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Abstract 

To probe possible substrate exit channel(s) in P450 2B1 and to clarify the role of residues 

previously identified by site-directed mutagenesis, a homology model was constructed based on 

the x-ray crystal structure of a P450 2B4-inhibitor complex. Testosterone was docked into the 

active site of P450 2B1 and was then pulled out through three putative channels using steered 

molecular dynamics simulations. The results indicated that of the three channels, the “solvent 

channel”, lined by helices E, F and I and the β3 hairpin, required the largest rupture force and 

backbone motion, which rendered it unlikely as an exit route. The relatively small rupture forces 

and backbone motions for the other two channels suggested them as possible candidates for 

testosterone passage. The opening of channel 1, located between helices G and I and the B'-C 

loop, is characterized by rotation of the aromatic ring of Phe297 together with a bending of the 

B'-C loop. The opening of channel 2, penetrating through the B'-C loop/ B' helix, is achieved by 

an expansion of this region and a small displacement of the backbone. Interestingly, during the 

egress of testosterone along channel 1, Phe297 and Phe108 appear to act as two clamps to 

stabilize testosterone binding and prevent it from leaving the active site. Phe115 acts as a 

gatekeeper for channel 2. These results are in agreement with previous site-directed mutagenesis 

experiments. 
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Introduction 

An intriguing question about cytochromes P450 is how substrates enter and leave the active 

site, which is deeply buried in the center of the P450 fold (Wade et al., 2004). This issue is 

important because experimental data indicate that the regio- and stereospecificities of P450s may 

be influenced not only by residues in the active site but also by residues far from the binding site 

(Domanski and Halpert, 2001). A few structures of bacterial P450s suggest several potential 

routes for substrate access to and exit from the active site. The structures of substrate-free P450 

102 (Ravichandran et al., 1993) and inhibitor-bound P450 101 (Raag et al., 1993) indicate a 

possible access channel located between the F-G loop and β1 sheet. This channel has also been 

suggested as a route for substrate/product egress in several other bacterial P450s (Wade et al., 

2004). A very different channel has been described in the structure of P450 51 (Podust et al., 

2001). This channel threads through the B-C loop and is almost perpendicular to the channel 

found in P450 102.  

To date, the structures of five mammalian P450s, including rabbit 2C5 (Williams et al., 2000) 

and 2B4 (Scott et al., 2003) and human 2C8 (Schoch et al., 2004), 2C9 (Williams et al., 2003) 

and 3A4 (Williams et al., 2004; Yano et al., 2004), have been determined. Most of these 

structures adopt a closed conformation, in which no obvious channels are present for substrate 

entry or product egress. Thus, an intriguing problem arises: which parts open up to allow 

substrate/product passage in the closed form? Specific P450 regions have been shown to alter 

their conformation in response to ligand. The most dramatic differences in protein conformation 

are observed for 2B4.  The substrate-free structure (Scott et al., 2003) reveals a large open cleft 
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that extends from the protein surface directly to the heme iron, while an inhibitor-bound structure 

(Scott et al., 2004b) adopts a closed conformation similar to that observed in the mammalian 2C 

enzymes. The differences between the open and closed structures of 2B4 are primarily limited to 

helices F through G, helices B' through C, the N-terminus of helix I, and the β4 region. The 

conformational change upon ligand binding implies that these specific flexible regions may be 

involved in substrate access or egress channels in the closed P450 form, but the residues 

involved and the mechanisms of channel opening and closing are unknown. An understanding of 

these questions is important to explain the broad substrate specificity and regio- and 

stereospecificities of P450s. In the present study, we use steered molecular dynamics (SMD) 

simulation to probe the possible substrate exit pathway(s) of P450 2B1. P450 2B1 has been 

chosen because of the wealth of site-directed mutagenesis information available. 

Since the crystal structure of P450 2B1 is not available, the model used in the present 

simulations was constructed based on the structure of a ligand-bound P450 2B4 complex (Scott 

et al., 2004b). Testosterone, a typical substrate of P450 2B1, was docked into the active site of 

P450 2B1 in a reactive binding orientation, and then pulled out along three putative exit channels 

using SMD (Figure 1), chosen based on available P450 structures. Channel 1 is located between 

helices I and G and the B'-C loop and was selected based on the large cleft located in this region 

in P450 2B4 and an open channel found in P450 2C5 (Williams et al., 2000). Channel 2 is 

directed through helix B' and the B'-C loop and is consistent with an opening of this region in the 

unliganded 2B4 structure and the channels found in P450 51 (Podust et al., 2001), P450 152A1 

(Lee et al., 2003), and P450 3A4 (Williams et al., 2004).  Channel 3 corresponds to a “solvent 
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channel” between the active site and the protein surface found in several P450 crystal structures 

(Haines et al., 2001; Wester et al., 2003). This channel is lined by helices E, F and I and β3 

hairpin, and has been suggested to be important for controlling proton access to the active site 

(Haines et al., 2001). However, it is not yet clear whether this solvent channel can permit the 

passage of large ligands. The channel between the F-G loop and β1 sheet in P450 101 and P450 

102 was not investigated, because this region is occupied by two short helices F' and G' in the 

2B1 model.  Moreover, site-directed mutagenesis data from 2B1 do not support this region as a 

channel for substrate passage (Scott et al., 2002).  

Methods 

Modeling the Structure of P450 2B1. The sequence of rat P450 2B1 was obtained from the 

SwissProt database (accession number P00176). The three-dimensional (3D) model of P450 2B1 

was constructed based on the crystal structure of P450 2B4 with an inhibitor bound (PDB entry 

1SUO) (Scott et al., 2004b) using the InsightII software package (InsightII, 2000). The 

coordinates of the conserved residues were assigned based on the corresponding residues of 

P450 2B4 using the Homology module of InsightII. The heme coordinates were copied from 

P450 2B4 into the corresponding site of P450 2B1 model. 

After the coordinate assignment, the initial model of P450 2B1 was refined using the 

Gromacs 3.1 software package (Lindahl et al., 2001) with an extended version of the 

GROMOS87 force field (van Gunsteren et al., 1996). Energy minimization was performed with 

100 steps of steepest descent followed by 300 steps conjugate gradient to release conflicting 

contacts among residues. The protein was then solvated with water in a rectangular periodic box. 
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The simple point charge (SPC) model (Berendsen et al., 1981) was used to describe water 

molecules. Since the protein-water system has a total charge of –5e, the system was neutralized 

by Na+ ions, which replaced water molecules at the positions of lowest Coulomb potential in the 

system. The solvent was relaxed by energy minimization while restraining the protein atomic 

positions with a harmonic potential. The system was then energy minimized without restraints 

for 2000 steps using a combination of steepest descent and conjugate gradient. Afterwards, 

molecular dynamics (MD) equilibration at constant temperature was performed in order to 

provide further structural relaxation. Equilibration was conducted at 300 K with decreasing 

harmonic restraints over a 15 ps time interval followed by 1 ns of equilibration without restraints. 

The model obtained was energy minimized again for 1000 steps using conjugate gradient method. 

The optimized structure was used as the model for subsequent substrate docking and SMD 

simulations. During the MD simulation, the LINCS algorithm (Hess et al., 1997) was used to 

constrain all bonds. A dielectric constant of 1, and a time step of 2 fs were used. The electrostatic 

interactions were calculated using the Particle-Mesh Ewald method (Essmann et al., 1995) with a 

0.9 nm cutoff. The temperature was kept constant by coupling solute and solvent separately to a 

thermal bath at 300 K with a coupling constant τT = 0.1 ps. Pressure was kept constant by 

coupling to a pressure bath at 1.0 bar, using a coupling constant τP = 0.5 ps.   

The overall quality of the final 3D model of P450 2B1 was assessed with respect to its 

geometry and energy. The Procheck (Laskowski et al., 1993) and Prostat modules of InsightII 

(InsightII, 2000) were employed for geometric evaluation. Prosa2003 (Sippl, 1993) was used to 

evaluate the quality of consistency between the native fold and the sequence and to examine the 
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energy of residue-residue interactions. The energy is transformed to a z-score by  

zS,C = (ES,C - ÊS,C)/σS,                                 (1) 

where ES,C and ÊS,C are respectively the residue-residue interaction energy and average 

residue-residue interaction energy of sequence S in conformation space C, and σS is the 

associated standard deviation.   

Docking Simulation. The structure of testosterone was constructed using the Builder module of 

the Insight II package (InsightII, 2000). Placement of testosterone into the active site of the 3D 

model of P450 2B1 was accomplished by using the Affinity program encode in the Insight II 

(InsightII, 2000) as previously described (Scott et al., 2004a). Testosterone was automatically 

docked in a reactive orientation leading to 16α hydroxylation. 

Steered Molecular Dynamics (SMD) simulation. Prior to the SMD simulations of the P450 

2B1-testosterone complex, a 200 ps MD simulation was performed to evaluate the stability of 

testosterone in the reactive binding site of the 3D model, yielding an equilibrated starting 

structure for SMD simulation. The force field parameters for testosterone were generated using 

the Dundee Prodrug Server (van Aalten et al., 1996). Atomic charges of testosterone were 

calculated employing the ChelpG method, an electrostatic potential fitting approach (Breneman 

and Wiberg, 1990), at the HF/6-31G* level. This ab initio calculation was carried out using the 

Gaussian98 program (Frisch et al., 1998).  

SMD is an extended molecular dynamics simulation method mimicking the principle of the 

atomic force microscopy (AFM) (Grubmuller et al., 1996). SMD has been widely used to 

explore the binding and unbinding properties of biomolecules and their responses to external 
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mechanical manipulations at the atomic level (Isralewitz et al., 2001). SMD has also been 

successfully applied to identify ligand pathways and to explore the elastic properties of several 

proteins (Isralewitz et al., 2001; Shen et al., 2003; Xu et al., 2003). In SMD simulation, 

time-dependent external forces are applied to a ligand in order to accelerate binding or unbinding 

processes. From the accelerated dissociation process of the ligand, the SMD simulation can 

reveal information about the protein’s flexibility and its response to the dissociation of ligand. 

Analyses of interactions between the ligand and the protein and the relationship between the 

applied forces and the ligand pathway can yield important information about the 

structure-function relationships of the protein-ligand complex, the binding and unbinding 

pathway(s), and possible mechanisms of ligand recognition and inhibition. 

In the current SMD simulations, testosterone was pulled out from the binding pocket 

through the putative exit channels (Figure 1) by an external force. The movement of testosterone 

along the channels was determined using the criterion of minimal collision with amino acid 

residues. The center of mass of testosterone was harmonically restrained to a point moving with 

a constant velocity along the desired directions. Steered molecular dynamics were performed 

using the Gromacs 3.1 software package (Lindahl et al., 2001) and an extended version of 

GROMOS87 force field (van Gunsteren et al., 1996). During the SMD simulations, the pulling 

velocity was set to 0.005 nm•ps-1 and the spring force constant was assigned as 500 

kJ•mol-1•nm-2
. The forces of testosterone with P450 2B1 were monitored throughout the SMD 

simulations and the interactions between the protein residues and testosterone were analyzed 

along the SMD trajectory. At each time point the presence of direct hydrogen bonds, water 
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bridges, and hydrophobic interactions between testosterone and 2B1 was analyzed using the 

LIGPLOT program (Wallace et al., 1995).   

Results 

3D model of P450 2B1. A Blastp search (Madden et al., 1996) confirmed that the sequence 

identity (79%) is the highest between 2B1 and 2B4 among all the known P450s structures in the 

Protein Data Bank. The high sequence identity between 2B1 and 2B4 ensures the accuracy of the 

modeled structure of 2B1 based on the crystal structure of 2B4. A comparison between the 

ligand-free and ligand-bound structures of 2B4 reveals that the latter adopts a closed 

conformation that is similar to 2C5 (Wester et al., 2003; Schoch et al., 2004). The 

substrate-bound structure of 2B1 is likely similar to the ligand-bound structure of 2B4. 

Accordingly, the crystal structure of a 4-(4-chlorophenyl)imidazole-2B4 complex (PDB entry 

1SUO) (Scott et al., 2004b) was selected as the template to construct the 3D model for 2B1.  

In the crystal structure of the P450 2B4 complex, the coordinates for the N-terminal residues 

1-27 were missing. As the N-terminus does not affect substrate binding, the 3D model of P450 

2B1 was constructed only for residues 28-491. Figure 2 displays the sequence alignment between 

P450 2B1 and P450 2B4. Because of the lack of gaps in the alignment, the entire structures were 

considered as conserved regions.  

Total energy and heavy atom root-mean-square deviation (RMSD) from the 

energy-minimized model structure are two important criteria for the convergence of the free MD 

simulation. These properties are shown in Figure 3 for the 1 ns MD simulation of P450 2B1. The 

results indicate that the total energy is stabilized after 1 ns equilibration. The RMSD of the heavy 
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atoms from the energy-minimized model increased slowly in the first 600 ps time period, and 

then reached a plateau in the sequent simulation time. All these properties converged after 1 ns 

MD simulation, indicating that the model is stable and can be used for subsequent SMD 

simulations. 

After 1ns MD simulation, the overall quality of the P450 2B1 homology model was judged 

from energetic and geometric criteria. Figure 4 shows the total Prosa energy in terms of the 

z-score (Eq. (1)) versus the protein residue position. A high z-score corresponds to stressed or 

strained sections of the chain and may point to problematic parts of a fold. The z-score in this 

model is negative at all residue positions, which indicates reasonable side chain interactions. The 

overall score of Procheck geometric assessment is –0.15 for the homology model. An overall 

score of –0.5 or greater is considered as an indicator for a high quality structure. The percentage 

of Φ-Ψ angles in core Ramchandran regions was 84.9% in the P450 2B1 model. The geometric 

assessment of P450 2B1 was also performed using Prostat/InsightII (InsightII, 2000). The cutoff 

used, which represents the significant difference for bond length, bond angle, and torsion from 

the reference value obtained from known protein crystal structures, is 5 S.D. (standard deviation). 

For the P450 2B1 model, none of the bond distances, none of the bond angles, and only three 

dihedral angles were found to have more than 5 S.D. Thus, the P450 2B1 model is of reasonable 

quality compared to the crystal structure of the P450 2B4 complex. 

3D Model of Testosterone-P450 2B1 Complex. In order to investigate the exit pathways using 

the SMD simulation method, testosterone was docked into the active site of 2B1 in the 

16α-hydroxylation orientation leading to the formation of the major product. Contacts between 
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protein and substrate are predominately hydrophobic. The side chains of Arg98, Gly99, Thr100, 

Ile101, Ile104, Ile114, Phe115, Phe206, Phe297, Ala298, Glu301, Thr302, Val363, Ile365, 

Val367, Pro368, and Ile477 lie within 5 Å of testosterone. Most of these residues, including 

Ile114, Phe115, Phe206, Phe297, Ala298, Thr302, Val363, Ile365, Val367, and Ile477, 

correspond to key residues responsible for regio- and stereoselectivities revealed by previous 

mutagenesis studies on family 2 enzymes (Domanski and Halpert, 2001). Additional residues, 

including Thr100, Ile101 and Ile104, are located in the first of six substrate recognition sites 

(SRS-1), as suggested by Gotoh (Gotoh, 1992) based on a comparison between family 2 

enzymes and P450 101, and have been shown to influence the kinetic constants of some 

substrates in very recent site-directed mutagenesis experiments (Honma et al., 2005). 

In order to evaluate the stability of testosterone in the active site of the P450 2B1 model, a 

200 ps MD simulation was performed. Figure 5 shows the RMSD of testosterone and the 

distance between the iron atom and oxidation site C16 of testosterone as a function of simulation 

time. The RMSD fluctuates around 0.1 nm during the simulation, which indicates that the 

testosterone structure does not deviate significantly from the initial docked pose. The iron-C16 

distance in the complex fluctuates around 0.45 nm, the typical length found in the crystal 

structures of other P450s for carbon oxidation. Thus, during the free MD simulation, the 

testosterone remained in the active site and maintained an orientation allowing C16 

hydroxylation.  

Egress of Testosterone from P450 2B1. The force profile of testosterone egress along channel 1 

is shown in Figure 6A. During the first 230 ps a steady increase of the applied force was 
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observed. At the beginning of the simulation, the substrate-protein complex is stabilized by a 

water bridge to Glu301 and hydrophobic contacts with Ile104, Ile114, Phe297, Thr302, Val363, 

Ile365, Pro368 and Ile477, as shown in Figure 7A. At 230 ps testosterone forms a new hydrogen 

bond to Gly99 and hydrophobic interactions with Arg98, Ile101, Ile104, Ile114, Ala298, Val367, 

Pro368, and Ile477. These residues are located in the active site, demonstrating that the substrate 

has not left the vicinity of the heme. Breaking these hydrogen bond and hydrophobic interactions 

produces the highest peak in the force profile, corresponding to a rupture force of 860 pN. At 260 

ps, testosterone has moved out of the active site and reached the entrance of channel 1, and a 

local minimum appears in the force profile. At this time, the direct hydrogen bond between 

substrate and Gly99 is broken, but testosterone forms a water bridge with Ser294 and several 

hydrophobic contacts with Ile104, Phe108, and Tyr111 in helix B’ and the B'-C loop, residue 

Leu293 in helix I, and Leu238 and Leu242 in helix G, as shown in Figure 7B.  

At 305 ps, the substrate forms two new water bridges with Gln239 and Ser294 and several 

hydrophobic contacts. Breaking these interactions produces the second peak of the force profile 

(Figure 6A). At 350 ps, the substrate forms two water bridges to Glu286 and Ser294 and 

hydrophobic contacts with residues Phe108, Tyr111, Leu242, Met289, and Leu293. At this time, 

the substrate adjusts its orientation to facilitate egress. At 450 ps, the force reaches the third peak 

and the substrate forms a hydrophobic interaction with residue Ile290. At 480 ps, the force falls 

to a local minimum. At this time, testosterone forms hydrophobic interactions with His285 and 

Met289 and a water bridge to Glu286, as shown in Figure 7C. Afterwards, testosterone exits 

channel 1 and moves into solvent. The force fluctuation after 650 ps probably is attributed to the 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on April 8, 2005 as DOI: 10.1124/dmd.105.004200

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD#4200 

 14 

interaction of testosterone with solvent molecules. From 260 to 480 ps, the force profile is 

relatively flat, indicating that once testosterone overcomes the first peak at 230ps, it can exit the 

binding pocket smoothly through channel 1. 

Figure 6B shows the force profile of testosterone exiting the P450 2B1 active site via 

channel 2. Initially, the exit of testosterone proceeded slowly, since the substrate remained tightly 

bound while the applied force increased steadily. At 240 ps of the simulation time, testosterone 

forms water bridges with Arg98, Gly99, Phe115, Asn117, Ser294, Glu301, and Arg370 and 

hydrophobic interactions with Ile114, Ile362, Val367, Pro368, and Ile477. Breaking these 

interactions produces the highest force peak corresponding to a rupture force of 830 pN. At 275 

ps, the substrate forms two water bridges with Asn117 and Arg370 and six hydrophobic contacts 

with residues Gly99, Thr100, Ile101, Ala102, Glu105, and Phe115, as shown in Figure 7E. All of 

these residues except Arg370 are located in helix B' or the B'-C loop. These interactions 

demonstrate that the substrate has moved out of the active site pocket and reaches the entrance of 

channel 2. At 310 ps, the force decreases down to a local minimum, there is no water bridge 

between testosterone and 2B1, and the substrate only forms a hydrophobic interaction with 

Gly99. At 395 ps, a moiety of the substrate has penetrated the B'-C loop and testosterone adjusts 

its orientation to interact with other residues, which results in a small increase in the rupture 

force. A force of 400 pN is necessary to overcome the hydrophobic interactions of the substrate 

with residues Ile104, Glu105, Phe108, and Phe115 (Figure 7F). After 500 ps, the force has 

reached a global valley and the substrate has been completely pulled out of the protein. 

Figure 6C shows the force profile of testosterone leaving the P450 2B1 active site via 
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channel 3. The rupture force for the substrate leaving this channel is up to 1400 pN, which is 

more than 1.5 times higher than channels 1 and 2. The highest force peak is produced at 400 ps. 

At this point, testosterone forms two hydrogen bonds to Lys479 and Ile480 and hydrophobic 

interactions with Phe206, Leu209, Phe297, Glu301, Pro364, Ile477, and Gly478. Several 

residues, including Leu209, Gly478, Lys479, and Ile480, are located at the entrance of channel 3, 

indicating that at this time testosterone has moved out of the active site and is penetrating 

through the channel. During the exit of testosterone via this channel, a hydrogen bond between 

Oε2
 in Glu301 and N in Lys479 is noted, as shown in Figure 8. During the first 250 ps, the 

hydrogen bond between residue Glu301 and residues Lys479 is relatively stable. From 250 ps to 

400 ps, the hydrogen bond is formed intermittently. After 400 ps, the hydrogen bonding is 

entirely broken, which enlarges the space enough to allow testosterone to pass through. 

Therefore, the hydrogen bonding between Glu301 and Lys479 may play an important role in 

preventing substrates from passing through this channel.  

In order to compare the protein motions for testosterone exit via these three putative 

channels, the non-hydrogen atom RMS deviations (RMSD) and Cα RMS fluctuations (RMSF) 

from the initial structure were monitored during SMD simulations. The global RMSD after 

testosterone expulsion from channel 1, 2 and 3 fluctuated around 0.21 nm, 0.19 nm, and 0.18 nm, 

respectively, as shown in Figure 9. Figure 10 shows the Cα RMSF from the initial structure 

during SMD simulations along these three putative channels. The maximal Cα RMSF for 

testosterone exit via channel 3 is 0.27 nm, which is contributed by the flexible β3 hairpin region 

(the third shaded region in Figure 10C). The maximal Cα RMSF for testosterone exit via channel 
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1 and channel 2 is 0.22 nm and 0.21 nm, respectively, which is contributed by the H-I loop 

region. Since this loop is completely exposed to the surface of protein and thus freely mobile, it 

is not surprising that the region has a large RMSF for all the putative channels. In addition, the B' 

helix/ B'-C loop region displays a relatively large RMSF in testosterone exit via channel 1 and 

channel 2 (the first shaded regions in Figure 10A and 10B), which indicates that testosterone exit 

via both channel 1 and channel 2 involves the flexibility of this region. 
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Discussion 

In this study, the possible substrate exit channel(s) in P450 2B1 and the interactions between 

testosterone and protein residues were investigated. A 3D model of P450 2B1 was first 

constructed, followed by docking testosterone into the active site in a reactive binding orientation. 

Afterwards, testosterone was pulled out of the binding pocket using SMD simulations. The SMD 

simulations show that of the three possible exit channels, channel 3 is unlikely to serve as the 

exit channel. This is supported by the following observations: 1) the maximum rupture force via 

channel 3 was 1.5 times higher than that via channel 1 and 2; 2) global RMSD and Cα RMSF via 

channel 3 is higher than those via channel 1 and channel 2; 3) the hydrogen bond formed 

between Glu301 and Lys479, which stabilizes the protein structure, has to be broken in order for 

testosterone to exit through channel 3. Since our simulations yield a similar force profile and 

rupture force for exit along channel 1 and channel 2, our results do not allow discrimination 

between these two channels for substrate egress. However, opening mechanisms of these two 

channels differ, as discussed below. 

Although there is no obvious opening between helices I and G and loop B'-C in the closed, 

inhibitor-bound 2B4 structure, the ligand-free 2B4 structure (Scott et al., 2003) reveals a large 

cleft in this region that extends directly from protein surface to the heme iron. Site-directed 

mutagenesis revealed that substitution of residues in the N-terminus of helix I can alter the 

activity and stereoselectivity of P450 2B1 (Scott et al., 2004a). Moreover, REMD simulations 

have indicated a similar substrate egress pathway in P450 cam (Ludemann et al., 2000). In the 

current SMD simulation the secondary structures of helices I and G are well maintained, and the 
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rupture force is relatively small during testosterone exit along channel 1. All these findings 

indicate that a channel may exist between helices I and G and the B'-C loop. The simulation 

results suggest some residues that may play important roles in the egress of testosterone along 

channel 1. After entering channel 1, testosterone forms a water bridge to Ser294, which persisted 

until 450 ps. During this period, the hydrogen-bonding network formed between Ser294 and 

testosterone discourages the egress of testosterone. It can be speculated that abolishing the 

hydrogen-bonding network will alter the enzyme activity. This is consistent with the recent 

mutagenesis data, indicating that S294A mutant exhibited a 3-fold decrease in Kcat/Km for the 

16α product (Scott et al., 2004a). A similar function is attributed to Glu286, which also formed a 

water bridge to testosterone. The replacement of Glu286 by Ala led to a 2-fold decrease in 

Kcat/Km for the 16α product (Scott et al., 2004a).  

An analysis of the trajectory of SMD along channel 1 reveals that two residues located at the 

entrance of the putative channel 1, Phe108 and Phe297, appear to act as two flexible clamps 

during substrate egress. The hydrophobic interactions Phe108 and Phe297 with testosterone not 

only stabilize substrate binding and guide the orientation of the substrates, but also prevent the 

substrate from leaving the active site. The B'-C loop must rearrange to open wide enough for 

testosterone passage, and at the same time, the side chain torsion of Phe297 rotates to enlarge the 

space, as shown in Figure 11. To quantify this opening and rotation, the distance between Phe297 

and Phe108 and the side-chain torsions χ of Phe297 have been monitored, as shown in Figure 12. 

In the first 230 ps, the distance remains around 0.9 nm. In the following 50 ps, displacement of 

the B'-C loop occurred, and the distance increased significantly to 1.4 nm in order for 
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testosterone to pass through. At the same time, the torsion of Phe297 increased from 22º to a 

maximal 120º. After testosterone crossed over the bottleneck, the χ torsion returned to its initial 

value.  

The simulation result implies that the substitution of Phe297 and Phe108 with other residues 

may affect the orientation of the substrate in the active site, and thereby reduce substrate binding. 

This simulation result is in agreement with the mutagenesis result that F297A, F297I, and F297 

exhibited a 5- to 10-fold decrease in catalytic activity (Domanski et al., 2001). Mutagenesis data 

on Phe108 show that substitution of this residue can also alter the kinetic constants of 

2B1(Honma et al., 2005). The SMD simulation result together with the site-directed mutagenesis 

results support the inference that channel 1 is a possible route for substrate egress in 2B1. 

The structure of P450 51 (Podust et al., 2001) reveals an access channel from protein surface 

to the heme, which penetrates through the open B-C loop. In P450 152A1 (Lee et al., 2003), a 

similar channel is proposed to permit water to escape from the active site and to allow access of 

hydrogen peroxide to substrate-bound enzyme. An opening between helices B' and C is also 

apparent in the ligand-free P450 2B4 structure (Scott et al., 2003) and 3A4 structures (Williams 

et al., 2004; Yano et al., 2004). Based on these observations, this region was selected as a 

possible exit channel in the current study. The SMD simulation results show that a relatively 

small rupture force and only slight backbone motions are required for testosterone exit along 

channel 2, as shown in Figure 6B and Figure 11B. Our results in conjunction with findings from 

crystal structures of several mammalian P450s suggest that channel 2 may serve as a common 

channel for ligand passage in some bacterial and mammalian P450s.  
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A detailed analysis of the interactions between testosterone and the protein revealed that 

Phe115 acts as a gatekeeper, not only playing an important role in stabilizing the orientation of 

testosterone in the active site, but also preventing ligands from escaping from the active site. The 

corresponding Phe114 in 2C9 was found to have a strong hydrophobic contact with the phenyl 

group of S-warfarin and thereby to stabilize its orientation in the 2C9 enzyme (Williams et al., 

2003). An analysis of snapshots of the exit process through channel 2 shows that after 

testosterone leaves the active site, the phenyl ring of Phe115 flips to occupy the space left by 

testosterone and consequently closes the channel. This implies that a mutation of Phe115 to other 

residues might change the orientation of substrate in the active site and influence substrate egress 

from the active site. This suggestion is in agreement with the site-directed mutagenesis data, 

which indicate that F115A exhibits a 3-fold decrease in the testosterone hydroxylase activity 

(Domanski et al., 2001). 

Although the opening of both channels is due to the flexibility of helix region B'-C loop/ B', 

the opening mechanism of channel 2 is different from that of channel 1. The opening of channel 

1 is characterized by a rotation of Phe297 in conjunction with the B'-C loop rearrangement, 

involving a relatively large displacement of the B'-C loop (the first shadow region in Figure 10A 

and Figure 11A). In contrast, testosterone exit through channel 2 is achieved by the expansion of 

B'-C loop (Figure 11B) together with a relatively small displacement of the backbone (Figure 

10B). It has been noted that in family 2 P450s two highly conserved GlyXGly motifs flank the 

region between helix B' and the B'-C loop. Glycines are known for their torsional flexibility due 

to the lack of a side chain, and the peptide backbone can readily adopt a wide range of 
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conformations. The GlyXGly motif thus can be assumed to constitute the hinge for the B'-C loop 

conformational changes. 

The solvent channel, our channel 3, has been suggested to play an important role in 

controlling proton access to active site (Haines et al., 2000; Wester et al., 2003). However, no 

evidence at present directly indicates a ligand pathway. Our simulation shows that substrate 

egress via this route requires large rupture forces, large backbone motion, and the rupture of a 

hydrogen bonding network involving Glu301. This indicates a low probability of channel 3 to 

serve as an egress channel for testosterone in P450 2B1. In light of apparent opening of this 

channel in the structures of 2C5, 102, and inhibitor-bound 2B4, and the smaller ligand size in the 

2B4 complex, access/egress through channel 3 cannot be ruled out. This remains to be tested by 

additional experimental and computational studies. 

In conclusion, we used SMD simulations to investigate three possible ligand channels of 

P450 2B1 and to clarify the role of some residues previously identified by site-directed 

mutagenesis experiments. Our results demonstrate that of the three possible channels, the 

“solvent channel” is unlikely to serve as exit channel, whereas both other channels are equally 

good candidates for the egress channels. However, opening mechanisms of these two channels 

differ. The opening of channel 1 is characterized by a rotation of Phe297 in conjunction with a 

relatively large displacement of the B'-C loop. In contrast, testosterone exit through channel 2 is 

achieved by the expansion of B'-C loop together with a relatively small displacement of the 

backbone.  
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FIGURE LEGENDS 

 

Figure 1. Ribbon schematic representations of a homology model of P450 2B1 and the chosen 

channels examined by SMD. The heme is represented by a red stick; testosterone is 

represented by a salmon CPK model. Major helices and sheets are labeled. During the 

SMD simulation, the bound testosterone is pulled away from the active site using a 

harmonic potential symbolized by an artificial spring that is connected to the center of 

mass of testosterone. This pulling potential moves with a constant velocity of 0.005 

nm•ps-1 in the direction indicated by the arrow. Images generated using Pymol 

(www.pymol.org) (Delano, 2004) unless otherwise noted.  

 

Figure 2. The sequence alignment between P450 2B1 and P450 2B4 (PDB entry 1SUO) from 

residues 28 to 491. The asterisk (*) indicates an identical or conserved residue; a colon (:) 

indicates a conserved substitution; a dot (•) indicates a semi-conserved substitution. 

Boxes and underlines represent helices and β sheets, respectively. 

 

Figure 3. Total energy and RMSD with respect to simulation time for 1 ns free molecular 

dynamics simulation on the P450 2B1 model. 

 

Figure 4. z-score versus protein residues position for the P450 2B1 model. The model is from a 1 
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ns molecular dynamics simulation followed by energy minimization for 1000 steps using 

conjugate gradient method. 

 

Figure 5. (A) Distance between iron and C16 with respect to simulation time during 200 ps MD 

simulation on a testosterone-2B1 complex prior to SMD simulations. (B) RMSD of 

testosterone in the active site of 2B1 during 200 ps MD simulation on a testosterone-2B1 

complex prior to SMD simulations. 

 

Figure 6. Force profiles for SMD simulations along three different putative channels. (A) 

Channel 1; (B) Channel 2; (C) Channel 3. 

 

Figure 7. Snapshots of the relative positions of testosterone and the protein throughout the 

simulation along channel 1((A) 0 ps, (B) 260 ps, and (C) 480 ps) and Channel 2 ((D) 0 ps, 

(E) 275 ps, and (F) 395 ps). The residues within 5 Å from testosterone at the individual 

time are shown in green sticks. The heme is shown in red stick. Testosterone atoms are 

represented as a yellow stick. 

 

Figure 8. Distance between Oε2
 in Glu301 and N in Lys479 with respect to simulation time 

during the SMD simulation along channel 3.  

 

Figure 9. RMSD of non-hydrogen atom with respect to simulation time for testosterone exit 
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along three putative channels during SMD simulations. Dotted line, thin line, and bold 

line represents testosterone egress along channel 1, channel 2, and channel 3, 

respectively. 

 

Figure 10. Cα RMSF with respect to residues position during SMD simulations along channel 1 

(A), channel 2 (B), and channel 3 (C). The shadow region from left to right represents the 

B' helix/ B'-C loop region, H-I loop, and β3 hairpin region. 

 

Figure 11. (A) Superposition of the starting structure (yellow) and the structure at 260 ps (green) 

during the SMD simulation along channel 1. Helix I and the B'-C loop are shown as 

cartoons, F297 and F108 as sticks. (B) Superposition of the starting structure (yellow) 

and the structure at 280 ps (green) during the SMD simulation along channel 2. Helix I 

and the B'-C loop are shown as cartoons, F115 and T100 as sticks. 

 

Figure 12. (A) The variation of distance between residue F197 and F108 versus simulation time. 

(B) The variation of the torsion χ of F297 versus simulation time. 
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