined in Fig. 4. Significant oxidative metabolism of a NME in human liver cytosol is indicative of metabolism by AO or XO. Inhibition of overall metabolism in cytosol by hydralazine or allopurinol would implicate AO or XO, respectively, in the metabolism of the NME. Inhibition of metabolism in the mitochondrial fraction with tranylcypromine or pargyline is indicative of MAO involvement, although if the NME does not possess a primary, secondary, or tertiary amine functional group, there is a very high probability that MAO will not be involved.

Teasing out the contribution of P450 versus non-P450 oxidative enzymes (AO/XO, FMO, and MAO) can be challenging in cases where the same oxidative metabolite may be formed via multiple enzymes (e.g., P450 and FMO, P450 and AO/XO, or P450 and MAO). Based on the reported incidence and magnitude of victim DDIs in the clinical setting (Yu et al., 2014), as well as the continued trend of P450 being the major enzyme involved in metabolic clearance, P450 stands out as the high-risk enzyme class compared with others. Careful assessment of contribution of individual P450 isoforms toward overall metabolism of a NME is therefore crucial to accurately assess the victim DDI liability of a NME in the clinic.

Strategies for f_m determination discussed for the non-P450 enzymes are based on literature reported cases or current practices within member companies. Because known cases of drugs where non-P450 enzymes are the primary metabolizing enzyme is low, experience in determination of f_m and extrapolation to in vivo outcome for non-P450 enzymes is not extensive. It is therefore recommended to thoroughly assess and optimize conditions for f_m of non-P450 enzymes when using the strategies described for the non-P450s as good starting guidelines.
Determining Fractional Metabolism by P450: P450 Reaction Phenotyping

Relative contributions of individual P450 enzymes to total human hepatic microsomal clearance can be assessed in vitro by some commonly used techniques (Rodrigues, 1999; Wienkers and Stevens, 2003; Zhang et al., 2007; Ogilvie et al., 2008; Zientek and Youdim, 2015). 1) Recombinant P450 kinetics scaled to HLM: Commonly referred to as the RAF/ISEF method (Supplemental Materials), this involves determination of enzyme kinetic parameters for the metabolism of the NME in a panel of recombinant human (rh) P450 (with predetermined specific activity and normalized for protein content) and scaling the rhCYP intrinsic clearance (CLint or \(V_{\text{max}}/K_{\text{m}} \)) to HLM CLint via a RAF/ISEF approach. When the contributions of specific P450 enzymes are scaled to HLM CLint, then the percent contribution of each P450 enzyme toward the total HLM CLint can be estimated. It is not uncommon that the absolute value of the HLM CLint and rhCYP-scaled HLM CL int may differ. Several factors could contribute to the differences including potential involvement of enzymes other than P450 enzymes in HLM in the formation of the same metabolite(s), lack of 100% specificity of probe substrates used to calculate the scaling factors, and the potential for compound-specific (probe versus NME) differences in metabolism in HLM versus rhCYP enzymes. However, with respect to determining the relative contributions of individual P450 enzymes to the overall P450-mediated oxidative clearance in HLM, RAF/ISEF methods are deemed very useful. 2) Chemical inhibition method: This approach involves the use of P450-selective chemical inhibitors. After major metabolic pathways are identified and their kinetics evaluated, the effect of P450-selective-specific chemical inhibitors on a particular metabolic pathway (in HLM) is assessed. Percent inhibition of a metabolic pathway by a known isozyme-selective chemical inhibitor reflects contribution of the isozyme toward that pathway. Ideally chemical inhibitors should be potent, selective, and metabolically stable. Sometimes the balance between potency and selectivity can be challenging to attain, because in reaction phenotyping assays the concentration of inhibitors should be such that they inhibit the desired isozyme >90%. This is usually achieved at approximately 10-fold of inhibitor \(K_i \) values. However, at such high inhibitor concentrations some P450 inhibitors may demonstrate non-selectivity where slight inhibition toward other unintended P450 isozymes may exist and hence overestimate percent contribution via intended P450 pathway. A mathematical correction has been proposed using P450 probe substrates to correct for the cross reactivity and partial inhibition toward the target P450 (Lu et al., 2007), but this has not been widely qualified. Nonspecific binding of chemical inhibitors (fu, incubation) also needs to be carefully evaluated (Waters et al., 2014), especially in cases where phenotyping studies are conducted at high microsomal protein concentration >0.5 mg/ml, where certain chemical inhibitors (e.g., \(\alpha \)-naphthflavone, ketoconazole, benzylnirvanol, quinidine) show substantial nonspecific binding (Nirogi et al., 2015). Because of high nonspecific binding, unbound concentration of an inhibitor at the
enzyme active site may be suboptimal to attain the desired >90% inhibition of an intended enzyme. Furthermore, when using irreversible inhibitors, it is recommended that the experimental conditions including preincubation times be carefully optimized. Based upon a literature search of reported \(K_i \) or IC50 values for the inhibition of individual P450 enzymes and compilation of the information, a recommended concentration range of inhibitors to use is shown in Table 1. This range is intended to maximize the selectivity of the inhibitor for the specific P450 isoforms listed. The extent of inhibition by the P450-selective inhibitor provides information regarding the contribution of the inhibited enzyme to the total HLM oxidative metabolism. It is also recommended to maintain the NME concentrations below their \(K_{m,\text{apparent}} \) values, so the IC50 value that is produced would be closer to the actual \(K_i \) value for the specific enzyme inhibition. Hence it is a good practice to establish \(K_{m,\text{apparent}} \) values of a NME when using the chemical inhibition method.

Combined use of P450-selective inhibitors in HLM and rhCYP scaling methods (RAF/ISEF) provides investigators with high level of confidence in estimating the primary P450 isoforms involved in the hepatic oxidative clearance of a NME. In majority of cases of P450-mediated oxidative metabolism, \(f_m \) values obtained via either of these two methods are not expected to be substantially different, but on occasions differences may arise. Potential reasons include: 1) involvement of uncommon P450 isoforms (2J2, 4A11) or non-P450 enzymes; 2) nonideal experimental conditions where suboptimal inhibition is obtained from chemical inhibitors. Scenarios include high protein concentration resulting in high nonspecific binding of inhibitor resulting in <90% inhibition of the intended P450—this underestimates \(f_m \) of intended P450; use of excessive inhibitor concentration resulting in substantial cross-reactivity, which leads to overestimation of \(f_m \) of intended P450; high substrate/NME concentration...
overwhelming the inhibitory effect of reversible inhibitors and under-
estimating f_m of intended P450; 3) the lack of absolute specificity of the probe substrate and/or inhibitor for P450; 4) potential difference in P450 binding site for the probe substrate and the NME, where the NME may interact with the P450 at a binding site, different from that of the probe substrate (Mathur et al., 2013). Large discrepancies in f_m values obtained from chemical inhibition and rhCYP scaling methods, often result in considerable differences in the magnitude of the predicted victim DDI liability for a NME and warrant a systematic look into factors discussed above.

Correlation analysis is another method that has been assessed for the P450 isoforms (and infrequent cases of UGT; Kamdem et al., 2010); however, review of current industry practices among the working group member companies did not advocate this to be a method of choice for phenotyping of drug candidates, especially when there is discrepancy in the f_m values from RAF/ISEF and chemical inhibitor methods. A reason may be that a prerequisite for correlation analysis is the maintenance of a consistent collection of individual human liver microsomes, with a wide range of activity characterized for the metabolizing enzymes of interest. This is probably less practical/affordable for industry laboratories, which routinely use commercially available pooled human liver microsomes from 100–150 donors, for RAF/ISEF and chemical inhibitor studies. Correlation analysis is also substantially more labor intensive than RAF/ISEF and chemical inhibitor methods, and when multiple P450 isoforms are involved, data interpretation may not be straightforward and often yields only qualitative information on f_m.

Successful examples of predictions of exposure change of victim drug in the clinic based on experimentally determined in vitro f_m,CYP have been reported. These examples use the methods described in the P450 phenotyping section as the standard approach (Youdim et al., 2008; Lu et al., 2008) and in theory can also be applied to non-P450 enzymes when appropriate tools are available.

Identification of Flavin-Containing Monooxygenases FMO 1, 3, 5

The flavin-containing monoxygenase (FMO) family comprises a group of flavin adenine dinucleotide-containing microsomal enzymes that catalyze oxidation of compounds containing soft nucleophilic groups. Typical FMO-catalyzed reactions are monoxygenation of heteroaromatics such as nitrogen and sulfur (Hines et al., 1994; Cashman, 1995; Ziegler, 2002; Lang and Kaligutkar, 2003). Because the key intermediate of the FMO catalytic cycle is a reactive peroxide intermediate C(4’)-hydroperoxyflavin, the FMO-mediated biotransformation is typically consistent with chemical reactions that involve peroxides or peroxiacids. Similar to P450 enzymes, NADPH and oxygen are required for FMO-mediated reactions. However, unlike P450 enzymes, FMO enzyme activities are generally greater at higher pH and can be inactivated by a brief heat treatment in the absence of the cofactor NADPH (Cashman, 2012). The involvement of AO or XO in oxidative metabolism of a NME can be determined directly by monitoring the metabolism of a NME in liver cytosol or S9 fraction in the absence of NADPH (Hutzler et al., 2013; Barr et al., 2014a). It is important that the source of liver tissue used in these studies was not derived from liver that had been perfused with solutions containing allopurinol, a common practice after full hepatectomy, because that tissue would be expected to have little or no XO activity due to residual allopurinol, an inhibitor of XO (Barr et al., 2014b).

If oxidative metabolism is observed in human liver cytosol, the enzyme(s) involved can be elucidated by the use of chemical inhibitors. Hydralazine and allopurinol (~50 μM) have been identified as selective inhibitors of AO and XO (Tables 2–5), respectively, and, therefore, inhibition of oxidative metabolism by either of these inhibitors would implicate the corresponding enzyme (Johnson et al., 1985; Elion, 1988). Raloxifene or menadione can also be used to inhibit AO in incubations with liver cytosol, but these inhibitors are less suitable for studies in liver S9 fractions or hepatocytes due to either their instability or potential to inhibit P450 enzymes (Obach, 2004; Strelevitz et al., 2012).

Fractional metabolism by AO can be determined using hydralazine in human hepatocytes as has been established (Strelevitz et al., 2012). The difference in intrinsic clearance with and without hydralazine (Tables 2–5) divided by intrinsic clearance in the uninhibited state gives the fractional metabolism via AO. Conceptually this same approach could be applied to determine the fractional metabolism via XO by using allopurinol in place of hydralazine, but the authors are not aware of examples where this has been done.

Few marketed drugs are metabolized primarily by, or potently inhibit, either AO or XO, so examples of drug interactions are rare. One notable example is allopurinol, an XO inhibitor designed to treat gout, which is contraindicated for coadministration with azathioprine, an immunosuppressant that is cleared via XO (Gearry et al., 2010). To date there is no example of drug interaction that occurs via inhibition of AO but the potential exists. Famciclovir is an antiviral prodrug that is converted to its active form penciclovir by AO (Clarke et al., 1995). Coadministration of methimazole can be used to assess the relative contributions of FMO3 and FMO5 in HLM to overall FMO-mediated metabolism (Fig. 5). However, this approach must be used in conjunction with the thermal inactivation approach because methimazole is also known to inhibit several P450 isoforms (Guo et al., 1997). FMO1 is highly expressed in human adult kidney. Therefore incubations in human kidney microsomes in the presence or absence of FMO1 inhibitor methimazole can be used to assess involvement of FMO1 (Fig. 5). Unlike human liver microsomal systems, heat inactivation of FMO has not been well studied or documented in human kidney microsomes.

In contrast to the P450 enzymes, FMO activity is not susceptible to induction or inhibition (Cashman, 2012) and known instances of drugs whose metabolism is primarily mediated by FMO is scarce (ranitidine, nicotine). Hence from the viewpoint of potential DDIs, FMO-mediated pathways are generally of less concern relative to P450-mediated pathways.

Estimating Fractional Contribution of Aldehyde Oxidase/Xanthine Oxidase

AO and XO are cytosolic molybdoflavoproteins that catalyze NADPH-independent oxidation of a wide range of substrates. Typical reactions include oxidation of aldehydes to the corresponding carboxylic acids and hydroxylation of aromatic N-heterocycles at the electron-deficient carbon atom adjacent to the heteroatom (Bedham, 1985; Pryde et al., 2010). Unlike P450 enzymes, the source of the oxygen atom that is added by AO or XO is from water. Therefore incubations with appropriate matrices can be carried out under 18O2 or in the presence of H2O18 to further investigate the enzymes involved, if necessary.

The involvement of AO or XO in oxidative metabolism of a NME can be determined directly by monitoring the metabolism of a NME in liver cytosol or S9 fraction in the absence of NADPH (Hutzler et al., 2013; Barr et al., 2014a). It is important that the source of liver tissue used in these studies was not derived from liver that had been perfused with solutions containing allopurinol, a common practice after full hepatectomy, because that tissue would be expected to have little or no XO activity due to residual allopurinol, an inhibitor of XO (Barr et al., 2014b).

If oxidative metabolism is observed in human liver cytosol, the enzyme(s) involved can be elucidated by the use of chemical inhibitors. Hydralazine and allopurinol (~50 μM) have been identified as selective inhibitors of AO and XO (Tables 2–5), respectively, and, therefore, inhibition of oxidative metabolism by either of these inhibitors would implicate the corresponding enzyme (Johnson et al., 1985; Elion, 1988). Raloxifene or menadione can also be used to inhibit AO in incubations with liver cytosol, but these inhibitors are less suitable for studies in liver S9 fractions or hepatocytes due to either their instability or potential to inhibit P450 enzymes (Obach, 2004; Strelevitz et al., 2012).

Fractional metabolism by AO can be determined using hydralazine in human hepatocytes as has been established (Strelevitz et al., 2012). The difference in intrinsic clearance with and without hydralazine (Tables 2–5) divided by intrinsic clearance in the uninhibited state gives the fractional metabolism via AO. Conceptually this same approach could be applied to determine the fractional metabolism via XO by using allopurinol in place of hydralazine, but the authors are not aware of examples where this has been done.
of famciclovir with a potent inhibitor of AO such as raloxifene could potentially lead to a reduction in antiviral efficacy (Obach, 2004), but studies to determine the magnitude of this interaction have not been conducted. It was recently demonstrated that inhibition of AO may be substrate dependent and occur by mixed modes of reversible and irreversible inhibition, so care should be exercised in predicting drug interactions based on in vitro data (Barr and Jones, 2011, 2013a; Barr et al., 2014b).

Because of species differences in AO isoforms and activities, good preclinical models for human AO activity have yet to be identified (Choughule et al., 2013), so caution should be exercised in extrapolating AO-mediated overall metabolic clearance from animals to humans. In vitro-in vivo correlation (IVIVC) assessed for set of 11 drugs (Zientek et al., 2010) (Supplemental Materials) predominantly metabolized by this AO suggested that the IVIVC is typically poor and the AO-mediated in vivo clearance is usually underestimated. Reasons for this poor correlation have been attributed to the extrahepatic contribution of AO to total clearance and the potential lability of AO in liver preparations used for in vitro studies. Recently the protein content of AO has been quantified in human liver cytosol (Barr and Jones, 2013; Barr et al., 2013; Fu et al., 2013). Use of these methods and their extension to extrahepatic tissues may help to define better our ability to predict contribution of human metabolic clearance via AO in the future.

Identification of Monoamine Oxidases MAO-A and MAO-B

Monoamine oxidase (MAO) is a flavin-containing protein located on the outer mitochondrial membrane of a wide range of mammalian cells in various tissues (Saura et al., 1996). MAO catalyzes the oxidative deamination of biogenic amines as well as basic amine-containing xenobiotics. MAO exists in two forms encoded by separate genes with 70% sequence homology (Weyler et al., 1990). MAO-A is found in the liver, gastrointestinal tract, and placenta, whereas MAO-B is found primarily in blood platelets.

Table 2

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Selective Substrates (Km)</th>
<th>Selective Inhibitor</th>
<th>Recommended Inhibitor Concentration Range (reported IC50 value)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>DACA* (8)</td>
<td>Hydralazine</td>
<td>0.05–50 (IC50 = 0.5–5)</td>
<td>Johnsonet al., 1985; Obach, 2004; Störmer et al., 2000</td>
</tr>
<tr>
<td></td>
<td>Phthalazine (5)</td>
<td>Raloxifene*</td>
<td>0.0001–1 (IC50 = 0.0029)</td>
<td>Chen et al., 2002; Obach, 2004; Strelevitz et al., 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menadione*</td>
<td>0.01–100 (IC50 = 0.2)</td>
<td>Obach, 2004; Panoutsopoulos et al., 2004; Tapner et al., 2004; Pacher et al., 2006</td>
</tr>
<tr>
<td>XO</td>
<td>Pterin (34)</td>
<td>Allopurinol</td>
<td>0.01–100 (IC50 = 2)</td>
<td>Obach, 2004; Panoutsopoulos et al., 2004; Tapner et al., 2004; Pacher et al., 2006</td>
</tr>
<tr>
<td></td>
<td>6-mercaptopurine(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAO-A</td>
<td>Serotonin(100)</td>
<td>Clorgylline*</td>
<td>0.0002–2 (IC50 = 0.002)</td>
<td>Leonardi and Azmitia, 1994; Kalogkonos and Christofanizou, 1995; Herrera, 2009; Herrera, 2012; Geha et al., 2001</td>
</tr>
<tr>
<td>MAO-B</td>
<td>β-phenylethylamine(2)</td>
<td>(-) Deprenyl*</td>
<td>0.0002–2 (IC50 = 0.001)</td>
<td>Geha et al., 2001; Herrera, 2009, 2012; Störmer et al., 2000</td>
</tr>
<tr>
<td>FMO (1, 3, and 5)</td>
<td>Benzydamine (FMO 1 = 24; FMO3 = 40)</td>
<td>Methimazole</td>
<td>10–500 (IC50 = 120)</td>
<td></td>
</tr>
</tbody>
</table>

*Demonstrates substrate-dependent IC50.

*Irreversible inhibitors
When a NME contains a primary, secondary, or tertiary amine, evaluation of the NME as a substrate of MAO-A or MAO-B is important for victim DDI risk assessment, especially if the NME is intended to be prescribed for the treatment of depression and anxiety (MAO-A inhibitors) or a number of psychiatric and neurologic disorders are attributed to these isoform-selective inhibitors. However, use of chemical inhibition to assess contribution of MAO-A and MAO-B toward the overall oxidative metabolism of a NME may theoretically be assessed in hepatocytes using isoform-selective inhibitors. However, use of chemical inhibition to assess contribution of MAO-A and MAO-B is not routinely done among companies, and literature cases of this approach are rare (Erickson et al., 2007). A RAF approach similar to that for P450s has been reported (Pybus et al., 2012) to evaluate the relative contribution of MAOs toward overall NME metabolism. But because the presence of MAO in microsomes is due to contamination during preparation, levels of MAO vary significantly between microsomal lots and microsomes are not recommended for MAO metabolism of a NME may theoretically be assessed in hepatocytes using isoform-selective inhibitors. However, use of chemical inhibition to assess contribution of MAO-A and MAO-B is not routinely done among companies, and literature cases of this approach are rare (Erickson et al., 2007). A RAF approach similar to that for P450s has been reported (Pybus et al., 2012) to evaluate the relative contribution of MAOs toward overall NME metabolism. But because the presence of MAO in microsomes is due to contamination during preparation, levels of MAO vary significantly between microsomal lots and microsomes are not recommended for MAO-i or IC50 values for the indicated precipitants. If individual K, or IC50 values were listed for one study, the average was taken. If a range of values were given, the lowest value was taken. Median value was derived across all reported values. All queries were of data reported in the Database as of Dec 2015.

TABLE 4

Recommended in vitro substrates and inhibitors of other non-P450 phase II enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Selective Substrates K_i</th>
<th>Selective Inhibitor</th>
<th>Recommended Inhibitor Concentration Range (reported IC50 value)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST</td>
<td>CDNB<sup>a</sup></td>
<td>Ethacrynic acid<sup>b</sup></td>
<td>0.1–1 mM [IC50= 6 (α), 0.3 (μ), 3.3 (π)]</td>
<td>Polidoro et al., 1981; Warholm et al., 1983; Ploemen et al., 1990</td>
</tr>
<tr>
<td></td>
<td>450 (A1–1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>580 (A2–2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>650 (M1–1a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>910 (P1–1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT1</td>
<td>p-Amino benzoic acid (7.5)</td>
<td>Caffeic acid</td>
<td>0.1–1 mM (K_i = 479)</td>
<td>Kukongviriyapan et al., 2006</td>
</tr>
<tr>
<td>NAT2</td>
<td>Sulfamethazine (40)</td>
<td>Curcumin</td>
<td>1–100 (K_i = 15)</td>
<td></td>
</tr>
<tr>
<td>CES–</td>
<td>Temocapril (CES1) (NA)</td>
<td>Digitonin</td>
<td>0.1–100 (IC50 = 9.2)</td>
<td>Nishimuta et al., 2014</td>
</tr>
<tr>
<td>CES–</td>
<td>Trandolapril (CES1) (1734)</td>
<td>BNPP<sup>c</sup></td>
<td>0.01–10 (IC50 = 0.1)</td>
<td>Fukami et al., 2010</td>
</tr>
<tr>
<td>CES–</td>
<td>Imidapril (CES1) (4.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CES–</td>
<td>Mycophenolate mofetil (CES1/2) (225–CES1; 22.3–CES2)</td>
<td>Telmissartan</td>
<td>0.01–10 (IC50 = 0.5)</td>
<td>Fukami et al., 2010</td>
</tr>
<tr>
<td>CES–</td>
<td>Irotenac (CES2) (14.4)</td>
<td>Loperamide</td>
<td>0.01–10 (IC50 = 0.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BNPP<sup>c</sup></td>
<td>0.01–10 (IC50 = 0.1)</td>
<td></td>
</tr>
</tbody>
</table>

^aCDNB: 1-chloro-2,4-dinitrobenzene, non-selective

^bPartially-selective

^cBis(4-nitrophenyl)phosphate (nonspecific).
and Parkinson’s disease (MAO-B inhibitors). Several potent MAO inhibitors are marketed drugs, primarily to treat depression [such as Azilect (Teva Pharmaceuticals Ltd, Essex UK), Nardil (Pfizer Inc, New York, NY), Parnate (Glaxo Smith Klein, Ontario, Canada), Eldepryl (Somerset Pharmaceuticals, Inc., Tampa, FL), Marplan (Validus Pharmaceuticals, Parsippany, NJ), and Zelapar (Valeant Pharmaceuticals, Redwood City, CA)]. It is therefore useful to assess whether MAO-A/B has a major role in the metabolic clearance of an amine-containing NME to better understand potential victim DDI risk when coadministered with known MAO inhibitors.

Determination of Fractional Metabolism by Uridine 5’-diphospho-Glucuronosyltransferase

Commonly used methods for UGT reaction phenotyping are similar to those of P450s (albeit less well established for several UGTs still) and include the use of human recombinant enzymes and selective chemical inhibitors in human liver microsomal incubations (Court, 2005; Miners et al., 2010a,b).

Recombinantly Expressed UGT Isoforms

Advances in the availability of human recombinant UGT isoforms, identification of selective probe substrates for several of the major UGT isoforms, and information of UGT protein quantification in various organs has allowed for estimation of fractional metabolism of an amine-containing NME to better understand potential victim DDI risk when coadministered with known MAO inhibitors.

<table>
<thead>
<tr>
<th>SULT</th>
<th>Selective Substrates K_m</th>
<th>Nonselective SULT Inhibitor</th>
<th>Reported IC$_{50}$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1</td>
<td>4-nitrophenol (4)</td>
<td>2,6-Dichloro-4-nitrophenol</td>
<td>1.44</td>
<td>Wang and James, 2006</td>
</tr>
<tr>
<td>1A3</td>
<td>4-nitrophenol (3000)</td>
<td></td>
<td>86.9</td>
<td>Riches et al., 2009</td>
</tr>
<tr>
<td>2A1</td>
<td>Dehydroepiandrosterone (5)</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1B1</td>
<td>3,3’, 5-Triiodothyronine (60)</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1E1</td>
<td>3,3’, 5-Triiodothyronine (75)</td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

FMO, flavin-containing monoxygenase; AO/XO, aldehyde oxidase/xanthine oxidase; MAO, monoamine oxidase; UGT, uridine diphosphoglucuronosyltransferase; SULT, sulfotransferase; NAT, N-acetyl transferase; GST, glutathione S-transferase; CES, carboxylesterase.

Chemical Inhibitors of UGT

Incubations in microsomes in the presence of selective UGT inhibitors may also be useful as a complementary method to assess the fractional metabolism by UGT. Tables 2–5 summarize examples of such UGT1A8 and 1A10. Selective substrates for the major hepatic UGT isoforms have been identified (Tables 2–5) that may be suitable for reaction phenotyping studies and include 17β-estradiol (3-glucuronide formation) for 1A1, trifluoperazine for 1A4, 5-hydroxytryptophol for 1A6, propofol for 1A9 and zidovudine for 2B7 (Lepine et al., 2004; Krishnaswamy et al., 2004; Court, 2005; Uchaipichat et al., 2006a,b; Itaaho et al., 2008; Manevski et al., 2011; Walsky et al., 2012).

Availability of selective probe substrates for the different UGT isoforms has allowed the determination of RAFs that have been useful in determination of relative contribution of different UGT isoforms in drug’s metabolic clearance, as exemplified by recent publications on haloperidol (Kato et al., 2012) and laropiprant (Gibson et al., 2013). Information on protein quantification of several UGT isoforms has enabled determination of ISEF values to allow improved prediction of UGT reaction phenotyping. Protein abundance of various UGT isoforms including 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, 2B10, 2B15, and 2B17 were quantified in human liver, intestine, and kidney primarily by LC/MS/MS (Fallon et al., 2013a,b; Milne et al., 2011; Harbourt et al., 2012; Sato et al., 2012; Schaefer et al., 2012; Sridar et al., 2013). Because of differences in the protein abundance values across different studies, caution should be taken when these values are used for the generation of ISEF values. It is advisable that either the median values or a range of values be used.

Fig. 6. Confirming role of MAO-A or MAO-B toward NME metabolism.
proposed selective substrates and inhibitors of five major hepatic UGT isoforms and recommended inhibitor concentrations relative to their inhibition potency (IC50 values). Examples of selective inhibitors are atazanavir for UGT1A1/1A3 (Zhang et al., 2005); hecogenin for UGT1A4 (Uchaipchat et al., 2006a,b; Walsky et al., 2012); troglitzone for UGT1A6 (Ito et al., 2001), digoxin, translast, and niflumaric acid for UGT1A9 (Vietri et al., 2002; Lapham et al., 2012); and β-phenyllongifolol-2 for 2B7 (Bichlmair et al., 2007). Careful optimization of experimental conditions (Court, 2014; Zhou and Miners, 2014) (also more in Supplemental Materials) should be done for the selection of suitable inhibitor concentrations, e.g., when considering the presence of BSA, in particular for UGT1A9 and 2B7 reactions. These methods have not been well established yet for several other UGT isoforms. As with any chemical inhibitor (described in Determining Fractional Metabolism by P450: P450 Reaction Phenotyping), chemical inhibitors of UGT are rarely absolutely specific at higher concentrations used for phenotyping studies. It is therefore warranted to carefully assess and account for cross-reactivity when using chemical inhibitors. Additional tools appropriate for in vitro reaction phenotyping for an extended number of UGT enzymes considered to be important in drug metabolism need to be developed.

The use of selective inhibitors in liver microsomal incubations together with commercially available recombinant human UGT isoforms, selective probe substrates, and protein abundance information in intestine, liver, and kidney for some of the major UGT isoforms has led to the emergence of a more semiquantitative approach toward determination of the contribution of these UGT isoforms to overall drug clearance. However, current tools only allow quantitative scaling for limited UGT isoforms (UGT1A1, 1A6, 1A9, and 2B7), because this area remains an area of active growth. For drugs metabolized by both P450 and UGT, incubations in human liver, kidney, and intestinal microsomes together with P450 and UGT cofactors in the presence of BSA to improve fm,CYP and fm,UGT prediction have been proposed and is also an emerging area (Cubitt et al., 2011) (Supplemental Materials). IVIVC analyses (Miners et al., 2006) (Supplemental Materials) of limited dataset of UGT-mediated drugs suggest mixed success in the prediction of total UGT-mediated whole body clearance of drugs. Under-predictions were observed in cases like zidovudine and morphine, whereas reasonable success was demonstrated for drugs like laropiprant (Gibson et al., 2013), where inclusion of BSA was suggested to improve the predictions. Low incidence of UGT-mediated DDI in the clinic has also made it challenging to extrapolate in vitro fm,UGT values to those in the clinic. Analysis of limited cases of UGT-mediated DDIs as in lamotrigine-valproic acid (Rowland et al., 2006), zidovudine-fluconazole (Uchaipchat et al., 2006b), zidovudine-valproic acid interactions also suggest improvement in predictions of DDI magnitude with addition of BSA. Addition of BSA to improve predictions of UGT-mediated clearance and for determining fm,UGT has not been standardized across companies and continues to be an area of further research.

Relative Contribution of Glutathione-S-Transferases

Fractional metabolism by GST may be assessed by intrinsic clearance in hepatocytes or human liver S9 fractions fortified with reduced glutathione (GSH). GST-mediated metabolism may also be qualitatively assessed by determining intrinsic clearance in the presence of GSH versus intrinsic clearance in cytosol in the presence of other cofactors that may be needed for other known or suspected pathways of metabolism (e.g., NADPH for P450-mediated oxidation or uridine diphosphoglucuronid acid for UGT). Intrinsic nonenzymatic reactivity of NME with GSH in buffer needs to be determined and factored in while establishing GST-mediated metabolism. Inhibitors such as ethacrynic acid may be used to confirm the involvement of GST isoforms (Ahokas et al., 1985; Ploemen et al., 1990), although sufficiently selective inhibitors for the different GST enzymes are needed to conduct effectively reaction phenotyping in subcellular or cellular systems.

Human recombinant GST isoforms such as GSTA1, A2, M1, M2, P1, and T1 are available commercially and may be used to assess the qualitative contribution of the different GST isoforms in GSH conjugation. However, tissue abundance of various GST isoforms (including different GST genotypes) and GST isoenzyme-selective substrates (Ginsberg et al., 2009) need to be further evaluated to develop scaling factors for reaction phenotyping using human recombinant GST isoforms.

Because of the expression of many GST isoforms in extrahepatic tissues (e.g., GSTP1 in erythrocytes) (Awasthi et al., 1994; Whalen and Boyer, 1998), in vitro-in vivo extrapolation of human clearance needs to take into consideration the contribution from extrahepatic organs (including blood). In vitro-in vivo extrapolation of GST-mediated metabolic clearance remains to be established, and hence data from in vitro experiments should be interpreted with caution when assessing overall metabolic clearance by GST. There are no reported metabolism-based DDIs via GST of which this working group is aware.

Estimating Relative Contribution of Sulfotransferases

Sulfotransferases (SULTs) are cytosolic enzymes that transfer a sulfonate group from 3'-phosphoadenosine-5'-phosphosulfate to a drug molecule, thereby making it more polar and readily excreted mostly in urine (Parkinson and Ogilvie, 2007). In addition to biotransformation of many endogenous substrates such as cholesterol, dehydroepiandrosterone, or estradiol and other estrogens, several hepatic SULTs are responsible for biotransformation of xenobiotics. These SULTs include SULT1A1, SULT1A2, and SULT2A1. Phenols and aliphatic alcohols are the major sites of sulfation on drug molecules. Other sites such as aromatic amines and primary amines can also undergo sulfation. However, unlike glucuronidation, sulfation usually does not occur on carboxylic acids. SULT and UGT often share similar substrate properties, such as conjugation on phenol groups. However, SULT is an easily saturable, high-affinity low-capacity enzyme class, whereas UGT is a low-affinity high-capacity enzyme class (Parkinson and Ogilvie 2007), due to which UGTs are often the predominant enzymes if phase 2 conjugation is the major metabolic pathway. In vitro studies need to be designed carefully to elucidate the sulfation pathway, because sulfation is easily saturated at low concentrations (Li et al., 1999; James, 2014).

Relative contribution by SULT for a given compound can be done using recombinant SULT isoforms to determine the intrinsic clearance value of a NME. The abundance of SULT isoforms in human liver, kidney, intestine, and lung has been reported using Western blot quantification (Riches et al., 2009) (Table 5), although the current literature is limited. The intrinsic clearance values in theory can be normalized by the reported relative abundance of SULT in human tissues (e.g., ng SULT/g cytosol) to obtain the relative contributions of each SULT toward the total clearance (assumption is that relative abundance of various SULT isoforms determined by Western blot is reflective of relative activity). 2,6-Dichloro-4-nitrophenol has been reported to inhibit various SULTs with varying potency (Wang and James, 2006). By using a combination of rhSULT and inhibition by 2,6-dichloro-4-nitrophenol (Tables 2–5) one can study the relative contribution of SULT isoforms in liver S9, cytosol, or hepatocytes. Improved predictions of fm,SULT using hepatic and intestinal scaling factors are also emerging (Gertz et al., 2011) and will be an area of continued research to see whether additional incorporation of fm,SULT will also refine predictions of fm,CYP and fm,UGT for NMEs that are metabolized by all the three enzymes (e.g., troglitazone). This working group is not aware of any reported cases of metabolic DDIs via SULT.
Identifying Role of N-acetyltransferases NAT1 and NAT2

The N-acetyltransferases (NATs) are an important family of metabolizing enzymes that catalyze direct conjugation of acetyl and alkyl amine compounds such as hydrazine with the acetyl group of acetyl-CoA (Sim et al., 2008b). These cytosolic enzymes have been shown to be important in arylamine-containing drug detoxification and carcinogen activation and are present in liver, esophagus, stomach, small intestine, colon, ureter, bladder, and lung (Windmill et al., 2000). In humans, there are two functional NAT genes encoding two isoenzymes, NAT1 and NAT2. A genetic polymorphism at the NAT2 gene locus encoding for polymorphic NAT2 results in individuals with rapid, intermediate, or slow acetylator phenotypes (Sim et al., 2008a). NAT1, which also metabolizes a variety of arylamines including p-amino benzoic acid but not isoniazid, is also polymorphic, although the clinical effect of NAT1 polymorphism is less well defined compared with NAT2 polymorphisms. NAT polymorphism leads to different rates of inactivation of drugs, such as isoniazid, hydralazine, and sulfonamides, which undergo NAT-mediated metabolism.

NAT1 and NAT2 have distinct substrate specificities (Wu et al., 2007): NAT2 acetylates hydralazine, isoniazid, and sulfamethazine, whereas human NAT1 acetylates sulfamethoxazole, p-aminosaliclylate, and p-aminobenzoylglutamate (folate catabolite). Human NAT2 is mainly in the liver and gut, whereas human NAT1 is expressed in many tissues (Windmill et al., 2000). Caffeic acid (Tables 2–5), ferulic acid, and gallic acid have been shown to selectively inhibit NAT1, whereas scopuletin and curcumin (Tables 2–5) have been shown to selectively inhibit NAT2 (Kukongviriyapan et al., 2006).

Once involvement of NAT1 or NAT2 is confirmed using recombinant NAT1 or NAT2, the relative contribution of NAT1 or NAT2 may be assessed in human hepatocytes, using selective chemical inhibitors, as outlined in Fig. 7. A RAF-type approach, using NAT1 or NAT2 probe substrates in commercially available NAT1 and NAT2 (fortified with cofactors acetyl-CoA and an acetyl-CoA regenerating system composed of acetyl-dl-carnitine and carnitine acetyltransferase) system can theoretically be scaled to total metabolism in human hepatocytes. However, such scaling approaches are not well established and should be interpreted with caution.

Because only a few drugs have N-acetylation as the major metabolic clearance pathway, documented incidences of NAT-mediated DDI are rare. However, potential inhibitions of NAT activity were reported by gypenosides, cisplatin, and nitrosoarene metabolites of carcinogenic arylamines (Chiu et al., 2004; Ragunathan et al., 2008; Liu et al., 2008). When NAT is identified to be the primary enzyme responsible for the metabolic clearance of a NME, it is advisable to assess the contributions of the NAT and isoforms using currently available tools.

Determining Relative Role of Carboxylesterase CES1 and CES2

Carboxylesterase (CES) enzymes are serine esterases responsible for the hydrolysis of esters, amides, thioesters, and carbamates (Laizador et al., 2013). In humans, the two major carboxylesterases known are human carboxylesterase-1 and human carboxylesterase-2. CES1 is primarily expressed in the liver, where it plays an important role in the metabolism of many prescribed medications including clopidogrel (Kazui et al., 2010; Hagihara et al., 2009) and methylphenidate (Nemoda et al., 2009). CES2 is present predominantly in the intestine, where it has been shown to hydrolyze anticanic prodrugs gemcitabine (Pratt et al., 2013), capcetabine (Ribelles et al., 2008), and irinotecan. (Humrichhouse et al., 2000).

During in vitro assessment if NADPH-independent metabolism is observed with a NME exhibiting an ester or amide linkage, metabolism using rhCES1 and rhCES2 (commercially available) should be investigated. If no metabolism is observed in the recombinant CES, the probability of CES involvement is low and no further evaluation is warranted. If NME metabolism is observed in the recombinant CES system, further assessment can be conducted using subcellular fractions, e.g., human liver (CES1 enriched, low CES2 levels) and intestinal (CES2 only) microsomal and/or S9 systems, in combination with specific substrates and inhibitors listed in Tables 2–5, to evaluate the relative contribution of CES to overall clearance (Zhu et al., 2009; Ross et al., 2012; Nishimuta et al., 2014; Shimizu et al., 2014). There are no known CES-mediated metabolic DDI reported, making this enzyme class as a potentially low risk for causing metabolic DDIs.

Special Considerations: Low Turnover, Extrahepatic Metabolism, Inhibition of Parallel Metabolic Pathways

Approaches for the Determination of Metabolic Pathways for Low Clearance Compounds. The determination of fractional metabolized in subcellular systems or in recombinant enzymes by metabolite formation kinetics or substrate depletion approaches may become problematic for compounds that exhibit very low intrinsic clearance. An example is ertugliflozin (PF-04971729), a selective inhibitor of the sodium-dependent glucose cotransporter 2. Reaction phenotyping studies indicated that both P450 (CYP3A4/3A5) and non-P450 pathways (UGT1A9 and UGT2B7) are involved in the metabolism of this compound (Kalgekar et al., 2011). However, quantitative assignment of each of these pathways was not feasible because of low in vitro turnover in hepatic microsomes and hepatocytes. Subsequent to the in vitro evaluation, human [14C]-ADME study using [14C]-ertugliflozin showed that UGT was the major metabolic pathway, whereas P450 metabolism was minor (Miao et al., 2013). In general, upon understanding the total picture of metabolism from the [14C]-ADME study, quantitative in vitro delineation of the enzymes responsible for metabolic clearance can be done by measuring the rates of metabolite formation using HPLC-MS with authentic metabolite standards. Recently, approaches including the hepatocyte relay method (Di et al., 2013) and coculture models, such as HepatoPac or Hurel (Chan et al., 2013), have been evaluated and have shown promising results to better determine Clint via increasing the amount of substrate depletion or metabolite formation. Although these systems have gained considerable popularity in generating metabolites and determining intrinsic clearance of very low clearance compounds, the use of these models for phenotyping studies is under development (Yang et al., 2016).

With radiolabeled NME, when metabolites generated during a microsomal incubation under linear kinetics are too low in quantity to be quantified accurately by a radioactivity detector, a more sensitive LC/MS/MS method may provide an alternative for quantification. In early development when synthesized metabolite standards are usually not available, a radioactive calibration approach (Yu et al., 2007; Yi and Luffer-Atlas, 2010) can be applied. In this approach, bioreactors (concentrated pool of enzymes) can be used to generate a sufficient amount of metabolites. Metabolites generated via this method usually follow nonlinear kinetics. Also, because in the majority of the cases metabolites are formed under supraphysiologic NME concentrations, they may not reflect the high-affinity low-capacity pathway predominant in vivo. The samples can be injected in parallel into a radioactivity detector / LC/MS/MS system to determine the ratio of radioactive disintegrations per minute and LC/MS/MS peak area for each metabolite, and a calibration ratio can then be calculated for each metabolite, as:

\[
\text{Metabolite} \times \text{(DPM)} = \frac{\text{LC/MS/MSPeak area from kinetic incubation}}{\text{DPM/peak area ratio from the bio-reactor incubation}}
\]

Further calculation can be applied to obtain the absolute concentration of a metabolite of interest by using parent drug as an additional calibration...
very sensitive to inaccuracies in estimating the FG,inhibited/FG ratio. Because FG is not a commonly measured parameter in clinic it is strongly recommended to understand the impact of uncertainty of FG,inhibited/FG for prediction of a DDI magnitude of CYP3A4 victim drugs have highlighted the need to accurately estimate extracted victim drugs whose FG substantially inhibited by Curcumin* and incorporate FG,inhibited/FG ratio for prediction of a DDI magnitude of CYP3A4-mediated victim DDIs. For such drugs that undergo substantial metabolism of an NME.

Impact of Simultaneous Inhibition of Parallel Metabolic Pathways/Enzymes

It is generally desirable for a NME to have multiple metabolic pathways of clearance so when one pathway is inhibited the impact on its exposure change is not drastic. However, investigators should appreciate cases where parallel metabolic pathways of a victim NME are simultaneously inhibited (Ogilvie and Parkinson, 2014). This can potentially occur because of simultaneous loss of activity of multiple DMEs involved in the parallel metabolic pathways of the victim DME or DME and transporters, via any combination of factors such as genetic polymorphism, chemical inhibition, and disease state. The result is a dramatic change in exposure of a victim NME. Several victim DDI examples are well documented, including those of propranol (genetic polymorphism, chemical inhibition); omeprazole, lansoprazole (genetic polymorphism + disease state); simvastatin, atorvastatin, verapamil, and nifedipine, where inhibition of intestinal CYP3A4 may significantly contribute to the overall magnitude of a DDI. Analysis and comparison of observed and estimated ratio change of fraction extracted in gut (FG) for CYP3A4 victim drugs have highlighted the need to accurately estimate and incorporate FG,inhibited/FG ratio for prediction of a DDI magnitude of a victim drug (Galetin et al., 2007, 2008), in particular for highly variable and inter-individual variability in CYP3A4 activity.

Extrahaepatic Extraction

Several P450 and non-P450 enzymes discussed above are expressed in intestine and kidney in addition to liver, which is recognized to be the major metabolizing organ. So for refined assessments of victim DDI interactions, primary site of metabolism needs a case by case consideration since the major DMEs involved have been identified. Intestinal CYP3A4-mediated metabolism has been implicated to be major contributor of the overall first-pass metabolism of a number of CYP3A4 substrates, such as cyclosporine, tacrolimus, midazolam, felodipine, simvastatin, atorvastatin, verapamil, and nifedipine, where inhibition of intestinal CYP3A4 may significantly contribute to the overall magnitude of a DDI. Analysis and comparison of observed and estimated ratio change of fraction extracted in gut (FG) for CYP3A4 victim drugs have highlighted the need to accurately estimate and incorporate FG,inhibited/FG ratio for prediction of a DDI magnitude of a victim drug (Galetin et al., 2007, 2008), in particular for highly variable and inter-individual variability in CYP3A4 activity.

Extrahepatic Extraction

Several P450 and non-P450 enzymes discussed above are expressed in intestine and kidney in addition to liver, which is recognized to be the major metabolizing organ. So for refined assessments of victim DDI interactions, primary site of metabolism needs a case by case consideration since the major DMEs involved have been identified. Intestinal CYP3A4-mediated metabolism has been implicated to be major contributor of the overall first-pass metabolism of a number of CYP3A4 substrates, such as cyclosporine, tacrolimus, midazolam, felodipine, simvastatin, atorvastatin, verapamil, and nifedipine, where inhibition of intestinal CYP3A4 may significantly contribute to the overall magnitude of a DDI. Analysis and comparison of observed and estimated ratio change of fraction extracted in gut (FG) for CYP3A4 victim drugs have highlighted the need to accurately estimate and incorporate FG,inhibited/FG ratio for prediction of a DDI magnitude of a victim drug (Galetin et al., 2007, 2008), in particular for highly variable and inter-individual variability in CYP3A4 activity.

Impact of Simultaneous Inhibition of Parallel Metabolic Pathways/Enzymes

It is generally desirable for a NME to have multiple metabolic pathways of clearance so when one pathway is inhibited the impact on its exposure change is not drastic. However, investigators should appreciate cases where parallel metabolic pathways of a victim NME are simultaneously inhibited (Ogilvie and Parkinson, 2014). This can potentially occur because of simultaneous loss of activity of multiple DMEs involved in the parallel metabolic pathways of the victim DME or DME and transporters, via any combination of factors such as genetic polymorphism, chemical inhibition, and disease state. The result is a dramatic change in exposure of a victim NME. Several victim DDI examples are well documented, including those of propranol (genetic polymorphism); omeprazole, lansoprazole (genetic polymorphism + P450 inhibitor); telithromycin (disease state + P450 inhibitor); and ramelteon (multi-P450 inhibitor) (Obach and Ryder, 2010). Investigators are encouraged to read some excellent publications for detailed understanding of the complex nature of such victim DDIs (Ito et al., 2005; Isoherranen et al., 2012; Ogilvie and Parkinson, 2014) and consider this on a case by case basis during NME development, as also recommended in regulatory guidances (http://www.ema.europa.eu/docs/en_GB/document_library/Scientificguideline/2012/07/WC500129606.pdf; http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf).

Current Status for Phenotyping of P450 and Non-P450 Enzymes

Substantial research over the past several years to mitigate P450-mediated victim DDI in the clinic has enhanced our ability to predict fm,CYP of NMEs with high confidence, using commonly used methods of RAF/ISF and use of P450-specific chemical inhibitors. Several of these examples have been summarized in literature publications (Yu et al., 2008; Lu et al., 2008) and in recent regulatory submissions as in the case of ibrutinib (http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm432240.html). Substantial higher incidence of P450-mediated compared with non-P450-mediated DDI cases in the clinic has allowed scientists to assess the IVIVC of the observed P450-mediated victim DDIs and therefore to gain better confidence in the currently available in vitro tools, such as scaling methods, recombinant enzymes, probe substrates, and selective chemical inhibitors of P450s. The knowledge gained from the P450s has been applied to other non-P450 enzymes, which has led to tremendous growth in the understanding of such victim DDIs (Ito et al., 2005; Isoherranen et al., 2012; Ogilvie and Parkinson, 2014) and consider this on a case by case basis during NME development, as also recommended in regulatory guidances (http://www.ema.europa.eu/docs/en_GB/document_library/Scientificguideline/2012/07/WC500129606.pdf; http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf).

Impact of Simultaneous Inhibition of Parallel Metabolic Pathways/Enzymes

It is generally desirable for a NME to have multiple metabolic pathways of clearance so when one pathway is inhibited the impact on its exposure change is not drastic. However, investigators should appreciate cases where parallel metabolic pathways of a victim NME are simultaneously inhibited (Ogilvie and Parkinson, 2014). This can potentially occur because of simultaneous loss of activity of multiple DMEs involved in the parallel metabolic pathways of the victim DME or DME and transporters, via any combination of factors such as genetic polymorphism, chemical inhibition, and disease state. The result is a dramatic change in exposure of a victim NME. Several victim DDI examples are well documented, including those of propranol (genetic polymorphism); omeprazole, lansoprazole (genetic polymorphism + P450 inhibitor); telithromycin (disease state + P450 inhibitor); and ramelteon (multi-P450 inhibitor) (Obach and Ryder, 2010). Investigators are encouraged to read some excellent publications for detailed understanding of the complex nature of such victim DDIs (Ito et al., 2005; Isoherranen et al., 2012; Ogilvie and Parkinson, 2014) and consider this on a case by case basis during NME development, as also recommended in regulatory guidances (http://www.ema.europa.eu/docs/en_GB/document_library/Scientificguideline/2012/07/WC500129606.pdf; http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf).
emerge in coming years. Knowledge of fCLmetabolism as it grows with the progression of a potential drug candidate through various development stages is used in concert with the fCL data and allows better informed estimates of the overall victim DDI potential of a NME. The next section will discuss common approach how information gathered at various stages of drug development is used to estimate the contribution of metabolism to overall NME clearance.

Approaches to Determine Clearance Pathways

Regulatory guidances from FDA and EMA (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf; http://www.ema.europa.eu/docs/en_GB/document_library/Scientificguideline/2012/07/WC500129606.pdf) indicate that a clearance pathway, which constitutes ≥25% of the total clearance, is a reasonable starting point for further clinical assessment to mitigate a potential victim DDI risk. Additionally, this information may be used to assess the need for evaluating pharmacokinetics in special populations, such as hepatic and renal impairment or pediatrics depending on the expected patient population. It is important to have a conceptual understanding as to why we are interested in determining whether a clearance pathway is major or minor. Two fundamental questions aid in providing a basis: 1) what are the intrinsic (e.g., genetics, disease state, age) and extrinsic (e.g., coadministered drugs, herbal supplements, smoking, diet) factors that may influence the pharmacokinetics of a NME and 2) are these intrinsic or extrinsic factors likely to result in dose adjustment based on pharmacological response or safety issues? Once these factors have been considered, a development program with appropriate drug interaction studies and/or medication exclusions can be implemented. The process to understand the clearance pathways starts early in pre-FIH stages and is refined during the course of clinical development. Knowledge gained to better understand clearance pathways at various stages is summarized in this section.

Prediction from Preclinical Species and In vitro Systems—Learning from an In Vitro:In Vivo Correlation Approach (Pre-FIH)

Early qualitative assessment of clearance routes in human starts in preclinical stage via assessment of IVIVC in preclinical species. A typical IVIVC approach is outlined in Fig. 8. Assessments of the contribution of metabolism, renal, and biliary elimination (fCLmetabolism/renal/biliary) toward total NME clearance are commonly made in at least two preclinical species. Preclinical PK studies, conducted with unlabeled or radiolabeled NME using intact or bile duct-cannulated (BDC) animals can provide information as to the route(s) of clearance based on quantification of unchanged drug in urine, feces, and bile (in case of BDC). Assessment of fCLmetabolism quantitatively can be best done with the use of a radiolabeled NME. However, useful information can also be obtained from studies using unlabeled NMEs under careful considerations such as the potential lack of mass balance and the assumption that all unrecovered NME was metabolized (i.e., major route of clearance was via metabolism), which may not be correct.

The route of clearance derived from in vivo preclinical animal studies may be used to provide some qualitative insight into a NME’s route of clearance in humans. Experience among different pharmaceutical companies suggests that if the NME is predominantly metabolized in animals and there is a good IVIVC in multiple preclinical species, metabolism is likely the major clearance pathway in humans. Similarly, if a NME is primarily cleared unchanged renally in animals, a substantial

TABLE 6

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Recombinant Enzyme</th>
<th>Probe metabolic pathway</th>
<th>Chemical Inhibitors</th>
<th>fCL Measurement(from in vitro studies)</th>
<th>Clinical Victim DDI Risk*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P450</td>
<td>Yes (various)</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Quantitative</td>
</tr>
<tr>
<td>FMO</td>
<td>Yes (1, 3, 5)</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Qualitative</td>
</tr>
<tr>
<td>AO/OX</td>
<td>Limited</td>
<td>Emerging*</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Low</td>
</tr>
<tr>
<td>MAO</td>
<td>Yes (A and B)</td>
<td>Emerging*</td>
<td>No</td>
<td>Yes*</td>
<td>Moderate (alloporinol-XO)</td>
</tr>
<tr>
<td>UGT</td>
<td>Yes (various)</td>
<td>Emerging*</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Moderate (morphine, zidovudine, lorazepam, mycophenolate motilol)</td>
</tr>
<tr>
<td>SULT</td>
<td>Yes (various)</td>
<td>Limited</td>
<td>Emerging*</td>
<td>Yes*</td>
<td>Qualitative</td>
</tr>
<tr>
<td>NAT</td>
<td>Yes (1 and 2)</td>
<td>No</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Low</td>
</tr>
<tr>
<td>GST</td>
<td>Yes (various)</td>
<td>No</td>
<td>Emerging*</td>
<td>Yes*</td>
<td>Moderate (isoniazid)</td>
</tr>
<tr>
<td>CES</td>
<td>Yes (1 and 2)</td>
<td>Yes*</td>
<td>Emerging*</td>
<td>Yes*</td>
<td>Qualitative</td>
</tr>
</tbody>
</table>

RAF, relative activity factor; ISEF, intersystem extrapolation factor; DDI, drug-drug interaction; P450, cytochrome P450; FMO, flavin-containing monoxygenase; AO/OX, aldehyde oxidase/xanthine oxidase; MAO, monoamine oxidase; UGT, uridine diphosphoglucuronosyltransferase; SULT, sulphotransferase; NAT, N-acetyltransferase; GST, glutathione S-transferase; CES, carboxylesterase.

*Qualitative Low

*Qualitative Moderate (isoniazid)

*Quantitative High (terfenadine, astemizole, cisapride)

*Quantitative Low

*Limited report -GSTA1, A2, M1, M2, M3, and P1 (Relative Contribution of Glutathione-S-Transferase).

*Limited report (Determining Relative Role of Carboxylesterase CES1 and CES2) (Table 1).
proportion of the NME may be expected to be cleared unchanged renally in humans. Thus insight into the qualitative involvement of metabolic or renal clearance in humans may be obtained based on results from multiple preclinical species.

Prediction of \(f_{\text{CL, renal}} \) in humans from preclinical species has been done with reasonable success when the NME is cleared via passive filtration (Paine et al., 2011), but knowledge is still emerging for NMEs cleared via active secretion and reabsorption. Because these latter processes usually involve transporters, interspecies differences can be expected and extrapolation from animals to humans may not be straightforward. Based on analysis of a large dataset of renally excreted compounds (Varma et al., 2009), physicochemical properties such as ionization state, lipophilicity, and polar descriptors have been proposed as important determinants of human renal clearance, taking into consideration both net reabsorption as well as net secretion. Such early assessments may be valuable in identifying compounds with potentially high \(f_{\text{CL, renal}} \) and aid to refine overall contribution of metabolism toward the clearance of the compound. The BDC rat is a routinely relied upon model for the prediction of biliary excretion in humans and to provide qualitative insight into hepatobiliary disposition in humans. However, because of significant species differences in the function, substrate specificity, and regulation of transporter proteins, it is difficult to directly extrapolate animal hepatobiliary data quantitatively to humans (Ishizuka et al., 1999; Wang and LeCluyse, 2003; Ghibellini et al., 2006; Swift et al., 2010). In vitro models have begun to emerge to characterize hepatobiliary elimination (Pfeifer et al., 2013) and predict the extent of biliary excretion of drugs in humans. Establishing IVIVC of biliary excretion in humans can be very distinct from that in animals. This is especially true when non-P450 metabolizing enzymes and transporters are involved in the disposition of a NME.

Learning from First-in-Human Studies

In early clinical development, information of metabolic clearance pathways is gained from metabolite profiling studies using plasma and urine samples routinely collected from the FIH single and/or multiple dose (SAD and/or MAD) studies. Innovative advances in high-efficiency sample preparation and response normalization-based bioanalytical techniques (\(^{14}\)C-calibrant approach, use of quantitative NMR; Yu et al., 2007; Vishwanathan et al., 2009; Ramanathan et al., 2010; Dear et al., 2011) have made it possible for investigators to gain reliable quantitative estimates of metabolic pathways in plasma and urine in the absence of authentic metabolite reference standards. Quantitation of unchanged drug in urine enables preliminary estimation of \(f_{\text{CL, renal}} \).

Assessment of metabolic clearance pathways in feces in cold FIH studies is not a common practice because of the lack of established quantitative methods to assess drug/metabolite recovery in cold fecal samples. It is therefore recommended to exercise caution for victim DDI risk assessments with estimates of metabolic clearance pathways in plasma and urine only, because the metabolism information based on these two matrices will be incomplete. A common and often erroneous assumption at this stage is that metabolites detected in plasma and urine truly represents all the major metabolic pathways of a NME. This assumption may hold in cases where a NME and its metabolites are predominantly cleared renally, where \(f_{\text{CL, metabolism}} \) and \(f_{\text{CL, renal}} \) may be obtained with reasonable confidence. However, elimination of unchanged NME and/or metabolites via biliary excretion into feces may also contribute substantially toward overall clearance, in which case
clearance pathway information derived from fecal samples will be an important determinant of \(f_{\text{CL,biliary}} \) and \(f_{\text{m}} \). Recent advances in clinical devices as Entero-Test (Guiney et al., 2011; Bloomer et al., 2013) have enabled direct assessment of drugs and metabolites excreted into the bile of humans. This method can be applied in early clinical development to provide quantitative information on the risk of interactions for drugs that are metabolized and eliminated in bile. Increased conduct of \(^{14}\)C-microtracer studies (trace \(^{14}\)C-NME administered as part of SAD and MAD studies), coupled with accelerator mass spectrometry (AMS) detection (Lappin and Stevens, 2008) have also enabled investigators to gain quantitative information of metabolic clearance pathways in circulation and in feces early in clinical development.

Information gathered from early metabolite profiling in FIH studies is valuable to get a first look into the major metabolic clearance pathways in plasma and urine and in certain cases bile (quantitative information when \(^{14}\)C-microtracer studies have been incorporated into FIH study designs or qualitative when techniques such as Entero-Test have been used). In addition, metabolite profiling in FIH studies can prove valuable in identifying primary metabolic pathway in vivo that may not have been previously identified in in vitro human models pre-FIH, although such cases are of low incidence. With certain caveats as discussed above, the overall learning from FIH study is helpful in refining victim DDI risk assessments made at pre-FIH stages.

Route of Clearance Determination in Human \(^{14}\)C-ADME Study

Human \(^{14}\)C-ADME study is deemed the gold standard in vivo study to quantitatively determine routes of clearance and metabolic pathways of a NME (ensuring good mass balance is observed), where unchanged drug and drug-derived metabolites are measured in plasma, urine, and feces. Data from the radiolabeled metabolite profiling in human are informative in the planning and design of definitive in vitro reaction phenotyping and clinical DDI studies required in support of a NME’s registration. When formation of secondary or tertiary metabolites is observed, it is assumed that the enzyme involved in the formation of the primary metabolite is of the most interest for DDIs (assuming a worst-case scenario). A caveat to consider in these studies is the difficulty sometimes in interpretation of clearance pathways in feces based on metabolite profiles observed in fecal samples. Gut microflora can potentially convert certain metabolites back to their parent (e.g., known for glucuronides and N-oxides). After an oral dose (dosing route for majority of drugs), unchanged NME detected in feces could be due to: 1) either unabsorbed drug or hepatically formed metabolites excreted in bile and further metabolized to parent drug by gut microflora, or 2) absorbed drug excreted unchanged in bile via liver, or 3) intestinal secretion of unchanged drug. Metabolites in feces, especially if observed at substantially higher levels in feces compared with lower/existing levels in circulation, may also indicate substantial metabolism via intestinal enzymes. Potential contribution of intestinal and hepatic metabolizing enzymes (and transporters) toward NME metabolism and excretion into feces versus unabsorbed drug component is important to understand for victim DDI risk evaluation.

Ideally the best estimate of \(f_{\text{CL,biliary}} \) can be made after intravenous dosing of a NME (radiolabeled or radiotracer) followed by determination of unchanged NME in in feces but intravenous \(^{14}\)C-ADME studies are not routinely done (approx 20% of \(^{14}\)C-ADME studies done across IQ companies were via intravenous route). Enhanced appreciation of information gathered from such studies has resulted in increased conduct of microtracer intravenous \(^{14}\)C-ADME in recent years with primary goals of providing better understanding absolute bioavailability/PK, mass balance, and routes of clearance. It should be noted that intestinal secretion cannot be confidently determined even after an intravenous dose because of the fact that quantitative, uninterrupted bile collection from healthy humans is not possible.

Investigators need to comprehensively understand the contribution of metabolism toward the overall routes of clearance of a NME via careful quantitative evaluation of metabolite profiles in plasma, urine, and feces. Understanding the site of formation of primary metabolites (e.g., intestine, liver, or kidney) is crucial in evaluating metabolizing enzymes involved in the primary metabolic pathways and responsible for precipitation of metabolic victim DDI.

Incorporating robust in vitro \(f_{\text{m}} \) data and \(f_{\text{CL,metabolism}} \) information with appropriate modeling and simulation may also provide better confidence in prediction of victim DDI liability in the clinic. Modeling and simulation allows investigators to better assess dependence/sensitivity (i.e., the uncertainties in measurement of these parameters) of these key victim DDI parameters and their impact on clinical DDI timing and study design at different stages of drug development. The following section will briefly discuss various commonly used modeling approaches along with an explanation of their suitability in specific development phases based on available data and specific questions of interest.

Application of Modeling and Simulation Tools in Victim NME DDI Predictions

Over the past 10 years, modeling and simulation approaches have increasingly been evaluated for their utility in predicting the magnitude of DDIs, particularly those mediated by P450s, by pharmaceutical companies and regulatory agencies. Results from these evaluations have led to increased application of quantitative modeling and simulation approaches, which has been attributed to an improved understanding of the factors that affect prediction accuracy and led to increased confidence in DDI prediction. Pharmaceutical companies have used quantitative DDI predictions to impact decision making in drug development and support interactions with regulatory agencies. Regulatory agencies recognize the value of DDI prediction using modeling and simulation tools as highlighted by the recent FDA and EMA draft guidance documents (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf; http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf).

The most commonly used approaches for quantitative DDI prediction include static concentration predictions and dynamic concentration prediction by a more mechanistic physiologically based pharmacokinetic (PBPK) modeling approaches. Numerous methodologies based on both simplified and PBPK-based approaches have been well defined previously in the literature (Brown et al., 2006; Fahmi and Ripp, 2010; Peters et al., 2012). In all cases, model selection should be driven by specific development questions and the extent of data available at the time of model development. Briefly, available predictive models for victim DDI prediction can be generally organized into three categories: simple static, mechanistic static, and mechanistic dynamic models (Supplemental Table 38).

Simple Static Models

Static models are based on a single static perpetrator concentration. In the most simplified versions, \(f_{\text{nCop}} \) for victim drug is assumed to be 100% (worst case scenario). Numerous reference concentrations for perpetrator (total or unbound) have been proposed previously (Ito et al., 2004; Obach et al., 2007). Generally for the perpetrator, the total average concentration at steady state, maximum concentration at steady state, or hepatic inlet concentration are recommended and used to predict victim drug interactions in the liver using the static model (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf).
Therefore, this approach often leads to overpredictions of victim DDIs (Ito et al., 2003). The static model can be a useful tool for early DDI risk assessment when supporting data are limited (e.g., during early discovery phase).

Mechanistic Static Models

Mechanistic static models incorporate more victim drug information, such as estimated fm,CYP and impact of the DDI on both hepatic and gut metabolism (Obach et al., 2006) or the integrated impact of competitive or mechanism-based inhibition and induction (Fahimi et al., 2008). The mechanistic static model is often applied once in vivo victim drug data are available, although this is not required (Table 7, example 6).

Mechanistic Dynamic Models

Mechanistic dynamic models including physiologically-based pharmacokinetic (PBPK) simulations incorporate the time-dependent change of both perpetrator and victim drug concentrations over the time course of the DDI. Therefore, this approach permits investigation of nonlinear kinetics and time-dependent phenomena, which include drug accumulation, additional impact due to the formation of inhibitory metabolite(s), and effect of dosing regimen. Commercial software packages are available that allow incorporation of literature data on human physiology, changes in special populations and disease states, and drug effects on physiologic rates [e.g., Simcyp (Certara), Phoenix (Certara), GastroPlus (Simulations Plus), PKSim (Bayer)]. PBPK modeling requires the greatest degree of parameterization based on both in vitro and in vivo data. Key victim drug parameters required for PBPK model development include volume of distribution (Vdss) and clearance (CL) (Supplemental Table 4S). Although PBPK approaches may be applied at the stage of discovery or development, it is most powerful in later stages when more data become available.

Model Application: “When and What”

Model selection must always be issue driven and based on particular development stage and available data. During early clinical development (i.e., clinical candidate selection), predictions are primarily used to improve mechanistic understanding and support internal decision making. At this stage the understanding of victim drug disposition is mainly based on preclinical and/or in vitro data, which are generally limited. Applications of modeling at this stage include support of prediction of clinical DDI risk, DDI study design, and victim drug dose selection (especially critical for a victim drug that has narrow safety window). In these situations a simplified model may be more suitable. In situations where more definitive in vitro ADME data and Phase I clinical PK data are available, PBPK simulation is applied. Retrospective model simulation of in vivo data can be used to estimate fm,CYP and the impact of alternative trial design on outcomes. In later stages of development when data from human mass-balance and DDI studies with a specific inhibitors (e.g., iraconazole for the inhibition of CYP3A4 for drugs metabolized by this enzymatic pathway) become available, the model is further refined and used for simulation of victim DDIs with other inhibitor(s) or inducer(s) of the same pathway, or inhibitors of a minor metabolic pathway, victim drug PK in special populations (e.g., hepatic or renal impaired), dose selection, influence labeling, or justifying of waivers for additional DDI studies.

Building Confidence in Model Predictions

Several approaches have been developed to build confidence in and ensure mechanistic relevance of the simulation results, which will lead to increased impact of modeling and simulation efforts. These approaches include verification of assumptions, sensitivity analysis, and assessment of variability. The level of model verification or validation will depend upon the stage of development and its impact on critical decision making.

Verification of Assumptions. Although many model parameters may be experimentally determined, assumptions must often be made about the translatability of in vitro data to in vivo DDI. Assumptions must always be evaluated, particularly in scenarios when complicated disposition mechanisms are expected. Investigation of assumptions to which the model is particularly sensitive may help explain disconnects between in vitro data and in vivo DDI (e.g., complex DDI, poor IVIVE, lack of quantitative prediction of non-P450 and transporter pathways, nonlinear PK, inhibitory metabolites, altered PK in disease state).

Sensitivity Analysis. Sensitivity analysis is often employed to assess the mechanistic relevance of the model and to identify gaps in current mechanistic understanding. In this approach model, parameters that have the greatest impact on the simulation output are identified as requiring increased scrutiny. Sensitivity analyses can lead to the design and execution of additional supporting in vitro or in vivo studies. For victim drug characterization, fm,CYP will be especially important, and sensitivity analysis on this parameter is strongly recommended. Consideration of FG values is important in DDI risk assessments. FG values are usually not determined but predicted via various available gut models incorporated in commercial software such as Gastroplus and Simcyp. The Q gut model (Yang et al., 2007) is a simple and more commonly used model where the parameter fm,gut (fraction unbound in gut) is one of the key determinants of FG. Because fm,gut cannot be experimentally measured in vitro or in vivo, sensitivity analysis of estimated fm,gut on exposure change of a victim drug is often assessed and is strongly recommended. The sensitivity analysis may inform the impact of variability of these parameters on predicted victim DDI with different perpetrators.

Assessment of Variability. Variability in both observed and simulated data are required to ensure the relevance of model outputs. An essential component of model verification is a comparison of simulated and observed variability around pharmacokinetic parameters of interest. Variability associated with fm,CYP of a victim drug could result in higher predicted PK and DDI variability between individuals, especially in the case of DDI prediction. Sources of variability include intersubject differences in relative P450 abundance and, in the case of some isoforms, polymorphic gene expression.

Case Examples. The utility of modeling and simulation in victim DDI prediction is best illustrated through the presentation of case examples that highlight approaches used at various phases of drug development. Several case examples have been summarized (Table 7) to illustrate some of the questions typically addressed by modeling in the course of drug development. A typical case example has been described in greater detail to demonstrate how to use and optimize predictive models. The data required to support model development, appropriate assumptions, and the manner in which these are combined to impact development programs are also discussed.

Example 1: What is the DDI Risk for a Compound that is Predominantly Metabolized by CYP3A4 in Vitro? An early development compound was found to be predominately metabolized by CYP3A4 in vitro. Based on preliminary preclinical metabolite identification, a significant contribution of non-P450 (phase 2) metabolism was suspected. This compound was highly cleared both in vitro and in preclinical animal models. Before initiation of modeling, additional data were requested, including in vitro phase 2 metabolism, in vitro permeability, human mass-balance information (fraction absorbed, elimination pathways), and in vitro phenotyping in human liver
TABLE 7
Case examples illustrating the predictive utility of modeling and simulation approaches

<table>
<thead>
<tr>
<th>Development Stage & Question</th>
<th>Data Available</th>
<th>Modeling Approach</th>
<th>Outcome and impact comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound-1 Clinical development.</td>
<td>• In vitro metabolic phenotyping • Human mass balance</td>
<td>• PBPK model</td>
<td>• Refined mechanistic understanding of disposition • Supported improved clinical study design for subsequent studies Shardlow et al., 2013</td>
</tr>
<tr>
<td>Can PBPK modeling inform the optimal ketoconazole drug interaction study design for a drug with an extended t1/2?</td>
<td>• Phase I human PK • DDI study with ketoconazole</td>
<td>• Fm, ka, and Vdss, based on in vivo data • Retrospective simulation of Comp-1 – ketoconazole DDI was used to build confidence in the model • Simulations were used to compare alternative dosing regimens</td>
<td></td>
</tr>
<tr>
<td>Compound-2 Clinical development.</td>
<td>• Metabolism in recombinant system</td>
<td>• PBPK</td>
<td>• Provided high confidence in ability of model to accurately predict DDI with potent CYP3A4 inducers In-house example. J & J (Janssen R&D in-house example)</td>
</tr>
<tr>
<td>What is the DDI risk for compound that is predominantly metabolized by CYP3A4 in vitro?</td>
<td>• In vitro metabolic phenotyping</td>
<td>• CL based on IVIVE and in vitro phenotyping</td>
<td></td>
</tr>
<tr>
<td>Compound-3 Discovery to early development</td>
<td>• Metabolism in human hepatocytes • Human mass balance • DDI study with ketoconazole</td>
<td>• Static model</td>
<td>• Allowed DDI prediction when PBPK model and extensive in vitro and in vivo data were not available Lu et al., 2007, 2010</td>
</tr>
<tr>
<td>Can DDI of CYP3A victim drug with strong and moderate CYP3A inhibitor be predicted using in vitro data and static model?</td>
<td>• Reaction phenotyping</td>
<td>• Measured in vitro fACYP and fMCYP linked to represent the factor of (1/(1+ I/Ki))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• P450 activity remaining (fACYP) in the presence of ketoconazole or fluconazole (human hepatocyte suspended in human plasma)</td>
<td>• fACYP corrected by comparing extracellular inhibitor concentration (determined in vitro) with in vivo Cmax • Calculated steady-state DDIs compared with clinical observations</td>
<td></td>
</tr>
<tr>
<td>Compound-4 Clinical development</td>
<td>• Metabolic phenotyping (HLM)</td>
<td>• PBPK model</td>
<td>• Improved mechanistic understanding of the observed DDIs • Suggested previously unexpected role of efflux transport in fraction absorbed—which was subsequently verified by an in vitro study In-house example. J & J (Janssen R&D in-house example)</td>
</tr>
<tr>
<td>What is the risk of DDI for a compound primarily metabolized by CYP3A4 in vitro? Can PBPK model explain the observed clinical data and make predictions of the outcome of novel scenarios (DDI and pediatrics)?</td>
<td>• Rat QWBA</td>
<td>• CL based on in vivo CLint and retrograde extrapolation of in vivo CLint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Human mass balance study data available • Phase I human PK • DDI studies (with three inhibitors)</td>
<td>• Predicted Vss consistent with intravenous dose data and rat QWBA • Model was verified using observed clinical PK data from single, multiple-dose and three clinical DDI studies</td>
<td>• Supported design of clinical pediatric study</td>
</tr>
</tbody>
</table>
micromeres. Using both in vitro and in vivo data, a PBPK model was
developed to predict the DDI risk. The PBPK model incorporated a
mechanistic absorption model and tissue distribution based on physio-
chemical data. Compound elimination was linked to enzyme abun-
dance and based on in vitro intrinsic clearance measured in human
hepatocytes and fm,CYP3A4 predicted from in vitro phenotyping in human
dance and based on in vitro intrinsic clearance measured in human
chemistry data. Compound elimination was linked to enzyme abun-
dance and fm,CYP3A4 predicted from in vitro phenotyping in human

<table>
<thead>
<tr>
<th>Development Stage & Question</th>
<th>Data Available</th>
<th>Modeling Approach</th>
<th>Outcome and impact</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound - 5
What is the DDI effect of ketoconazole and rifampin on comp-4 after a single dose and at steady state, respectively, in clinical trials?</td>
<td>• In vitro metabolism (HLM and hepatocytes)
• In vitro phenotyping (HLM and rhCYP)</td>
<td>• PBPK model
• CL based on clinical data</td>
<td>• Guided selection of single-dose over proposed multiple-dose study to maximize DDI potential</td>
<td>Novartis in-house example</td>
</tr>
<tr>
<td>Compound - 6
Before FIH
Should PMs of CYP2C9 be excluded from FIH trials?</td>
<td>• In vitro metabolism (HLM and hepatocytes—across species)
• In vitro phenotyping (HLM and rhCYP)
• rhCYP2C9*1, *2, *3 kinetics
• Rat ADME data</td>
<td>• PBPK model
• CL based on rhCYP2C9*1, *2, *3 kinetic data
• Rat ADME data</td>
<td>• Exclusion of CYP2C9*3 genotype in FIH trials due to safety risk for the compound in this population</td>
<td>Novartis in-house example</td>
</tr>
</tbody>
</table>

Historically, ketoconazole was preferred as a clinically administered potent inhibitor of CYP3A4. However, a recent FDA memo FDA Drug Safety Communication: FDA limits usage of Nizoral (ketoconazole) oral tablets because of potentially fatal liver injury and risk of drug interactions and adrenal gland problems. http://www.fda.gov/Drugs/DrugSafety/ucm362415.htm and industry white paper (PMID: 26044116) have proposed that alternative inhibitors be administered in clinical DDI studies.

Recommended Strategy in Modeling and Simulation

Modeling and simulation is a valuable tool in predicting victim DDI throughout every stage of drug development. In each stage, fit-for-purpose strategies should be based on the issue to be addressed. During early development stages, modeling and simulation will support internal decision making by leveraging mechanistic understanding when only preclinical and in vitro data are available. When data are limited, a more simplified modeling approach is advised. At later stages, modeling aids study design, dose selection, labeling, and justification of delay/waiver of clinical victim DDI studies. As more data become available more complex models may be developed. For initial metabolic victim DDI risk assessments, a qualitative understanding of contribution of metabolism toward overall clearance of a NME (fCL,metabolism) and fractional contribution of a DME toward overall metabolism (fm) is necessary. Typically some human PK data (after single dose with reasonable expectation of linear PK or after multiple dose if not) will be necessary for more quantitative prediction of in vivo victim DDI.

PBPK modeling requires the greatest amount of data. However, a PBPK approach allows the greatest potential for “what-if” scenario analysis and simulations leading to improved mechanistic understanding. Specifically, PBPK-based predictions allow analyses of how fm,CYP characterization may impact victim DDI prediction. This information may then be used to inform exclusion criteria (i.e., if a polymorphic enzyme involved), victim drug dose selection, sampling schedule, and optimal chemical inhibitor.

Sensitivity analysis is strongly recommended in all situations but especially when data are incomplete or uncertain (Zhao et al., 2012; Jones et al., 2015). This assessment can help identify to what extent the model can tolerate uncertainty and the range of uncertainties, as well as indicate additional experimental data to be generated and/or confirmed. For victim drug DDI prediction, the fraction metabolized (fm) and fraction escaping first-pass metabolism in the gut (FG) are common parameters that need to be considered for sensitivity analysis. The worst case scenario from sensitivity analysis may be included in the risk assessment. It is essential that confidence and acceptance/cut-off criteria be well defined at the beginning of model development to ensure a well-established metric for comparing model performance.

General Perspectives and Strategic Recommendations

Because metabolism remains to be the predominant clearance pathway for the majority of small molecule drugs, it is important to accurately evaluate the metabolic victim DDI liability of a NME. Two key determinants of a metabolic victim DDI magnitude are fCL,metabolism and fm where high values of fCL,metabolism × fm can have a drastic effect on a victim NME exposure, resulting in undesirable clinical outcomes. In the majority of the cases a good understanding of fCL,metabolism and fm may be obtained from quantitative human ADME and DDI studies, respectively. The determination of the routes of clearance, including fCL,metabolism• is usually conducted in the 14C-radiolabeled human ADME study, whereas the determination of fm is usually conducted in
At early stages when no human data are available, reliance is made on the knowledge gained in preclinical models and in vitro systems to get preliminary estimates of \(f_{CL,\text{metabolism}} \) and \(f_m \). Assessments are made to understand whether a NME is cleared primarily by metabolism or excretion in animals, because it has been commonly observed that if a NME is primarily cleared by metabolism in animals or renally via passive filtration, it follows a similar qualitative trend in humans. In parallel, establishment of IVIVC of metabolic pathways in multiple preclinical species also gives researchers confidence in predicting metabolic pathways in humans from in vitro metabolism studies conducted with human-derived matrices. Metabolism studies in in vitro human-derived systems (usually HLM and/or hepatocytes) are conducted to understand the primary metabolic pathways as well as primary DMEs involved in these pathways.

TABLE 8

<table>
<thead>
<tr>
<th>Stage</th>
<th>Study Type</th>
<th>Information Gathered</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-FIH/Preclinical Development</td>
<td>• Preclinical Species PK/ADME (in vivo)</td>
<td>• NME cleared via metabolism or excretion in animals</td>
<td>Pros:</td>
<td>• Confidence from IVIVC in animals</td>
</tr>
<tr>
<td></td>
<td>• Preclinical Species Cl_int + metabolite profiling (in vitro)</td>
<td>• Major metabolic pathways in animals</td>
<td>Cons:</td>
<td>• Human routes of metabolism maybe quite different from animals</td>
</tr>
<tr>
<td></td>
<td>• Human Cl_int + metabolite profiling (in vitro)</td>
<td>• Metabolic pathway in vitro similar to that in vivo in animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• P450 and other DME identification (in vitro human matrices)</td>
<td>• Major metabolic pathways in humans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Detailed reaction phenotyping (in vitro)</td>
<td>• Relative contribution of oxidation versus Conjugation</td>
<td>Pros:</td>
<td>• Preliminary estimates of P450-mediated DDI risk</td>
</tr>
<tr>
<td></td>
<td>• Metabolite profiling in plasma and urine in human usually available; in certain cases in bile (Entero-Test)</td>
<td>• Relative contribution of P450 enzymes</td>
<td>Cons:</td>
<td>• In vitro pathways may not be major pathways in vivo</td>
</tr>
<tr>
<td></td>
<td>• First look into major metabolic pathways in humans (commonly in plasma and urine; sometimes in bile)</td>
<td>• Metabolism involve single or multiple enzymes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Crude estimate of (f_{CL,\text{renal}}) (if NME substantially cleared renally); quantitative metabolite information in plasma and urine in certain cases (e.g., with quantitative NMR)</td>
<td>• (f_m) of P450 or other major enzyme involved (in vitro)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PK linearity (understand saturable processes)</td>
<td>• First look in humans — are metabolic pathways similar in vivo versus in vitro? Any human unique pathway not captured in vitro</td>
<td>Cons:</td>
<td></td>
</tr>
<tr>
<td>Definitive Human Studies</td>
<td>Human radiolabel ADME study</td>
<td>• Route of CL in humans ((f_{CL}))</td>
<td>Pros:</td>
<td>• Usually metabolite monitoring in in vitro phenotyping studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quantitative metabolite profiling</td>
<td>Cons:</td>
<td>• First look in humans — are metabolic pathways similar in vivo versus in vitro? Any human unique pathway not captured in vitro</td>
</tr>
<tr>
<td></td>
<td>DDI with potent and selective enzyme inhibitor</td>
<td>• Contribution of a DME toward overall NME metabolic clearance ((f_m)) (assumption that inhibitor completely inhibits only enzyme of interest and for orally administered drugs, maximal intestinal inhibition is achieved)</td>
<td>Pros:</td>
<td>• All qualitative estimates; quantitative estimate in plasma and urine possible if using quantitative NMR which allows minimum estimate of (f_m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Metabolites determined in feces</td>
<td>Cons:</td>
<td>• Missing metabolites info in feces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{CL,\text{renal}} + f_{CL,\text{biliary}}) quantitatively determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Metabolites determined in feces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Learn if (f_{CL}) pathways predicted earlier is consistent with observed human (f_{CL}) pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_{CL,\text{biliary}}) challenging after oral dose when substantial unchanged NME in feces</td>
<td>Cons:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In case of poor mass balance (f_{CL}) pathways still not well defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PK in genotyped population</td>
<td>• Contribution of a polymorphic drug metabolizing enzyme toward overall NME metabolic clearance ((f_m)) (assumption that in null phenotype (PM), polymorphic enzyme pathway is completely absent)</td>
<td>Pros:</td>
<td>• Wide range of (f_m) values when variability of PK, which can have significant impact on DDI magnitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_m) quantitatively determined</td>
<td>Cons:</td>
<td>• Inaccurate (f_m) if residual activity of polymorphic enzyme in PM</td>
</tr>
</tbody>
</table>

TABLE 8 Continued

<table>
<thead>
<tr>
<th>Stage</th>
<th>Study Type</th>
<th>Information Gathered</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Contribution of a polymorphic drug metabolizing enzyme toward overall NME metabolic clearance ((f_m)) (assumption that in null phenotype (PM), polymorphic enzyme pathway is completely absent)</td>
<td>• Contribution of a polymorphic drug metabolizing enzyme toward overall NME metabolic clearance ((f_m)) (assumption that in null phenotype (PM), polymorphic enzyme pathway is completely absent)</td>
<td>Pros:</td>
<td>• Wide range of (f_m) values when variability of PK, which can have significant impact on DDI magnitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (f_m) quantitatively determined</td>
<td>Cons:</td>
<td>• Inaccurate (f_m) if residual activity of polymorphic enzyme in PM</td>
</tr>
</tbody>
</table>

FIH, first in human; **PK**, pharmacokinetics; **NME**, new molecular entity; **ADME**, absorption distribution metabolism excretion; **Cl_int**, intrinsic clearance; **CL**, clearance; **IVIVC**, in vitro-in vivo correlation; **P450**, cytochrome P450; **DDI**, drug-drug interactions; **\(f_{CL} \)**, fraction of clearance; **\(f_m \)**, fraction metabolized; **NMR**, nuclear magnetic resonance; **PM**, poor metabolizer.
Complementing the \(f_{\text{CL,metabolism}} \) information obtained in animals with \(f_m \) assessments in in vitro human systems may provide an early estimate of the importance of metabolism and various metabolic clearance pathways (e.g., oxidative or conjugation, P450 versus non-P450-mediated DDI risk) in humans. This preliminary information, although qualitative, is informative for victim DDI risk assessment and setting of inclusion/exclusion criteria before first dose in humans, especially when the FIH studies are conducted in patients. During these pre-FIH assessments, researchers should be cognizant of the limitations of assumptions made at this stage, such as: 1) possibility of differences in \(f_{\text{CL,metabolism}} \) in humans compared with animals and 2) in vitro metabolic pathways in human-derived matrices may not be reflective of those in vivo. It is also not recommended to extrapolate animal metabolic pathways to predict quantitatively human metabolic pathways, because the extent of metabolism, metabolic enzymes, and pathways in humans have been observed to be very distinct from those in animals (Martignoni et al., 2006).

Confidence in in vitro determination of \(f_m \) of P450 and non-P450 DMEs has grown tremendously with the advancement of research in the area. In the majority of cases, researchers are able to accurately identify the enzyme family primarily involved in NME metabolism, although a quantitative measure of \(f_m \) for isoforms of several non-P450 DMEs is still absent, as summarized in Table 6. Primary reasons include a combination of factors such as the lack of specific probe substrates, selective chemical inhibitors, and knowledge of extrahepatic tissue abundance and activity for a majority of the non-P450 enzymes. However, considering the reported incidence and magnitude of clinical DDIs in recent years, the vast majority of which are P450 mediated, the inability to determine quantitatively \(f_m \) via non-P450 pathways may have lower impact. On the other hand, it is still crucial to be able to accurately identify the overall class of non-P450 enzyme family, because involvement of non-P450 enzymes suggests a lower risk of victim DDI potential via a P450-mediated pathway, i.e., reduces the victim DDI risk due to involvement of non-P450 enzymes. As more drugs that are primarily metabolized by non-P450 enzymes are developed, understanding the clinical risk of DDI due to these enzymes may also emerge.

Information gathered from metabolite profiling, routinely conducted in plasma and urine in FIH studies allows investigators to assess the presence of any human-specific routes of metabolism not previously identified in preclinical studies or in vitro human matrices. It is also possible to get qualitative information into metabolic pathways of orally administered drugs in bile with the use of recent techniques such as Entero-Test (Guiney et al., 2011; Bloomer et al., 2013), although this has not yet been widely adopted. Identification of human-specific metabolic pathways along with any saturable pathways (as indicated by nonlinear PK) guides further refinement of victim DDI potential at FIH stage. Because typically no mass balance is accounted for in FIH studies (fecal samples are typically not collected for analyses), assessment of metabolic pathways to overall NME clearance (\(f_{\text{CL,metabolism}} \times f_m \)) is still qualitative. Availability of advanced techniques such as quantitative NMR has made it possible to reliably obtain quantitative estimates of metabolic pathways in plasma and urine. In such cases it may possible to estimate minimum \(f_m \) from the assessment of metabolites in plasma and urine. Conduct of microtracer intravenous \(^{14}\text{C}-\text{ADME} \) has also risen in recent years, with the primary goal of obtaining more accurate insight into the absolute bioavailability/PK, mass balance, and routes of clearance earlier in clinical development.

Information from a definitive human \(^{14}\text{C}-\text{ADME} \) study is used to confirm and refine \(f_{\text{CL}} \) (and \(f_{\text{CL,metabolism}} \)) and metabolic pathway data derived from earlier in vitro and in vivo studies. Designated clinical DDI studies such as those with a potent P450 inhibitor or those conducted in genotyped population are valuable in further refining the contributions of P450 and non-P450 enzymes \((f_{m,CYP} \) and \(f_{m,non-CYP} \)). Information from these definitive human studies can then be incorporated into planning additional victim DDI trials and drug labeling of a NME. Uncertainties may be encountered even in these definitive studies, because of the following: 1) challenge in estimating \(f_{\text{CL,biliary}} \) when substantial unchanged NME is recovered in feces, 2) poor mass balance resulting in inability to estimate \(f_{\text{CL}} \) (and \(f_{\text{CL,metabolism}} \)) pathways, 3) wide range in \(f_m \) values in clinical victim DDI studies due to variability of PK of a victim NME in humans. Inaccurate or variable \(f_m \) may also result from PK studies conducted in genotyped population if a polymorphic enzyme has differential residual activity in poor metabolizers as opposed to the assumption of null phenotype. Case by case consideration of issues as high first pass intestinal extraction (\(\leq 50\% \) \(F_G \)) and inhibition of parallel metabolic pathways of the victim NME is recommended, because magnitude of DDI may be very sensitive to inaccuracies in estimating the \(F_{\text{G,bile}}/F_G \) ratio and parallel multiple metabolic pathways, respectively. It is crucial to understand the underlying reason, effect, and extent of variability on the magnitude of a victim drug’s DDI. Modeling and simulation can provide significant impact in terms of improving our understanding of inter- and intraindividual PK variability, supporting optimal victim DDI study design and leading hypothesis-testing exercises. When properly applied, modeling and simulation, coupled with relevant sensitivity analyses and model validation, help to build confidence to support the overall clinical strategy, including justification of delay or waiver of additional DDI studies.

A thorough understanding of the contribution of various metabolic pathways to overall drug clearance in humans allows investigators to make informed decisions for metabolism-based victim DDI risk assessment with the goal of ensuring the safety of healthy volunteers and/or patients throughout all stages of clinical development. Whether leveraging metabolism-based victim DDI predictions for internal decision making or impacting clinical DDI study planning and regulatory responses, factors such as: 1) whether a NME has a narrow therapeutic index that may compromise safety in either healthy volunteers or patient populations; 2) common comedication used by the population and whether the major clearance pathway of the NME can be substantially affected by such comedications; 3) whether a NME will be administered to special populations such as those with hepatic impairment, renal impairment, or pediatrics; and 4) experience with an earlier drug candidate of the same chemical series should be adequately considered.

Acknowledgments

The working group acknowledges valuable advice from Dr. Donald J. Tweedie and Dr. R. Scott Obach during manuscript preparation.

Authorship Contributions

Wrote or contributed to the writing of the manuscript: Bohnert, Patel, Templeton, Chen, Lu, Lai, Leung, Tse, Einolf, Wang, Sinz, Stearns, Walsky, Geng, Sudsakorn, Moore, He, Wahlstrom, Keirns, Narayanan, Lang, and Yang.

References

