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ABSTRACT: 

The routine assessment of xenobiotic in vivo kinetic behaviour is currently dependent upon data 

obtained through animal experimentation, although in vitro surrogates for determining key 

absorption, distribution, metabolism and elimination (ADME) properties are available. Here we 

present a unique, generic, physiologically-based pharmacokinetic (PBPK) model, and 

demonstrate its application to the estimation of rat plasma pharmacokinetics, following 

intravenous dosing, from in vitro data alone. The model was parameterized through an 

optimization process, employing a training set of in vivo data taken from the literature, and 

validated using a separate test set of in vivo discovery compound data. On average, the vertical 

divergence of the predicted plasma concentrations from the observed data, on a semi-log 

concentration-time plot, was approximately 0.5 log units. Around 70% of all the predicted values 

of a standardized measure of AUC were within threefold of the observed values, as were over 

90% of the training set t½ predictions and 60% of those for the test set; however, there was a 

tendency to over-predict t½ for the test set compounds. The capability of the model to rank 

compounds according to a given criterion was also assessed: of the 25% of the test set 

compounds ranked by the model as having the largest values for AUC, 61% were correctly 

identified. These validation results lead us to conclude that the generic PBPK model is potentially 

a powerful and cost-effective tool for predicting the mammalian pharmacokinetics of a wide 

range of organic compounds, from readily-available in vitro inputs only. 
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Physiologically-based pharmacokinetic (PBPK) models are mathematical descriptions of the flow 

of blood throughout the body, developed for the simulation of xenobiotic absorption, distribution 

and elimination. The essential concepts were outlined over 60 years ago in a far-sighted paper 

(Teorell, 1937) that presented many of the mathematical relationships required to simulate blood 

flow and tissue distribution. 

Simulation modelling ideas were developed further by Mapleson (Mapleson, 1973), in order to 

explain the effect of anaesthetics, and early attempts to apply the approach to drugs were 

published in the 1960’s by Bellman et al. (Bellman et al., 1961). Probably the most important 

contributions in that period were made by Bischoff and Dedrick (Bischoff and Dedrick, 1968), 

who demonstrated that PBPK models could be used for the a priori prediction of the 

pharmacokinetics of thiopental. During the following decades, developments were made by 

academics such as Rowland (Rowland, 1986), Sugiyama (Sugiyama and Ito, 1998) and Amidon 

(Yu and Amidon, 1999), as well as scientists working in the environmental health field, in 

particular Anderson and Clewell (Andersen et al., 2002). Recent reviews (Grass and Sinko, 2002; 

Leahy, 2003) have discussed the application of these approaches to the prediction of 

pharmacokinetics in drug discovery. 

It is of interest to us to apply the PBPK approach to the estimation of plasma levels in animals 

from in vitro data alone. If this can be achieved, with sufficient confidence in the outcome, a 

generic model for each species, including humans, could be used to address a wide range of 

problems where the estimation of pharmacological effects, safety margins and exposure limits is 

required. In particular, we believe that the exploitation of data from the growing number of 

validated in vitro toxicology assays requires a sound approach to the estimation of plasma and 

tissue levels within the whole animal. Since it is also our goal that predictive methods should be 
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applicable to a wide variety of chemicals prior to any animal experiment, we are interested in 

establishing generic PBPK models, which are parameterized for the physiology of the animal, 

independently of any specific xenobiotic. The properties of the xenobiotic that determine its 

overall kinetic properties could then be determined through the use of separate in vitro surrogates 

of the important absorption, distribution, metabolism and elimination (ADME) properties. 

Coupled with in vitro efficacy or toxicity data, simulation of the overall biological effect in vivo 

could become routine. 

This paper describes the work we have done to parameterize a generic PBPK model for the rat, 

and to assess the reliability of the model in estimating plasma levels of xenobiotics, where these 

data are available from experimentation. To date, no other truly generic PBPK model has 

apparently been published, although there are numerous examples of compound-specific PBPK 

models for the rat, such as those for simulating the pharmacokinetics of tolbutamide (Sugita et 

al., 1982), diazepam (Igari et al., 1983), β-lactam antibiotics (Tsuji et al., 1983), cyclosporin 

(Bernareggi and Rowland, 1991) and a homologous series of barbiturates (Blakey et al., 1997). 

These and many other such models rely upon data derived from in vivo studies in order to 

estimate the extent of tissue distribution. Whilst computational models for predicting in vivo 

tissue/plasma partition coefficients from physicochemical and biochemical properties have been 

developed (Yokogawa et al., 1990; Poulin and Theil, 2000; Yokogawa et al., 2002; Rodgers, 

2003), these are not generally applicable, being appropriate only for a particular class of basic 

compounds (Rodgers, 2003), for bases in general (Yokogawa et al., 1990; Yokogawa et al., 

2002), or requiring modification of the fundamental model, depending upon distribution 

characteristics that cannot be established in advance with any certainty for novel compounds 

(Poulin and Theil, 2000). Furthermore, many of the published PBPK models for the rat also 
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utilize estimates of clearance determined in vivo (Tsuji et al., 1983; Bernareggi and Rowland, 

1991; Blakey et al., 1997). The PBPK model presented herein predicts distribution and 

elimination kinetics in the rat from in vitro data alone, in a manner that is independent of 

ionization status and does not require a priori knowledge of in vivo pharmacokinetic properties. 

In this paper, we have concentrated on predicting the in vivo pharmacokinetics of compounds for 

which plasma levels have been determined following an intravenous dose. Work that we have 

done to extend the model to predict plasma levels following an oral dose will be reported 

separately. 
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Methods 

Model Inputs. A generic PBPK model, which enables prediction of the pharmacokinetic 

behaviour of any given compound dosed intravenously in a specified rat population, without 

recourse to data generated through in vivo studies, is described herein. The only compound-

dependent inputs required by this model are: 

• molecular weight; 

• the octanol/water partition coefficient (logP); 

• the octanol/water distribution coefficient at pH 7.4 (logD7.4); 

• all pKa values that affect the ionization status at pH 7.4; 

• the hepatic intrinsic metabolic clearance (CLint); 

• the fraction unbound in plasma (fup). 

Model Description. The PBPK model is based upon that published by Bernareggi and Rowland 

(Bernareggi and Rowland, 1991), as shown in their Fig. 1, but with substantial modification of 

the tissue distribution (Fig. 1) and elimination (Fig. 2) components, and comprises a series of 

compartments representing 14 major organs and tissues in the body, interconnected by further 

compartments representing arterial and venous blood pools, according to the principles developed 

by Bischoff and others (Bischoff, 1975). 

Administration of xenobiotics is via intravenous infusion, and their transport between the 

compartments that represent the organs and tissues occurs exclusively via blood flow. 
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Distribution into the organ and tissue compartments is ‘diffusion limited’ (Fig. 1). Thus, the 

cellular membrane represents a diffusion barrier, and movement between blood and tissue is 

modelled dynamically, rather than assuming that compound in the effluent blood of the tissue is 

in equilibrium with that within the tissue (Lutz et al., 1980), as in the ‘flow-limited’ PBPK model 

of Bernareggi and Rowland (Bernareggi and Rowland, 1991). The tissue is viewed as consisting 

of three, well-stirred sub-compartments (capillary bed, interstitial fluid and intracellular space), 

so that restricted diffusion across the capillary wall (for example, for modelling the blood-brain 

barrier) can also be represented. This arrangement is the minimum required to model adequately 

all possible restrictions to passive transport between blood and tissue. The possibility that 

movement across the plasma membrane is restricted to the unionized free compound is also 

accommodated in the model.  

Elimination occurs from the compartment representing the liver, as in the model of Bernareggi 

and Rowland (Bernareggi and Rowland, 1991), but also from that representing the kidneys. 

Hepatic metabolism is modelled as a first-order process, the rate of which is determined by CLint 

and the unbound compound concentration at the metabolic site. Renal excretion is represented by 

a physiologically-based model (Fig. 2) that has been developed from the work of Komiya et al. 

(Komiya, 1986; Komiya, 1987) and Katayama et al. (Katayama et al., 1990). According to this 

model, free compound within the plasma is filtered, within the glomerulus, into the lumen of the 

renal tubule, plus there may be additional active secretion of compound into the renal tubule 

lumen. Active renal secretion is characterized by an equation of the Michaelis-Menten form, 

where the maximum rate of tubular secretion and the Michaelis constant govern the rate of 

secretion of unbound compound into the tubular fluid. Both ionized and unionized species within 

the lumen of the renal tubule may be reabsorbed through solvent drag; however, only the 
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unionized fraction is subject to reabsorption through passive diffusion (Komiya, 1986). Inherent 

assumptions are that the permeability of the renal tubule to both water and solutes remains 

constant along its length (Komiya, 1986), and the renal tubule lumen and kidney tissue/capillary 

bed behave as well-stirred compartments, so that any compound reabsorbed from more distal 

portions of the tubule is made available for active secretion into the proximal tubule (consistent 

with the morphology of the nephron and its vasculature) (Katayama et al., 1990). Any compound 

within the renal tubule that escapes reabsorption is excreted unto the urine.  

Model Parameters. The physiological parameters used in the model were obtained from the 

literature and are given in the Appendix (which is available online as supplemental data); these 

were scaled according to the actual body weights of the animals used in the in vivo studies being 

simulated. Tissue and organ volumes were derived from two comprehensive compilations of 

physiological data for use in pharmacokinetic models (ILSI, 1994; Brown et al., 1997), and 

represent the extravascular (combined interstitial fluid and intracellular space sub-compartments) 

volumes only. Blood flow rates for stomach, gut, pancreas, spleen and hepatic artery (and hence 

total liver blood flow) were obtained from a number of sources (Sasaki and Wagner, 1971; Malik 

et al., 1976; Nishiyama et al., 1976; Brown et al., 1997); all other blood flows were from 

Bernareggi and Rowland (Bernareggi and Rowland, 1991). The glomerular filtration rate and 

urine flow rate were taken from Davies and Morris (Davies and Morris, 1993), whilst the renal 

tubular lumen volume was derived from a textbook of physiology (Pitts, 1974). A haematocrit of 

0.503 (Altman and Dittmer, 1971) was assumed. 

Parameterization of the distribution and elimination components of the generic PBPK model for 

rat required the development of a number of correlation models. Two such models, for the 

prediction of parameters corresponding to the effective in vivo lipophilicity and plasma protein 
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binding, were derived through a process of optimization of the performance of the PBPK model, 

in terms of the estimation of experimental plasma levels. A comprehensive training set of in vivo 

data was used for this purpose. Both the optimization process and the training set data are 

described in greater detail below.  

Instantaneous equilibration of the compounds between erythrocytes and plasma and between 

plasma and the interstitial fluid was assumed; i.e., there was no effective barrier to the transfer of 

compounds between the capillary bed and interstitial fluid model sub-compartments, and PvSv 

(Fig. 1) was set to a non-limiting value. The parameter PmSm (Fig. 1) was optimized across the 

training set and fixed at the same value for all compounds. 

Intracellular space/interstitial fluid (unbound) partition coefficients (KpIC:IFu) were calculated for 

each compound using a model developed by Yokogawa et al. (Yokogawa et al., 1990; Yokogawa 

et al., 2002), which predicts tissue partition coefficients from a measure of lipophilicity and 

appropriate estimates of tissue lipid content. In this work, an estimate of the effective in vivo 

lipophilicity was used in the calculation, rather than a measure of actual lipophilicity (i.e. an 

experimental or calculated logP). Similarly, an estimate of the effective in vivo plasma protein 

binding was used as an input to the PBPK model, in place of a measured value for fup. The 

effective lipophilicity and fup for each training set compound were simultaneously determined 

through a grid search for the pair of values that generated the best estimate of experimental 

plasma levels. Regression analysis between the effective lipophilicity values for the training set 

compounds and the available input variables (listed above) showed that effective lipophilicities 

are best described as a simple linear combination of logP and the logarithm (to base 10) of the 

fraction unionized at pH 7.4. The best predictive model for the effective protein binding was 

found by linear regression, using a linearized protein binding parameter (fupLin) and the 
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logarithm of the fraction unionized at pH 7 to predict the logarithm of the effective fup values. 

The parameter fupLin is calculated from the in vitro fup as follows: 
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An estimate of the blood cell/plasma partition coefficient was derived from a correlation between 

a set of measured blood cell/plasma partition coefficients and the variables logP and fupLin. This 

estimate was utilized along with the haematocrit and in vitro fup to calculate the blood/plasma 

concentration ratio (R). 

The in vitro microsomal CLint, scaled to ml/min/g liver, formed a direct input to the PBPK model 

as an estimate of the in vivo CLint. Binding to albumin and lipoproteins also occurs in the 

interstitial fluid, and the fraction unbound in this sub-compartment (fut) was calculated from the 

effective in vivo fup, according to a methodology proposed by Poulin and Theil (Poulin and Theil, 

2000). In order to simplify the model, specific binding to intracellular components was not 

considered.  

The parameters describing passive reabsorption from the renal tubule (the permeability-surface 

area product) and reabsorption through solvent drag (the reflection coefficient) were calculated 

for each compound from logP and molecular weight, respectively. Although the PBPK model 

makes provision for representing active renal secretion, this capability was not used.  

For the results presented here, stochastic simulations were performed in order to incorporate 

known variability in the animal body weights or imprecision in the values of the physicochemical 

parameters, microsomal CLint and in vitro fup. For every set of input data (corresponding to 
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dosing of a single compound in a specified animal population), multiple iterations of the 

simulation were performed, with the values of the input parameters at each iteration being 

sampled randomly from the assumed distributions, these being either uniform or normal. Thus, 

variability was generated from the ranges or the means and standard deviations of the input data. 

Training Dataset. The set of in vivo data employed in training the model comprised 214 

instances of data (where an instance corresponds to a single plasma concentration-time profile) 

for 82 different compounds, and was derived from numerous published studies of intravenous 

dosing in rat. The compounds in this training set were drawn from many therapeutic areas and 

were selected for diversity in compound parameters. No attempt was made to avoid or eliminate 

compounds with non-linear pharmacokinetics or those subject to processes not explicitly 

modelled, such as active transport. 

For the majority of the training set compounds, the required model inputs were determined at 

Cyprotex. Values for logP, logD7.4 and pKa were obtained primarily using Sirius GLpKa 

apparatus (Sirius Analytical Instruments Ltd., UK), but in a small number of cases were 

generated using predictive software (ACD/PhysChem Batch, version 7.10, Advanced Chemistry 

Development, Inc., Toronto ON, Canada). Microsomal CLint and fup were determined in vitro 

through incubation with hepatic microsomes and equilibrium dialysis, respectively. These data 

were supplemented by values from the literature where these were available.  

Test Dataset. In order to objectively evaluate the performance of the model, an independent set 

of in vivo test data was constructed. This consisted of 194 instances of plasma concentration-time 

data for 134 discovery compounds dosed intravenously in rat. These data were supplied by 

several separate pharmaceutical/biotechnology companies, having been generated through their 
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internal pharmacokinetic studies, and the results presented here were derived in the absence of 

any prior knowledge of the in vivo pharmacokinetics or the chemical structures. 

The test set compounds were varied in terms of physicochemical properties, and represented 

diverse therapeutic areas. Many of the requisite model inputs for these compounds were 

determined at Cyprotex, although the companies supplying the in vivo data also provided certain 

of the in vitro data, which were obtained through a variety of methods. 

Calculation of the Plasma Concentration Weighted Mean Log Fold Error (wMLFE). For 

each pair of in vivo and simulated plasma concentration-time profiles, the log fold prediction 

error was determined at each simulated time point for which there were corresponding in vivo 

data, and the mean of these errors over all time points was calculated, to give an overall mean 

prediction ratio for each instance of simulated data. The wMLFE represents the weighted mean of 

these individual means. The weights used in the calculation arise from there being multiple 

instances and/or sources of in vivo data for several compounds, and hence the contribution of 

each individual log fold prediction error to the overall mean is weighted accordingly; i.e., so that 

each compound contributes equally, whatever the number of instances of in vivo data for that 

compound. 

Principal Components Analysis. The values of seven variables for the training set compounds 

were transformed by subtracting the mean of the value, and dividing by the standard deviation, so 

that each transformed variable had a mean of zero and a standard deviation of one. The selected 

variables were: fractional charge at pH 7.4; fraction unionized at pH 7.4; logD7.4; logP; fupLin; 

log10(CLint) and log10(MW). Principal components analysis (Mardia et al., 1979) was performed 

on the transformed data, and the scores of the training set compounds recorded. The first three 
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principal components explained 81% of the variance of the dataset. The variable values for the 

test set were normalized in the same way, using the means and standard deviations of the values 

for the training set compounds. The scores of the test set compounds in the coordinates of the 

principal components of the training set were recorded. 
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Results 

For any given set of input data, output from the PBPK model is in the form of a predicted plasma 

concentration-time profile. When stochastic simulations are performed for a single set of input 

data, each iteration generates a predicted profile, and hence the total output consists of a 

population of profiles that reflect the inherent uncertainty in the input data. Examples of typical 

simulation results, plotted on the same axes as the analogous in vivo data, are given in Fig. 3 for 

selected training set compounds and in Fig. 4 for a similar selection of test set compounds.  

The simulated profiles in Figs. 3A and B and Figs. 4A and B illustrate accurate estimation of 

plasma concentrations over time, for selected training set and test set compounds, respectively. 

There is little variation within the population of profiles generated for either clozapine (Fig. 3A) 

or two example compounds from the test set (Figs. 4A and B), and the fit of the model output to 

the single set of observed data is almost exact in each case. In contrast, Fig. 3B demonstrates 

some observed in vivo variability, in this instance for erythromycin, and a combination of 

predicted variability and uncertainty, generated from both known variability in the animal 

weights and multiple estimates of in vivo fup and CLint. 

Some other simulation results are shown in Figs. 3C and D and Figs. 4C and D. The median 

predicted profile for pentazocine deviates from the observed profile, but the range of predicted 

profiles encompasses the in vivo data (Fig. 3C); hence, the model results can still be considered 

acceptable. Fig. 3D indicates somewhat inaccurate estimation of the in vivo tissue distribution of 

phenytoin, resulting in a tendency to under-predict plasma levels, although there is clearly a high 

degree of variability in the observed data for this compound, which is reflected in the model 

output. Fig. 4D shows a similar, but more pronounced overestimation of tissue distribution for an 
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example test set compound. However, the elimination half life has been accurately predicted for 

the test set compound represented in Fig. 4C. 

For the remainder of the results presented here, the median of the population of predicted profiles 

generated from each set of input data was used as an individual estimate of the plasma 

concentration time course. In order to assess the overall performance of the model in terms of 

successfully predicting in vivo plasma levels, the plasma concentration wMLFE was determined 

for both the training and test sets; this statistic corresponds to the mean vertical deviation (in log 

units) of a simulated data point from a corresponding observed data point on a semi-log plot of 

plasma concentration versus time. The plasma concentration wMLFE values calculated for the 

training and test sets were 0.46 and 0.53, respectively, and hence the predicted plasma 

concentrations deviate from the observed values on average by around 0.5 log units. By way of 

illustration, the median predicted profiles shown in Fig. 3C and Fig. 4C both have an associated 

MLFE of approximately 0.5. 

The frequency distributions of the actual mean fold errors in plasma concentration prediction for 

both sets of compounds are shown in Fig. 5A and B. A high proportion (72%) of plasma 

concentration predictions for the training set compounds are on average within a factor of five 

above or below the observed data points, and just a few (9%) are more than 20-fold in error 

overall (Fig. 5A). Whilst the majority (65%) of the predictions for the test set compounds are 

again within fivefold of the observed data on average (Fig 5B), the mean prediction error is less 

than twofold for a lower percentage of the test set compounds, and more than 20-fold for a 

greater proportion of these, compared to the training set.  
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The nature of the test set compounds for which plasma concentrations were poorly predicted by 

the PBPK model was explored in more detail by means of a descriptive classification model – 

developed using the RPART method of the R statistical software system (http://cran.us.r-

project.org/doc/packages/rpart.pdf) – that provides some indication of biochemical and 

physicochemical commonalities between them (Fig. 6). Compounds demonstrating the 

characteristics of those that might be expected with a reasonably high degree of confidence to be 

poorly predicted, according to the classification model, were removed from the test set, including 

that for which the observed and predicted profiles are plotted in Fig. 4D. Thus, compounds with 

both logD < 1.95 and fup ≤ 0.065 were eliminated; these criteria define a particular area of 

property space within which the likelihood of obtaining a poor plasma concentration prediction 

(mean fold error greater than 20) is approximately 60%, containing just 13% of the test set 

compounds overall, but 65% of those for which the predictions were in error, on average, by a 

factor of more than 20. Outside this area, the likelihood of a plasma concentration prediction 

being similarly poor is just 5%.  

The frequency distribution of the plasma concentration mean fold prediction errors for the 

reduced test set (comprising 117 compounds) is shown in Fig. 5C. The error distribution pattern 

for this reduced set is somewhat different to that of the full set, with 73% of the predictions being 

within fivefold of the observed data, and a lower proportion being more than tenfold in error. The 

plasma concentration wMLFE for the reduced test set was 0.45, and therefore approximately the 

same as for the training set.  

Although the primary outputs from the PBPK model are the predicted in vivo plasma 

concentration-time profiles that are generated, these can be utilized for estimation of standard 

pharmacokinetic (PK) parameters of interest, including area under the concentration-time curve 
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(AUC) and elimination half-life (t½), allowing direct comparisons to be made with analogous in 

vivo data. Since different methods of extrapolating AUC from zero time to the first time point and 

from the last time point to infinity can vary in the estimates they yield, the simulation results 

were compared to observed data in terms of a standardized parameter, the dose-normalized AUC 

from the first to the last recorded time points (AUCt1-tlast-DN), as well as t½. 

The capability of the PBPK model to accurately predict the selected PK parameters in rat has 

been evaluated in terms of the median values and inter-quartile (IQ) ranges of the 

predicted/observed ratios, for both the training and test sets, as given in Table 1. The respective 

summary data indicate that the prediction of both AUCt1-tlast-DN and t½ for the training set 

compounds is generally successful. The median predicted/observed ratio is close to 1.0 for both 

parameters, and half of the predictions are on average within a range of approximately 0.5 to 1.5 

times the observed values, although the statistics do indicate a slight tendency to under-predict 

AUCt1-tlast-DN. The selected parameters are rather less accurately predicted for the test set 

compounds, as demonstrated by the greater deviation of the median predicted/observed ratios 

from a value of 1.0. Furthermore, the skew in the distribution of AUCt1-tlast-DN predictions is more 

apparent, whilst a notable over-prediction of t½ for many of the compounds is also indicated. 

The frequency distributions of the predicted/observed ratios of AUCt1-tlast-DN and t½, for both the 

training and test sets, are more clearly demonstrated by the histograms shown in Figs. 7 and 8. 

The predicted/observed distributions for AUCt1-tlast-DN are similar for both sets of compounds, in 

both qualitative and quantitative terms (Fig. 7). Around half of all the predictions are within a 

factor of two above or below the observed values, and almost 70% are within a factor of three. 

The predicted/observed ratios conform closely to a normal distribution, although a slight 

tendency to under-predict AUCt1-tlast-DN is evident. Conversely, there is an obvious discrepancy 
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between the training set and test set predicted/observed distribution patterns for t½ (Fig. 8). 

Estimation of this parameter for the training set is highly successful, with over 70% of the 

predictions being within twofold of the observed values, and more than 90% within threefold. 

Furthermore, the predicted/observed ratios are normally distributed. However, only 44% of the 

predicted test set t½ values are within a factor of two of the observed values, although 60% are 

within a factor of three. There is also a clear bias towards over-prediction of this parameter, with 

a significant number of predictions being between two and five times the observed values, and a 

few even higher. 

The performance of a predictive method, according to a given criterion, can also be represented 

graphically by means of a lift chart (Witten and Frank, 2000), such as that shown in Fig. 9. This 

plot illustrates the success rate of the PBPK model at selecting the 25% of the test set compounds 

with the largest values for AUCt1-tlast-DN (and therefore with the lowest plasma clearances). The 

horizontal axis shows the sample size as a percentage of the total number of compounds 

comprising the test set, whilst the vertical axis indicates the percentage of compounds correctly 

selected according to the stated criterion. The diagonal line represents the expected success rate if 

the selections were made at random, whilst the plot that would be generated by a 100% success 

rate is indicated by the line on the far left, which reaches a maximum (all selections correct) at a 

sample size equal to 25% of the total number of compounds. The actual performance of the 

PBPK model at ranking compounds according to AUCt1-tlast-DN is shown by the central line. The 

plot demonstrates that of the 25% of the test set compounds ranked by the PBPK model as having 

the largest values for AUCt1-tlast-DN, 61% have been correctly identified. This is clearly 

substantially greater than the level of success to be expected (25%) if the compounds were 

selected at random.  
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In order to visualize the multivariate distributions of the training and test set compounds in the 

input space of the PBPK model, the scores for the first versus second and third versus second 

principal components were plotted for the training and test sets (Figs. 10A and B, respectively). It 

can be seen from Fig. 10B that the training set compounds fall into three reasonably well-

separated groups. Furthermore, distinct physicochemical attributes can be ascribed to each of 

these groups. The compounds having their second principal component (PC) score less than zero 

(PC2 < 0) are strong bases, all having fractional charge at pH 7.4 of 0.56 or greater. The 

compounds with PC2 > 0 are acids and weaker bases, having fractional charge at pH 7.4 of 0.355 

or less (see Fig. 10A and B). This set of compounds can be sub-divided on the value of the third 

PC. The group of 12 compounds with PC3 > 1 are all strong acids. The other compounds, with 

PC3 < 1, are bases or weaker acids, with a fractional charge at pH 7.4 greater than -0.545 (Fig. 

10B). Thus, the three groups correspond to (i) strong bases, (ii) strong acids and (iii) 

weak/moderate acids and bases. The first PC is dominated by lipophilicity (logP, logD7.4), plasma 

protein binding and intrinsic clearance, and displays a continuum of values for the training set 

(Fig. 10A). 

The test compounds show some similarities, but also significant differences, to the training set 

scores. The first PC is again mostly a continuum, but with three outliers having PC1 > 4, 

compared to one for the training set. The distributions of the second and third PC values are, 

however, clearly different from those of the training set. The distributions for the test set are more 

continuous, so the separation into the three groups observed in the training set is not so clearly 

seen in the test set. Furthermore, whilst there are nascent clusters that correspond to those in the 

training set, the test set centres – particularly for groups (ii) and (iii) – are displaced relative to 

those of the training set. 
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Discussion 

The PBPK model is potentially the most powerful tool currently available for: predicting in vivo 

PK; investigating the physiological and chemical interactions that give rise to organism- and 

compound-dependent PK, and linking with pharmacodynamics (PD) to provide an integrated 

PK/PD view of therapeutic and/or toxic effects of xenobiotics. However, the lack of a generic 

model that can be applied to a wide range of compounds, and/or can utilize inexpensively- and 

reliably-determined inputs for any given compound has, thus far, prevented widespread adoption 

of the PBPK modelling approach for PK prediction. We have developed a generic PBPK model 

for the rat that overcomes this obstacle, and thereby facilitates the routine and cost-effective 

prediction of PK. In principle, a similar model can be derived for any species for which the 

relevant physiological data are available; we have described an analogous model for the human in 

the accompanying paper (Brightman et al., 2005).  

Recent developments in both the pharmaceutical industry and in those sectors of the 

manufacturing industry that produce environmental chemicals have increased the need for facile 

prediction of PK in man and other species. Within the pharmaceutical industry, the realization 

that consideration of pharmacokinetic and toxicity criteria during drug discovery will reduce the 

likelihood of costly failure during development has driven a greater requirement for PK data. 

Within the manufacturing industry, increasingly stringent international legislation concerning the 

safety of new and existing compounds necessitates quantification of the putative extent and 

duration of exposure in a variety of possible scenarios. At variance with the need to generate 

more PK data is the desire, both for cost and ethical reasons, to reduce animal experimentation 

where possible. The integration of in vitro ADME data and in silico methods can address this 
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dilemma, with PBPK modelling offering several advantages over alternative in silico or 

computational methods for the prediction of PK. 

The first such advantage is that a PBPK model is likely to be more robust than alternative 

predictive methods. A large proportion of the variation in the pharmacokinetic behaviour of 

compounds can be explained by the physiological and biochemical processes involved in 

xenobiotic distribution, metabolism and elimination that are, at least partially, independent of the 

properties of the compounds. These processes are represented by the parameters and differential 

equations of the PBPK model. Thus, for example, the approach of in vivo plasma clearance to a 

maximal value with increasing hepatic elimination is determined by the limiting effect of hepatic 

blood flow. Similarly, whilst the partitioning of compounds from plasma into tissues is 

compound dependent, the relative extent of the distribution of lipophilic and hydrophilic 

compounds is dependent on the volumes of adipose and muscle tissue, respectively, whilst 

differences in their distribution rates are determined, in part, by the specific perfusion rates of 

these tissues. Many alternative approaches to predicting pharmacokinetic behaviour rely upon 

explaining all of the variation between compounds through a statistical model, with consequent 

dependence on the training data composition. Application of such methods can be expected to 

result in inaccurate predictions when applied to areas of chemistry outside of, or poorly 

represented within, the training data. As we have illustrated (Fig. 10), there are distinct 

differences in physicochemical and ADME-related properties between marketed drugs and 

compounds typical of those in drug discovery. Consequently, a statistical model that has been 

trained using data for existing drugs will most likely have a limited ability to generalize to typical 

discovery compounds. Within the generic PBPK model, the use of such models has been 

restricted to calculation of a small number of internal variables. In addition, these internal models 
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have been built using data from different, though overlapping, sets of compounds. These 

measures reduce the risk of poor prediction when the PBPK model is applied to novel areas of 

chemistry. The model validation results described herein demonstrate that the pharmacokinetic 

properties of the outlying test set compounds (see Fig. 10A) are well predicted, despite these 

compounds being outside the parameter space of the training set. 

A second advantage is that the PBPK model predicts plasma concentration-time profiles, from 

which all required PK parameters can be calculated using standard formulae. By contrast, other 

approaches are usually restricted, in practice, to the prediction of one parameter. Consequently, if 

a number of parameters are to be considered in decision-making, corresponding models must be 

obtained for each. Assuming reliable models can be derived for the parameter space being 

studied, the individual parameters predicted by each model (for example, clearance, half-life and 

volume of distribution) must be consistent with each other in order to be of value in decision-

making. A PBPK model predicts a consistent set of standard parameters for a given compound, 

calculated from a single predicted plasma profile. In addition, the simulated plasma or tissue 

profiles can be used as a basis for determining additional, non-standard parameters, such as the 

time following dosing for which the plasma or tissue concentration is greater than a specified 

value, which can be related to therapeutic and/or toxic thresholds and therefore used to estimate 

relevant exposure. 

One possible role of the PBPK model in drug discovery is to enable drug 

metabolism/pharmacokinetics (DMPK) scientists to reliably identify those compounds that are 

likely to have suitable in vivo PK. The model provides two sets of data to this end: the predicted 

plasma and tissue concentration-time profiles, and PK parameters derived from the plasma 

profile. Either, or both, can be used in compound selection. If, for instance, the in vivo potency is 
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known or can be estimated, then the tissue or plasma profiles can be used to select compounds 

that have the longest durations at concentrations greater than that required for therapeutic effect. 

Alternatively, total exposure, as measured by dose-normalized AUC, may be used as a selection 

criterion. 

The effectiveness of PK parameter prediction can be determined by relative accuracy and/or the 

ability to rank compounds successfully. Anecdotally, we have observed that drug discovery 

DMPK scientists would value tools enabling predictions to be made within a three- or sometimes 

twofold margin of error. We have shown that the PBPK model predicts t½ and AUCt1-tlast-DN 

within threefold of the observed values for, respectively, 60% and almost 70% of a test set 

composed of discovery compounds. Assessment of the ranking capability of a predictive method 

can be performed by means of a lift chart, which can be used to quantitatively predict the likely 

consequences of making a particular operational decision. We have illustrated (see Fig. 9) an 

arbitrary scenario in which the identification of compounds with AUCt1-tlast-DN in the top quartile 

of the test set is required. Using the generic rat PBPK model to select the 25% of the test set with 

the highest AUCt1-tlast-DN results in 61% of the required compounds being selected, corresponding 

to an enrichment of more than 2.4-fold compared to random selection. In contrast, making the 

selection based on the 25% of compounds with the lowest intrinsic clearance results in 39% of 

the required compounds being selected, an enrichment of less than 1.6-fold (not shown). 

Specifying different selection criteria enables a series of curves to be generated, from which the 

potential benefits of the different strategies, in terms of the enrichment of compound selection, 

can be compared. 

We have described our findings concerning the current version of a generic rat PBPK model, but 

model improvement is ongoing. As for statistical model development, additional compounds can 
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be added to the optimization training set, and additional descriptors assessed for their ability to 

predict the optimization parameters. However, a further advantage of the PBPK model is that its 

predictive capability can be improved by adding new features that represent additional 

physiological or biochemical processes, or by improving extant features of the model. The 

motivation can be to understand specific determinants of observed PK and/or to address 

shortcomings in the predictions. In the latter case, prioritization can be guided by identified 

weaknesses in the model. Thus, the observation that hydrophilicity coupled with high plasma 

protein binding is a strong indicator of poor plasma concentration prediction has guided us to 

improve the modelling of renal clearance. Additionally, we are developing a model of the blood-

brain barrier, initially as a passive permeability barrier. These developments should lead to both 

significantly more accurate prediction of plasma PK, and more realistic prediction of the time 

course of compound concentration in the brain. Other factors such as non-linearity, specific 

transport processes and population effects, which are not explicitly described in the current 

model, could also be explored using the PBPK approach.  

Developing the PBPK model for the rat has enabled us to verify that it is possible for such a 

model to generalize reliably outside the property space of the training set. However, the greater 

value to industry lies in being able to predict PK for human subjects exposed to xenobiotics. The 

work we have carried out in developing and validating a similar generic PBPK model for human 

is described in the accompanying paper (Brightman et al., 2005). 
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Legends for Figures 

FIG. 1. The ‘diffusion-limited’ model for tissue distribution, in which the tissue is sub-divided 

into compartments representing the capillary bed, interstitial fluid and intracellular space. 

Q is the blood flow into and out of the capillary bed; PvSv and PmSm are the permeability-surface 

area products for movement across the capillary wall (v) and cell membrane (m), respectively. 

 

FIG. 2. A simple physiological model for renal clearance, adapted from Katayama et al. 

(Katayama et al., 1990). 

The subscripted terms are: CB, capillary bed; IF, interstitial fluid; IC, intracellular space. QKI is 

the kidney blood flow rate; GFR and QUR are the glomerular filtration rate and urine flow rate, 

respectively; GFR-QUR gives the rate of fluid reabsorption that is able to effect compound 

reabsorption through solvent drag. S represents active secretion of compound, whilst R represents 

bi-directional movement through passive diffusion.  
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FIG. 3. Predicted and observed plasma concentration-time profiles for selected training set 

compounds: A, clozapine; B, erythromycin; C, pentazocine; D, phenytoin. 

The in vivo data (filled symbols) are taken from the literature (Colburn and Gibaldi, 1977; 

Ichimura et al., 1983; Hanada et al., 1997; Ma and Lau, 1998; Taninaka et al., 2000). The 

simulated data are the median values (solid line) of a population of predicted profiles generated 

from 100 stochastic simulations; also indicated are the 10th (dashed line) and 90th (dotted line) 

percentiles of the population. 

 

FIG. 4. Predicted and observed plasma concentration-time profiles for selected test set 

compounds; A, B, C and D correspond to four individual discovery compounds. 

The in vivo data (filled symbols) are for proprietary discovery compounds. The simulated data are 

the median values (solid line) of a population of predicted profiles generated from 100 stochastic 

simulations; also indicated are the 10th (dashed line) and 90th (dotted line) percentiles of the 

population. 

 

FIG. 5. Frequency distribution of the plasma concentration mean fold errors for the training set 

(A) and test set (B) compounds, and for a reduced test set (C). 

The training set comprises 82 drugs, whilst the test set is composed of 134 discovery compounds; 

the reduced test set (n = 117) excludes compounds in a particular area of property space for 

which the accuracy of the PBPK model plasma concentration predictions is likely to be 

questionable. 
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FIG. 6. Descriptive classification model for the expected accuracy of the PBPK model in 

predicting plasma levels for the test set compounds. 

For the purposes of deriving the illustrated model, a poor plasma concentration prediction was 

defined as one with mean fold error > 20; all other results were considered satisfactory. 

According to the model, the criteria logD < 1.95 and fup ≤ 0.065 define an area of property space 

within which the likelihood of obtaining a poor prediction is approximately 60%, represented by 

13% of the full test set, but 65% of those compounds for which the plasma concentration 

predictions were deemed poor. 

 

FIG. 7. Frequency distribution of the predicted/observed ratios of AUCt1-tlast-DN for the training 

set (A) and test set (B) compounds. 

The training set comprises 82 drugs, whilst the test set is composed of 134 discovery compounds. 

 

FIG. 8. Frequency distribution of the predicted/observed ratios of t½ for the training set (A) and 

test set (B) compounds. 

The training set comprises 82 drugs, whilst the test set is composed of 134 discovery compounds. 
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FIG. 9. Lift chart indicating the success rate of the PBPK model in selecting test set compounds 

with high AUCt1-tlast-DN. 

The section criterion was defined as the 25% of the test set compounds with the largest values for 

AUCt1-tlast-DN. The dotted line represents the expected success rate if the selections were made at 

random, the dashed line indicates the maximal success rate and the solid line shows the actual 

performance of the PBPK model. 

 

FIG. 10. Principal components scores of transformed values of selected variables for the training 

set (filled diamonds) and test set (hollow triangles) compounds. 

A, scores for the 1st principal component versus scores for the 2nd principal component; B, scores 

for the 3rd principal component versus scores for the 2nd principal component. The values for 

seven selected variables for the training set compounds were transformed by subtracting the mean 

of the value, and dividing by the standard deviation, so that each transformed variable had a mean 

of zero and a standard deviation of one. The variable values for the test set were normalized in 

the same way, using the means and standard deviations of the values for the training set 

compounds.  
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Tables 

TABLE 1 

Summary of the AUCt1-tlast-DN and t½ predicted/observed ratio distributions for the training set 

and test set compounds. 

 Training Set Test Set 

Parameter Median IQ Range Median IQ Range 

AUCt1-tlast-DN 0.83 0.44-1.46 0.67 0.36-1.39 

t½ 1.02 0.65-1.66 1.75 0.92-4.05 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


Capillary Bed

Interstitial
Fluid

Intracellular
Space

Q Q

PvSv

PmSm

FIG. 1.

T
his article has not been copyedited and form

atted. T
he final version m

ay differ from
 this version.

D
M

D
 Fast Forw

ard. Published on O
ctober 12, 2005 as D

O
I: 10.1124/dm

d.105.004804
 at ASPET Journals on April 19, 2024 dmd.aspetjournals.org Downloaded from 

http://dmd.aspetjournals.org/


KICB

KIIF

KIIC

Renal Tubule

Urine

GFR

QKI

QUR

QK I - QUR

S R

GFR - QUR

FIG. 2.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


A

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.5 1.0 1.5 2.0

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

D

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

B

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

C

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

FIG. 3.

T
his article has not been copyedited and form

atted. T
he final version m

ay differ from
 this version.

D
M

D
 Fast Forw

ard. Published on O
ctober 12, 2005 as D

O
I: 10.1124/dm

d.105.004804
 at ASPET Journals on April 19, 2024 dmd.aspetjournals.org Downloaded from 

http://dmd.aspetjournals.org/


B

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 4 8 12 16 20 24

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

D

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 4 8 12 16 20 24

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 4 8 12 16 20 24

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

C

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6

Time (h)

P
la

sm
a 

C
o

n
ce

n
tr

at
io

n
 (

m
g

/m
l)

FIG. 4.

T
his article has not been copyedited and form

atted. T
he final version m

ay differ from
 this version.

D
M

D
 Fast Forw

ard. Published on O
ctober 12, 2005 as D

O
I: 10.1124/dm

d.105.004804
 at ASPET Journals on April 19, 2024 dmd.aspetjournals.org Downloaded from 

http://dmd.aspetjournals.org/


A

0

20

40

60

1-2 2-5 5-10 10-20 >20

Mean Fold Error

F
re

q
u

en
cy

 (
%

)

B

0

20

40

60

1-2 2-5 5-10 10-20 >20

Mean Fold Error

F
re

q
u

en
cy

 (
%

)

C

0

20

40

60

1-2 2-5 5-10 10-20 >20

Mean Fold Error

F
re

q
u

en
cy

 (
%

)

FIG. 5.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


logD < 1.95

fup ≤ 0.065

yes no

yes no

Poor
Prediction

Satisfactory
Prediction

Satisfactory
Prediction

FIG. 6.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


A

0

20

40

60

0.02-0.05 0.05-0.2 0.2-0.5 0.5-2 2-5 5-20 20-50

Predicted/Observed Ratio

F
re

q
u

en
cy

 (
%

)

B

0

20

40

60

0.02-0.05 0.05-0.2 0.2-0.5 0.5-2 2-5 5-20 20-50

Predicted/Observed Ratio

F
re

q
u

en
cy

 (
%

)

FIG. 7.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


A

0

20

40

60

80

0.02-0.05 0.05-0.2 0.2-0.5 0.5-2 2-5 5-20 20-50

Predicted/Observed Ratio

F
re

q
u

en
cy

 (
%

)

B

0

20

40

60

80

0.02-0.05 0.05-0.2 0.2-0.5 0.5-2 2-5 5-20 20-50

Predicted/Observed Ratio

F
re

q
u

en
cy

 (
%

)

FIG. 8.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


0

20

40

60

80

100

0 20 40 60 80 100

Compounds Selected (% of Total)

S
u

cc
es

s 
R

at
e 

(%
)

FIG. 9.

T
his article has not been copyedited and form

atted. T
he final version m

ay differ from
 this version.

D
M

D
 Fast Forw

ard. Published on O
ctober 12, 2005 as D

O
I: 10.1124/dm

d.105.004804
 at ASPET Journals on April 19, 2024 dmd.aspetjournals.org Downloaded from 

http://dmd.aspetjournals.org/


A

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

-3 -2 -1 0 1 2 3

2nd Principal Component

1s
t 

P
ri

n
ci

p
al

 C
o

m
p

o
n

en
t

B

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

2nd Principal Component

3r
d

 P
ri

n
ci

p
al

 C
o

m
p

o
n

en
t

FIG. 10.

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 12, 2005 as DOI: 10.1124/dmd.105.004804

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/

