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Abstract 
 

The challenge of predicting the metabolism or toxicity of a drug in humans has been approached 

using in vivo animal models, in vitro systems, high throughput genomics and proteomics methods and 

more recently computational approaches. Understanding the complexity of biological systems requires a 

broader perspective rather than focusing on just one method in isolation for prediction. Multiple methods 

may therefore be necessary and combined for a more accurate prediction. In the field of drug metabolism 

and toxicology we have seen the growth in recent years of computational quantitative structure activity 

relationships (QSAR) as well as empirical data from microarrays. In the current study we have further 

developed a novel computational approach MetaDrugTM that: 1) predicts metabolites for molecules based 

on their chemical structure, 2) predicts the activity of the original compound and its metabolites with 

various ADME/Tox models, 3) incorporates the predictions with human cell signaling and metabolic 

pathways and networks and 4) integrates networks and metabolites, with relevant toxicogenomic or other 

high throughput data. We have demonstrated the utility of such an approach using recently published data 

from in vitro metabolism and microarray studies for Aprepitant, L-742694, Trovofloxacin, 4-

hydroxytamoxifen and artemisinin and other artemisinin analogs to show the predicted interactions with 

CYPs, PXR and P-gp, the metabolites and the networks of genes that are affected. As a comparison we 

used a second computational approach MetaCoreTM, to generate statistically significant gene networks 

with the available expression data. These case studies demonstrate the combination of QSAR and systems 

biology methods. 
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Predicting the metabolism and toxicity of a drug in humans can use resources that include in vivo 

animal models, in vitro systems, high throughput genomics and proteomics methods (Gerhold et al., 2001; 

Thomas et al., 2001) to generate empirical data for analysis and decision making. The amount and 

complexity of the data being generated is increasing, requiring not only judicious use of which 

experimental methods to use but also novel tools for visualization and analysis. More recently within drug 

disposition and toxicology, in vitro approaches for generating data with drug metabolizing enzymes, 

transporters, ion channels and receptors has been used for computational approaches including 

quantitative structure activity relationships (QSAR)(Ekins and Swaan, 2004). These methods have been 

used widely and applied for predicting absorption, distribution, metabolism, excretion and toxicity 

(ADME/TOX) (Ekins et al., 2005d) properties either at the level of the individual protein (e.g. CYPs 

(Balakin et al., 2004a; Balakin et al., 2004b)) or specific properties (e.g. absorption (Zhao et al., 2001; 

Niwa, 2003)). Many of these ADME/Tox proteins are also known to be regulated by nuclear hormone 

receptors or other transcription factors.   

We are also presently witnessing the beginning of a new approach which aims to understand 

organisms from computationally generated networks of protein and ligand interactions (Barabasi and 

Oltvai, 2004). To this point, high throughput data such as that derived from microarrays has mainly been 

visualized by clustering approaches (Eisen et al., 1998) which limits associations to the actual genes on 

the microarray and provides little if any information on the relationship of the genes to each other. In 

contrast, network building tools such as MetaCore (Ekins et al., 2005b) enable the analysis of such data in 

the context of all known interactions when using a database as the source. Various software resources 

have been applied to modeling the networks of nuclear hormone receptors and their connections with 

additional genes and small molecules using a manually curated database (Ekins et al., 2005c). A second 

study has indicated how a natural language processing method, CCNet was used to show the genes 
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regulated by the nuclear hormone receptor FXR (Apic et al., 2005). These automated methods enable a 

more complete understanding of the complexity of these transcriptional factors (Ekins et al., 2002; Ulrich, 

2003; Plant, 2004). Ultimately the pathways generated rely on the quality of the content of the underlying 

database of literature interactions. These networks can also be used to overlay and explain experimental 

data from genomic and proteomic studies to further aid in analysis of this complex data. We are hence 

seeing a convergence of the different methods described above to create a field we have termed systems-

ADME/TOX (Ekins et al., 2005d). 

 We have built on the previously described efforts to generate networks of nuclear hormone 

interactions (Ekins et al., 2005c) as well as interpret microarray data for MCF-7 cells treated with 4-

hydroxytamoxifen (OHT) and estrogen (Ekins et al., 2005c; Nikolsky et al., 2005) to develop and apply a 

novel method for systems-ADME/TOX (Ekins et al., 2005d). This uses a subset of the MetaCoreTM 

database, which is considerably enhanced with the previously described key drug metabolizing enzymes, 

their substrates, nuclear hormone receptors and other ADME/TOX related proteins to represent the 

backbone of the system termed MetaDrugTM. In addition we have used integrated human drug metabolism 

reactions (Korolev et al., 2003) and QSAR methods (Ekins et al., 2003; Balakin et al., 2004a; Balakin et 

al., 2004b) to enable the inference of potential interactions from an input molecular structure. These 

predicted interactions can also be visualized on networks alongside the empirical data and high 

throughput data (such as microarray) when available. As there are only a very limited number of 

molecules for which there is a complete published dataset for drug metabolism including characterization 

of the enzymes involved and microarray or other high throughput data, we were restricted to datasets with 

a combination of human or animal data which we recognize is far from ideal. However using mechanisms 

within both MetaDrugTM and MetaCoreTM to map gene orthologs for different species we are able to 

visualize this data. This mixture of data types, sources and species also presents some difficulty for 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 6

interpretation due to the differences in metabolism and toxicity between species, but there are presently 

few available alternatives available unless one has the resources available in a pharmaceutical company to 

generate such complete datasets. We have therefore analyzed recently published data from in vitro and 

microarray studies as test cases with this MetaDrugTM system. This preliminary study provides examples 

of how the integration of a database of ADME/Tox information, metabolism rules and QSAR methods 

may be used to generate predictions and analyze experimental microarray data relevant to drug disposition 

and toxicity.  

 

Materials and Methods 

Data annotation and software programming. The development of the underlying MetaCoreTM 

and MetaDrugTM databases (GeneGo, St Joseph, MI) have been described in detail previously (Ekins et 

al., 2005b; Ekins et al., 2005c; Nikolsky et al., 2005). For example, MetaDrugTM is an interactive, 

manually annotated database derived from literature publications on proteins and small molecules of 

relevance to drug disposition and toxicology in humans. MetaDrugTM was developed with an Oracle 

version 9.2.0.4 Standard Edition (Oracle, Redwood Shores, CA) based architecture for the representation 

of biological functionality and integration of functional, molecular, or clinical information (Bugrim et al., 

2004). Both MetaDrugTM and MetaCoreTM software runs on an Intel-based 32 bit server running RedHat 

Linux Enterprise 3 AS (RedHat, Raleigh, NC) and the web server ran Apache 1.3.x/mod_perl 

(http://perl.apache.org/start/index.html). Software on the server side was written in Perl while the client 

side required HTML/JavaScript and the Macromedia Flash Player Plug-in (Macromedia Inc, San 

Francisco, CA).  

In addition to the database of ADME/Tox related proteins and small molecules within 

MetaDrugTM we have integrated cheminformatics tools by incorporating the Accord (Accelrys, San 
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Diego) Oracle plugin for searching and querying the molecular structure database. A ChemDraw ActiveX 

version 8 or higher plugin (CambridgeSoft, Cambridge, MA) for structure sketching is also integrated in 

the MetaDrugTM interface. Approximately 70 human metabolic reaction rules (Supplemental Table 1, 

available online) are included in MetaDrugTM  and represents an expanded version of the subset of rules 

previously published (Korolev et al., 2003). These metabolic reactions now include many other phase I 

and II reactions that have been described elsewhere (Ekins et al., 2005a). The prioritization of metabolites 

was achieved using a modified version of the method described previously (Boyer and Zamora, 2002) in 

which we have used the MetaDrugTM database to calculate the occurrence frequency of metabolites 

relating to the reaction rules. This occurrence frequency is then assigned as a negative log value to 

predicted molecules, the larger the score then the higher the frequency of similar metabolites observed in 

our database of literature metabolic information for humans. These rules were coded in a Perl script file 

used by the proprietary MetaDrugTM software. The panel of QSAR models (Ekins et al., 2005a) were 

generated using published data for various CYPs (Korolev et al., 2003), transporters, ion channels and 

nuclear hormone receptors (Ekins and Swaan, 2004) gathered from many sources. This data was then 

used with a recursive partitioning tool ChemTreeTM (GoldenHelix, Boseman, MT) (Young et al., 2002; 

Ekins et al., 2003) to generate the proprietary models stored in MetaDrug. The QSAR models were also 

validated by leaving groups out or using other external test sets. The correlation or Spearman’s Rho value 

was then used as assessment criteria for model utilization. These QSAR models were integrated in 

MetaDrugTM, such that after sketching a molecule or selecting a file of structures, this could then be 

processed to generate metabolites and QSAR predictions as defined by the user. The similarity of the 

input molecules to those in the individual QSAR model training sets was calculated using the Tanimoto 

coefficient (Willet, 2003) using Accord software. The Tanimoto coefficient is: a /(a+b+c) were a= the 

number of bits common to both the query and target structures, b= the number of bits exclusively in the 
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query structure, c= the number of bits exclusively in the target structure. In this case a value of 1 indicates 

the molecule is identical to one in the training set. As this value decreases, the less similar the molecule is 

to molecules in the training set. The proteins in the MetaDrug database that relate to the specific QSAR 

models e.g. CYP3A4 were linked such that predictions could then be visualized as a network of 

interactions radiating from that protein. ChemTreeTM was also integrated into MetaDrugTM to allow the 

user to generate QSAR models for integration within the software from their own data. MetaDrugTM and 

MetaCoreTM can be freely evaluated by contacting GeneGo (www.genego.com). 

Generation of metabolite and QSAR model predictions Molecules were either sketched in the 

ChemDraw pluggin window or loaded from a mol or sdf file (Figure 1). The molecules (Figure 2) were 

then processed through the user defined metabolite rules and QSAR models developed with literature data 

(CYPs, P-gp, PXR etc) (Balakin et al., 2004a; Balakin et al., 2004b). The user can specify which 

metabolic reaction rules and QSAR models are used as well as specify upper and lower prediction 

thresholds as a means to filter the molecules prior to visualizing on networks. The previously described 

network building algorithms (Ekins et al., 2005c) are used for visualizing the predicted interactions of 

metabolites or input molecules with the related proteins in MetaDrugTM. We were able to use the known 

molecules with metabolic pathways to test the software and predict interactions with these proteins as a 

network (Ekins et al., 2005a).  

Visualization of microarray data on gene networks in MetaDrug. We have previously described 

how data from microarray studies can be imported into MetaDrugTM on the client side as a tab-delimited 

file (Ekins et al., 2005c). In this study we have used microarray data from livers of rats after treatment 

with L-742694 (structurally similar to Aprepitant) (Hartley et al., 2004), human hepatocytes treated with 

Trovofloxacin (Liguori et al., 2005) and G0-arrested MCF-7 breast cancer cells treated with OHT (Hodges 

et al., 2003). In addition we have visualized the TaqMan real time PCR data for human hepatocytes and 
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LS174T cells treated with Artemisinin (Burk et al., 2005) or other artemisinin analogs (Efferth and Oesch, 

2004). In most cases it is possible to extract the significant up / down regulated genes with the accession 

numbers from the pdf files of the publication (Hartley et al., 2004), in other cases the data could be 

downloaded (Hodges et al., 2003) from the NIEHS website 

http://dir.niehs.nih.gov/microarray/datasets/home-pub.htm) or extracted from supplemental files (Liguori 

et al., 2005) before it was imported into MetaDrugTM. In some cases it was necessary to convert the gene 

identifiers from accession numbers to Locuslink identifiers using DAVID (Dennis et al., 2003). The 

expression intensity values could then be uploaded in MetaDrugTM to generate a gene network using the 

auto expand network algorithm.  

The auto expand algorithm starts with a number of root nodes as specified by the user and builds 

sub-networks around every object from the uploaded set consisting of nearest neighbors. The expansion 

halts when the sub-networks intersect. The objects that do not contribute to connecting sub-networks are 

automatically truncated and there is no user control over the size of the network. Each connection 

represents a direct, experimentally confirmed, physical interaction between the objects. If a user is 

building a network around one node only the network generally consists of the nearest neighbors and their 

connections within 1-2 steps. The auto expand algorithm provides a means to look up one or more genes 

of interest and identify regulatory cascades that lead to or from the gene(s) of interest. These networks 

may become quite complex so it is likely that some filtering may be necessary to simplify the 

visualization. 

Microarray data from rats are mapped onto the human networks using the gene ortholog 

information within MetaDrugTM. In some cases it was also possible to visualize predicted metabolite 

interactions with proteins and overlay the experimental expression data simultaneously. 
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Visualization of microarray data on gene networks in MetaCore and statistics. MetaDrugTM contains a 

subset of the MetaCoreTM database of manually annotated interactions as well as only 2 of the 7 currently 

available algorithms. Therefore we have used all of the available microarray data gene lists previously 

analyzed with the MetaDrugTM ‘auto expand’ algorithm and additionally analyzed them in MetaCoreTM 

using the ‘analyze networks’ algorithm. This algorithm builds on the Dijkstra's ‘shortest path’ algorithm 

and takes a list of root nodes and for each node creates shortest paths networks to the other root nodes in 

the list and stops the network at a size defined by the user in the advanced options. This process is 

repeated iteratively until every node from the list is included in at least one network. The end-result of this 

is that it essentially fragments the “super-network” using the chosen nodes, down into sub-networks.  

Each subnetwork is associated with a Z-score, G-score and p-value which rank the sub-networks 

according to saturation with the objects from the initial gene list. The Z-Score ranks the Analyze Network 

algorithm’s sub-networks in regards to their saturation with genes from the experiment. A high Z-Score 

means the network is highly saturated with genes from the experiment. The G-Score combines the Z-

Score and the sum of the squares of the interactions to and from each of the nodes not related to the initial 

list. The value for the K coefficient can be specified in the advanced options section for the Analyze 

Network algorithm. The G-Score downgrades the Z-Score if there are high degree nodes that are not from 

the experiment in the sub-network. So, in general, a highly positive G-Score means the network is highly 

saturated with genes from the experiment and the network contains few to no high degree nodes not in the 

experiments; and a highly negative G-Score means there are many high degree nodes in the network that 

are not from the experiment. The p-Value is used to initially rank the sub-networks. The P-values 

throughout MetaCore - for maps, networks and processes are all calculated using the same basic formula: 

a hypergeometric distribution where the p-value essentially represents the probability of particular 

mapping arising by chance, given the numbers of genes in the set of all genes on 
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maps/networks/processes, genes on a particular map/network/process and genes in the experiment. This 

function uses the same variables as the Z-Score. The equation for the Z-score, G-score and p value 

calculations is described below. 

 

 

 

 
Where:  

N - total number of nodes in MetaCore database 

R - number of the network's objects corresponding to the genes and proteins in your list 

n - total number of nodes in each small network generated from your list 

r - number of nodes with data in each small network generated from your list 

Vi - number of links to/from i-th node 

{n/r} - denotes the set of nodes in a small network that are not related to user's list 

 

K 
- user-specified coefficient - used to "demote" networks with high-degree nodes that do not 
correspond to genes/proteins in user's list 

 

Gene-ontology processes are also mapped to the gene list and individual networks (see below). 

The analyze networks algorithm is also used with raw data to present multiple pathways that may be 

statistically feasible for connecting the nodes from the input list with other nodes in the database via 

shortest pathways. The advantage of this network is that it may find a well connected cluster of root nodes 

without any predefined restrictions from the user and therefore presents more flexibility in the 

connections possible.   
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Results  

Generation of metabolite and QSAR model predictions. In the current study we have used the 

MetaDrugTM platform (Figure 1) to generate metabolism and QSAR predictions for Aprepitant, L-

742694, Trovofloxacin, OHT and Artemisinin. With Aprepitant, MetaDrugTM produced 37 possible 

metabolites including 1 of the 4 initial metabolites recently identified, namely the major initial metabolite 

Aprepitant M1 (predicted log OC -1). Aprepitant was predicted to have a relatively high affinity for 

CYP3A4 Km (predicted, 15 µM; similarity score = 0.78) CYP3A4 Ki (predicted, 13.5 µM; similarity 

score = 0.78) and interact with PXR (predicted to bind, probability = 0.89 similarity score = 0.77). In the 

latter case using this classification model values closer to 1 represent PXR ligands and values closer to 0 

are unlikely to be PXR ligands. In contrast 36 possible metabolites were predicted for L-742694 which 

was indicated to have an affinity for CYP3A4 Km (predicted, 14.8 µM; similarity score = 0.75) CYP3A4 

Ki (predicted, 8.1 µM; similarity score = 0.76) and interact with PXR (predicted to bind, probability = 

0.58 similarity score = 0.77). MetaDrug produced 34 metabolites for Trovafloxacin including the major 

circulating metabolite Trovafloxacin glucuronide M1 (predicted log OC - 0.9), acetylated Trovafloxacin 

M3 (-1.3) and Trovafloxacin sulphate M4 (predicted log OC – 2.46). MetaDrug produced 28 metabolites 

for OHT including Endoxifen (predicted log OC -1) and 3,4-dihydroxytamoxifen (predicted log OC -

0.97). OHT had a relatively high affinity for CYP3A4 Km (predicted, 55 µM; similarity score = 1), is also 

an inhibitor for P-gp (predicted, 15.1 µM; similarity score = 0.81), is further metabolized by phenol and 

estrogen sulfotransferases (SULT1A1Km model predicted 17.4 µM, similarity 1) and is an inducer of PXR 

(predicted to bind, probability 0.90, similarity score = 1). MetaDrug produced 17 metabolites for 

Artemisinin including dihydroartemisinin (Log OC -5) and many hydroxylated metabolites (log OC -

0.81). In addition predictions with various QSAR models indicated that CYP2B6 (13.4 µM, similarity 
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0.63), CYP3A4 (60.2 µM, similarity 0.7), PXR (predicted to bind, probability = 0.94 similarity 0.63), P-

gp substrate (0.53, similarity 0.7), P-gp inhibitor (64.5 µM, similarity 0.7) were important.  

Visualization of microarray data on gene networks in MetaDrug. Microarray data from rat livers 

after treatment with L-742694 was uploaded into MetaDrug and 17 out of 44 gene identifiers mapped in 

the database (Hartley et al., 2004). These genes had been identified from a 25K rat microarray were a p-

value (< 0.01) and magnitude of regulation (log 10 ratio > 0.5) were considered significant (Hartley et al., 

2004). After generating a network this data was visualized alongside the predicted interactions derived 

computationally from the QSAR models for the similar molecule Aprepitant (Figure 3). In this case 

CYP3A4 was upregulated in the experiment with L-742694 indicative of induction and this enzyme was 

also predicted to metabolize Aprepitant. Microarray data from human hepatocytes treated with 

Trovafloxacin (Liguori et al., 2005) was uploaded into MetaDrug and 87 out of 141 gene identifiers 

mapped in the database. These genes had been selected from an Affymetrix human genome U133A array 

were the p-value less than or equal to 0.01 was considered significant (Liguori et al., 2005). In this case 

the microarray data does not appear to directly impact drug metabolism (data not shown). Microarray data 

from human MCF-7 cells treated with OHT (Hodges et al., 2003) was uploaded in to MetaDrug and 1446 

out of 1617 gene identifiers mapped in the database (Supplemental Figure 1A). This data was obtained 

raw from the microarray studies previously published (Hodges et al., 2003). Both CYP3A4 and P-gp 

(MDR1) were up regulated in this dataset, indicating that this molecule may regulate its own transport and 

metabolism. TaqMan real time PCR data for human hepatocytes and LS174T cells treated with 

Artemisinin demonstrated induction of CYP3A4, CYP2B6 and MDR1 (Burk et al., 2005). This small 

dataset of uploaded genes was uploaded after assigning LocusLink identifiers. 3 of 3 genes were 

accessible (Supplemental Figure 1B). A second dataset used the NCI mRNA expression data in 60 cell 

lines after treatment with Artemisinin and related compounds (Efferth and Oesch, 2004). These genes 
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were selected from an initial list of 170 genes following cluster analysis into 3 groups using the complete 

linkage method, were mRNA expression correlated with cytotoxicity IC50 data (Efferth and Oesch, 2004). 

The genes in cluster 1 and 2 were uploaded in MetaDrug and 28 of 36 genes mapped in the database some 

of which were present on the network of predicted interactions (Supplemental Figure 1C). 

Visualization of microarray data on gene networks in MetaCore. The same microarray datasets 

uploaded in MetaDrugTM previously, were evaluated in MetaCoreTM with the analyze network algorithm. 

The most statistically significant network based on the p-value (in parenthesis) as described above was 

generated in all cases. For L-742694 17 of 44 genes were uploaded and this gene list mapped onto the 

following GO processes using an approach similar to the EASE tool (Hosack et al., 2003): xenobiotic 

metabolism (9.12e-13), steroid metabolism (8.84e-12), electron transport (8.53e-11), lipid metabolism (1.98e-

07), icosanoid metabolism (4.79e-07), metabolism (3.00e-06), estrogen catabolism (1.02e-05), retinal 

metabolism (2.03e-05), retinoic acid metabolism (3.38e-05) and aldehyde metabolism (5.07e-05). A network 

was generated from this gene list (Figure 4A, p = 6.18e-36, Z-score 20.33) which in turn mapped to the 

following GO processes ; electron transport (1.058e-20), steroid metabolism (7.31e-10), xenobiotic 

metabolism (1.04e-08), icosanoid metabolism (1.94e-08), lipid metabolism (8.51e-07), eye morphogenesis 

(1.28e-05), drug metabolism (1.32e-05), regulation of heart contraction (6.57e-05), arachidonic acid 

metabolism (7.89e-05), retinal metabolism (7.89e-05), retinoic acid metabolism (1.31e-04) and vitamin 

biosynthesis (1.31e-04). The xenobiotic metabolism GO process was also highlighted on this network 

(Figure 4B). 

For the Trovafloxacin dataset, 87 of 141 genes were uploaded and this gene list mapped onto the 

following GO processes signal transduction (4.37e-09),protein-nucleus import, docking (7.56e-07), 

intracellular signaling cascade (3.88e-05), cyclic nucleotide metabolism (8.18e-05), thioredoxin pathway 

(1.02e-04), cGMP-mediated signaling (3.04e-04), cGMP catabolism (3.05e-04), germ cell migration (3.05e-
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04), protein transport (3.05e-04) and protein-nucleus import (3.28e-04). A network was generated from this 

gene list (Supplemental Figure 2A, p = 4.50e-44, Z-score 21.36) which in turn mapped to the following 

GO processes: intracellular signaling cascade (9.453e-09), signal transduction (7.398e-07), calcium ion 

transport (1.808e-06), dephosphorylation (6.793e-06), protein kinase C activation (9.509e-06), T-cell 

differentiation (3.408e-05), regulation of cell cycle (8.594e-05), G1/S transition of mitotic cell cycle (3.18e-

04), learning and/or memory (4.11e-04) and transcription, DNA-dependent (4.11e-04). The intracellular 

signaling cascade GO process was mapped on the network (Supplemental Figure 2B). 

For the OHT dataset, 1358 of 1617 genes were uploaded and this gene list was mapped onto the 

following GO processes: protein amino acid phosphorylation (8.54e-59), regulation of cell cycle (1.76e-53), 

signal transduction (6.87e-45), regulation of transcription, DNA-dependent (2.33e-33), cell proliferation 

(1.16e-23), DNA repair (3.16e-18), organogenesis (1.61e-15), cell surface receptor linked signal transduction 

(1.67e-15), protein amino acid dephosphorylation (3.09e-15) and cell adhesion (3.35e-15). A network was 

generated from this gene list (Supplemental Figure 3, p = 5.19e-42, Z-score 14.98) which inturn mapped to 

the following GO processes: regulation of cell cycle (1.81e-06), positive regulation of cell proliferation 

(6.72e-06), ER-overload response (1.51e-04), induction of positive chemotaxis (1.51e-04), collagen 

catabolism (4.11e-04), chemotaxis (4.57e-04), ovulation (5.23e-04), response to unfolded protein (6.61e-04), 

leading edge cell differentiation (8.90e-04), cell motility (1.33e-03).  

For the Artmesinin dataset, 28 of 36 genes were uploaded and this gene list was mapped onto the 

following GO processes: electron transport (3.71e-09), icosanoid metabolism (2.48e-04), regulation of 

signal transduction (3.09e-04), generation of precursor metabolites and energy (3.74e-04), protein 

metabolism (4.52e-04), protein targeting (8.07e-04), cholesterol biosynthesis (1.16e-03), steroid biosynthesis 

(1.56e-03), response to stress (2.64e-03) and positive regulation of cytotoxic T-cell differentiation (2.69e-03). 

A network was generated from this gene list (Supplemental Figure 4A, p = 2.81e-41, Z-score 30.67) which 
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in turn mapped to the following GO processes: electron transport (1.80e-06), leading edge cell 

differentiation (1.08e-05), regulation of cell cycle (1.01e-04), pentose-phosphate shunt (1.57e-04), DNA 

repair (5.01e-04), icosanoid metabolism (9.25e-04), nucleotide metabolism (1.40e-03), cell proliferation 

(1.76e-03), response to oxidative stress (2.16e-03), base-excision repair (2.65e-03), negative regulation of 

protein kinase activity (2.65e-03) and iron ion homeostasis (3.01e-03). The oxidative stress GO process 

was mapped onto this network (Supplemental Figure 4B).  

 
 
Discussion 
 

The human physiology represents a complex system, therefore it is difficult when attempting to 

understand the changes in gene, protein or biological activity upon challenge with a drug (Nicholson et 

al., 2004). While we would not advocate that this is an impossible task to try to predict, there have been 

an increasing number of extensive toxicogenomics datasets that have been published from which we can 

learn. These studies have generally applied clustering methods to interpret the data. Example datasets for 

molecules evaluated in this way either in vivo in animal species, isolated cells or cell lines are 

accumulating, resulting in the need for accessible databases and tools for expedited analysis, data mining 

and hypothesis generation. The MetaDrugTM database uses a novel architecture described previously 

(Ekins et al., 2005c), allowing the organization and visualization of biological and chemical information. 

This approach generates networks which are more informative than linear pathways as commonly 

described in biology text books. We have applied this database platform previously to visualize the 

nuclear hormone receptor interactions, providing a qualitative understanding of the current state of 

knowledge (Ekins et al., 2005c). We have used a second platform MetaCore which includes more network 

building algorithms to visualize microarray data for MCF-7 cells treated with OHT and estrogen for 24h 
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(Hodges et al., 2003). This enabled us to generate, compare and subtract networks to produce signature 

gene-networks for each molecule (Nikolsky et al., 2005). 

In the current study we have extended the MetaDrug platform beyond a database of ADME/TOX 

related content to further include a rule based method to generate predicted metabolites (Korolev et al., 

2003) and QSAR methods for predicting interactions with ADME/TOX related proteins (Balakin et al., 

2004a; Balakin et al., 2004b; Ekins and Swaan, 2004) as well as other physicochemical properties (Ekins 

et al., 2005a). Recent testing of MetaDrug with 66 molecules (Supplemental Table 2, available online) 

indicates we capture at least 78.8 % (on average) of correctly predicted first pass metabolites. Much 

earlier testing on 28 of these molecules indicated approximately 73 % of metabolites were correctly 

identified (Ekins et al., 2005a). However there is still room for future improvement to minimize the 

number of total metabolites predicted, as well as the addition of further rules for metabolic reaction not 

currently captured (e.g. conjugation at the selenium atom in Ebselen). The metabolism predictions for 

Aprepitant, L-742694, Trovofloxacin, 4-hydroxytamoxifen and artemisinin and artemisinin, outlined 

earlier included the prediction of phase II metabolites. MetaDrug therefore represents a systems-

ADME/TOX platform for the prediction of metabolism and interactions from molecular structure as well 

as the visualization and simultaneous analysis of multiple high throughput data types (such as 

microarrays) (Ekins et al., 2005d). As such, the approach is highly novel, integrating not only different 

algorithms for predictions but also data parsers, algorithms for network generation, visualization tools and 

data filters. This latter component enables the selection of genes associated with a specific species, tissue 

or organelle, for example.  

To demonstrate the utility of such a platform we have analyzed several recently published datasets 

from in vitro and/or microarray studies for Aprepitant (Sanchez et al., 2004),  L-742694 (Hartley et al., 

2004), Trovofloxacin (Dalvie et al., 1997; Liguori et al., 2005), OHT (Crewe et al., 1997; Chen et al., 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 18

2002; Desai et al., 2002; Hodges et al., 2003; Bekaii-Saab et al., 2004; Desta et al., 2004) and Artemisinin 

(Svensson and Ashton, 1999; Svensson et al., 2003; Efferth and Oesch, 2004; Burk et al., 2005). In all 

cases the data was taken from the papers following clustering or other statistical pre-analysis. However 

we have previously described the analysis of ‘raw’ microarray data without the need for clustering or 

other similar approaches (Nikolsky et al., 2005). We have used the molecular structure of the test 

molecules described above with MetaDrug generated metabolites, predictions for affinity to multiple 

ADME/TOX related proteins and auto-expand gene-networks of these predicted protein interactions 

alongside available microarray data. These gene networks were compared with an analysis performed 

with MetaCoreTM using the analyze network algorithm with all available microarray data for each 

compound after the clustering performed in the published papers.   

MetaDrugTM produced 37 possible metabolites for Aprepitant including a major initial metabolite 

Aprepitant M1. Aprepitant was predicted to have a relatively high affinity for CYP3A4 Km (15 µM) 

which is comparable to the actual value (~10 µM). Similarly the predicted CYP3A4 Ki (13.5 µM) is close 

to the actual value (10 µM) and the predicted interaction with PXR may indicate that this is responsible 

for the induction of CYP3A4 as described in the package insert for this drug 

(http://www.fda.gov/cder/foi/label/2003/21549_Emend_lbl.pdf). A structurally similar drug L-742694 

was shown to activate rat PXR (Hartley et al., 2004) and transcriptional profiling induced a battery of 

genes involved in drug metabolism and transport. These genes regulated by L-742694 are mapped on the 

human ortholog network derived from the QSAR predictions for Aprepitant. The high Tanimoto 

similarity values derived for Aprepitant and L-742694 for the CYP3A4 Km, CYP3A4 IC50 and PXR  

compared to the training sets is indicative of a high degree of structural similarity with molecules in these 

training sets. The microarray data from rats treated with L-742694 (Figure 3A) enabled the visualization 

of upregulated CYP3A4, CYP3A4 is known to be induced by Aprepitant which is in turn metabolized by 
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this enzyme. The QSAR models predicted the role of this enzyme and incidentally predicted that this 

molecule may also bind PXR with a higher probability than the structurally similar L-742694. However 

there is currently no published indication whether Aprepitant binds to PXR.  

MetaDrugTM produced 34 metabolites for Trovafloxacin including 3 of the 4 metabolites described 

in the literature (Dalvie et al., 1997) Trovafloxacin glucuronide M1, acetylated Trovafloxacin M3 and 

Trovafloxacin sulphate M4. Microarray data from human hepatocytes treated with Trovafloxacin was 

uploaded in to MetaDrug and 87 out of 141 gene identifiers mapped in the database. In this case the 

microarray data does not appear to directly impact drug metabolism pathways. MetaDrugTM produced 28 

metabolites for OHT including Endoxifen and 3,4-dihydroxytamoxifen. OHT had a relatively high 

affinity for CYP3A4 Km while the similarity score indicated this molecule is in the training set of the 

model (Desta et al., 2004). OHT is also an inhibitor for P-gp with a predicted IC50 (15.1 µM) quite similar 

to the actual value (7.4 µM) (Bekaii-Saab et al., 2004). OHT is known to be further metabolized via 

phenol and estrogen sulfotransferases and in this case the SULT1A1Km model predicted a value of 17.4 

µM while the similarity calculation indicated that this molecule is in this training set (Chen et al., 2002). 

OHT was predicted to bind to PXR and once again was indicated to be present in the training set (Desai et 

al., 2002). Binding to PXR would be expected to increase levels of CYP3A4 that is in turn involved in 

OHT formation from Tamoxifen (Crewe et al., 1997). Microarray data from human MCF-7 cells treated 

with OHT was uploaded and was mapped in the MetaDrug database (Supplemental Figure 1A). Both 

CYP3A4 and P-gp (MDR1) were up-regulated in this dataset, once again indicating that this molecule 

may regulate its own transport and metabolism. MetaDrugTM produced 17 metabolites for Artemisinin 

including one of the known metabolites observed in human plasma, namely dihydroartemisinin (Svensson 

and Ashton, 1999). Little else is known regarding the human in vitro metabolism of this compound. It is 

possible that CYP2B6 could be responsible for forming this metabolite as this occurs in the same location 
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as the O-deethylation of β-arteether (Grace et al., 1998) which is mediated by the same enzyme. The 

hydroxylation of artemisinin may also be mediated by CYP2B6 which is known to be involved in 

numerous metabolic reactions (Ekins and Wrighton, 1999). In addition, predictions with the various 

QSAR models indicated that artemisinin binds CYP2B6, CYP3A4, PXR, and is unlikely to be a P-gp 

substrate (but is a weak P-gp Inhibitor). These predictions are in very good agreement with the 

metabolism data (Svensson and Ashton, 1999; Li et al., 2003) while recent studies suggested artemisinin 

binds PXR with an EC50 of 34 µM and inhibits P-gp mediated digoxin transport with an IC50 of 33 µM 

(Burk et al., 2005). This same study generated PCR data with human hepatocytes treated with artemisinin 

to show the induction of CYP3A4, CYP2B6 and P-gp (Burk et al., 2005). The gene expression data can 

be visualized alongside the predicted interactions to show the other transcriptional regulators of these 

proteins (Supplemental Figure 1B). A second data set derived from the NCI cell lines treated with 

artemisinin analogs and clustered (Efferth and Oesch, 2004) was also overlapped on the same network 

(Supplemental Figure 1C). 

In 3 of the 4 cases presented we were able to visualize gene expression data alongside the 

predicted interactions in MD using the autoexpand algorithm. Using a second platform MetaCore, we 

were able to use a different network building algorithm, namely ‘analyze network’ which provides 

multiple significant small scale networks with statistical significance and enables the mapping of Gene 

Ontology data. The network with the most significant p-value was then generated in all cases. These 

networks do not allow the user to generate predicted molecules on the networks as in MetaDrugTM, but 

they do provide considerable insight into the significance of the gene expression data. The L-742694 gene 

expression data set from rat liver was mapped on the human orthologs in MetaCoreTM and indicated a 

significant link with metabolism (Figure 4A, B) as the data mapped to the metabolism based GO 

processes. This corresponds with the observation that L-742694 impacts the PXR responsive gene battery 
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and the structurally similar Aprepitant is metabolized by CYP3A4 as well as other CYPs (Hartley et al., 

2004; Sanchez et al., 2004). The Trovafloxacin dataset, was linked with many GO processes from signal 

transduction to protein transport likely to be involved as part of an oxidative stress response 

(Supplemental Figure 2A,B) which perhaps strengthens the observations made after clustering the human 

hepatocyte gene expression data (Liguori et al., 2005). The OHT dataset mapped onto the GO processes 

related to the cell cycle (Supplemental Figure 3) which corresponds well with the microarray data from 

MCF-7 cells (Hodges et al., 2003). The Artmesinin analog microarray dataset was linked to metabolism, 

cell cycle and oxidative stress GO processes (Supplemental Figure 4) correlating well with the 

observations of cytotoxicity observed from clustering the NCI cell line data (Efferth and Oesch, 2004), 

and metabolism in human cells (Burk et al., 2005). The ability to highlight the genes involved with each 

GO process on the networks is a valuable approach for quickly identifying their position and relationships 

with other genes on the network. It is important to note that although we are able to map a large number 

of the genes uploaded into the software either directly or using DAVID, there will be future 

improvements in the database or using different identifiers instead of LocusLink (e.g. HomoloGene), 

which will enable more genes to be visualized. Another important consideration is the potential for 

species differences in receptor binding, metabolism and toxicity. One example we have used previously as 

an example to illustrate the utility of building species specific gene networks is the drug pyrazinamide. 

This blocks NAD+ metabolism to result in the accumulation of the toxic uric acid metabolite in humans 

but not mice (Bugrim et al., 2004). We have also previously indicated how MetaDrug can be used to 

simulate the effect of knock out or inhibition of a target gene, by simply removing it from a network. This 

would then open the possibility to allow the user to consider species differences or different genotypes. 

From these test cases it is apparent that although we can suggest the majority of the major 

metabolites for these compounds we either do not identify some others or predict metabolites that have 
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not been identified to date. This will need to be rectified in future by allowing the user to add their own 

reaction rules to the software to generate metabolites currently missing. Over prediction will require the 

development of a machine learning algorithm based on the available human metabolism data or an 

expansion of the rules for metabolic pathways using reasoning (Button et al., 2003) or alternative 

approaches. The availability of multiple QSAR models for particular ADME properties is currently 

limited to published literature available to us. The capability to generate QSAR models with the software 

included in MetaDrugTM (not discussed here), will allow the user to incorporate their own data for 

ADME/Tox properties or therapeutic targets whether based around a single or multiple structural series. 

There is considerable flexibility in the user being able to add their own biological data (e.g. in vitro 

screening data, or unpublished protein interactions or other biological knowledge) into the OracleTM 

database structure to further customize MetaDrugTM. 

In summary, we have developed and applied additional utilities that have been added to the 

MetaDrugTM software platform. This software suite now incorporates reaction rules for metabolite 

prediction, QSAR models and visualization tools in addition to a database of manually curated human 

ADME/Tox data.  We have used this software to generate predictions for several drug-like molecules, and 

additionally we have visualized the experimental gene expression data for L-742694, Trovofloxacin, OHT 

and artemisinin using this software. Networks were also generated with MetaCoreTM and the ‘analyze 

network’ algorithm to further aid in the construction of statistically significant visualizations of the gene 

expression data correlated with GO processes. The ‘analyze network’ algorithm has also been recently 

added to MetaDrugTM due to this demonstrated utility. The MetaDrugTM system represents a prototype for 

integrative or systems-ADME/Tox that builds on the database and network building tools such as 

MetaCoreTM. In future we will likely test more compounds not included in the software training sets as 

this data becomes available in the literature. At present we are quite limited for testing the software 
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relying on molecules and microarray data in the public domain and envisage that future NIH efforts to 

collate such information (Waters et al., 2003) will improve future modeling and validation studies in this 

area. The present version of MetaDrugTM is focused on predicting human drug metabolism and 

interactions with ADME/Tox proteins although it is likely that future versions will be required to enable 

predictions for other species. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 24

References 
 
Apic G, Ignjatovic T, Boyer S and Russell RB (2005) Illuminating drug discovery with biological 

pathways. FEBS Lett 579:1872-1877. 

Balakin KV, Ekins S, Bugrim A, Ivanenkov YA, Korolev D, Nikolsky Y, Ivashchenko AA, Savchuk NP 

and Nikolskaya T (2004a) Quantitative structure-metabolism relationship modeling of the 

metabolic N-dealkylation rates. Drug Metab Dispos 32:1111-1120. 

Balakin KV, Ekins S, Bugrim A, Ivanenkov YA, Korolev D, Nikolsky Y, Skorenko SA, Ivashchenko AA, 

Savchuk NP and Nikolskaya T (2004b) Kohonen maps for prediction of binding to human 

cytochrome P450 3A4. Drug Metab Dispos 32:1183-1189. 

Barabasi A-L and Oltvai ZN (2004) Network biology: understanding the cell's functional organization. 

Nature Reviews Genetics 5:101-113. 

Bekaii-Saab TS, Perloff MD, Weemhoff JL, Greenblatt DJ and von Moltke LL (2004) Interactions of 

tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A. 

Biopharm Drug Dispos 25:283-289. 

Boyer S and Zamora I (2002) New methods in predictive metabolism. J Comp-Aided Mol Des 16:403-

413. 

Bugrim A, Nikolskaya T and Nikolsky Y (2004) Early prediction of drug metabolism and toxicity: 

systems biology approach and modeling. Drug Discovery Today 9:127-135. 

Burk O, Arnold KA, Nussler AK, Schaeffeler E, Efimova E, Avery BA, Avery MA, Fromm MF and 

Eichelbaum M (2005) Antimalarial Artemisinin Drugs Induce Cytochrome P450 and MDR1 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 25

Expression by Activation of Xenosensors Pregnane X Receptor and Constitutive Androstane 

Receptor. Mol Pharmacol 67:1954-1965. 

Button WG, Judson PN, Long A and Vessey JD (2003) Using absolute and relative reasoning in the 

prediction of the potential metabolism of xenobiotics. J Chem Inf Compu Sci 43:1371-1377. 

Chen G, Yin S, Maiti S and Shao X (2002) 4-Hydroxytamoxifen sulfation metabolism. J Biochem Mol 

Toxicol 16. 

Crewe HK, Ellis SW, Lennard MS and Tucker GT (1997) Variable contribution of cytochromes P450 

2D6, 2C9 and 3A4 to the hydroxylation of tamoxifen by human liver microsomes. Biochem 

Pharmacol 53:171-178. 

Dalvie DK, Khosla N and Vincent J (1997) Excretion and metabolism of trovafloxacin in humans. Drug 

Metab Dispos 25:423-427. 

Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA (2003) DAVID: 

Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3. 

Desai PB, Nallani SC, Sane RS, Moore LB, Goodwin BJ, Buckley DJ and Buckley AR (2002) Induction 

of cytochrome P450 3A4 in primary human hepatocytes and activation of human pregnane X 

receptor by tamoxifen and 4-hydroxytamoxifen. Drug Metab Dispos 30:608-612. 

Desta Z, Ward BA, Soukhova NV and Flockhart DA (2004) Comprehensive evaluation of tamoxifen 

sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for 

CYP3A and CYP2D6. J Pharmacol Exp Ther 310:1062-1075. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 26

Efferth T and Oesch F (2004) Oxidative stress response of tumor cells: microarray-based comparison 

between artemisinins and anthracyclines. Biochem Pharmacol 68:3-10. 

Eisen MB, Spellman PT, Brown PO and Botstein D (1998) Cluster analysis and display of genome-wide 

expression patterns. Proc Natl Acad Sci USA 95:14863-14868. 

Ekins S, Andreyev S, Ryabov A, Kirilov E, Rakhmatulin EA, Bugrim A and Nikolskaya T (2005a) 

Computational Prediction of Human Drug Metabolism. Exp Opin Drug Metab Toxicol 1:303-324. 

Ekins S, Berbaum J and Harrison RK (2003) Generation and validation of rapid computational filters for 

CYP2D6 and CYP3A4. Drug Metab Dispos 31:1077-1080. 

Ekins S, Bugrim A, Nikolsky Y and Nikolskaya T (2005b) Systems biology: applications in drug 

discovery, in: Drug discovery handbook (Gad SC ed), pp 123-183, Wiley, New York. 

Ekins S, Kirillov E, Rakhmatulin E and Nikolskaya T (2005c) A novel method for visualizing nuclear 

hormone receptor networks relevant to drug metabolism. Drug Metab Dispos 33:474-481. 

Ekins S, Mirny L and Schuetz EG (2002) A ligand-based approach to understanding selectivity of nuclear 

hormone receptors PXR, CAR, FXR, LXRa and LXRb. Pharm Res 19:1788-1800. 

Ekins S, Nikolsky Y and Nikolskaya T (2005d) Techniques: Application of Systems Biology to 

Absorption, Distribution, Metabolism, Excretion, and Toxicity. Trends Pharmacol Sci 26:202-

209. 

Ekins S and Swaan PW (2004) Computational models for enzymes, transporters, channels and receptors 

relevant to ADME/TOX. Rev Comp Chem 20:333-415. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 27

Ekins S and Wrighton SA (1999) The role of CYP2B6 in human xenobiotic metabolism. Drug Metab Rev 

31:719-754. 

Gerhold D, Lu M, Xu J, Austin C, Caskey CT and Rushmore T (2001) Monitoring expression of genes 

involved in drug metabolism and toxicology using DNA microarrays. Physiol Genomics 5:161-

170. 

Grace JM, Aguilar AJ, Trotman KM, Peggins JO and Brewer TG (1998) Metabolism of beta-arteether to 

dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450. Drug Metab 

Dispos 26:313-317. 

Hartley DP, Dai X, He YD, Carlini EJ, Wang B, Huskey SE, Ulrich RG, Rushmore TH, Evers R and 

Evans DC (2004) Activators of the rat pregnane X receptor differentially modulate hepatic and 

intestinal gene expression. Mol Pharmacol 65:1159-1171. 

Hodges LC, Cook JD, Lobenhofer EK, Li L, Bennett L, Bushel PR, Aldaz CM, Afshari CA and Walker 

CL (2003) Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in 

breast cancer cells. Mol Cancer Res 1:300-311. 

Hosack DA, Dennis G, Jr., Sherman BT, Lane HC and Lempicki RA (2003) Identifying biological themes 

within lists of genes with EASE. Genome Biol 4:R70. 

Korolev D, Balakin KV, Nikolsky Y, Kirillov E, Ivanenkov YA, Savchuk NP, Ivashchenko AA and 

Nikolskaya T (2003) Modeling of human cytochrome p450-mediated drug metabolism using 

unsupervised machine learning approach. J Med Chem 46:3631-3643. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 28

Li XQ, Bjorkman A, Andersson TB, Gustafsson LL and Masimirembwa CM (2003) Identification of 

human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug 

hepatic clearance from in vitro data. Eur J Clin Pharmacol 59:429-442. 

Liguori MJ, Anderson LM, Bukofzer S, McKim J, Pregenzer JF, Retief J, Spear BB and Waring JF 

(2005) Microarray analysis in human hepatocytes suggests a mechanism for hepatotoxicity 

induced by trovafloxacin. Hepatology 41:177-186. 

Nicholson JK, Holmes E, Lindon JC and Wilson ID (2004) The challenges of modeling mammalian 

biocomplexity. Nat Biotechnol 22:1268-1274. 

Nikolsky Y, Ekins S, Nikolskaya T and Bugrim A (2005) A novel method for generation of signature 

networks as biomarkers from complex high throughput data. Tox Lett 158:20-29. 

Niwa T (2003) Using general regression and probalistic neural networks to predict human intestinal 

absorption with topological descriptors derived from two-dimensional chemical structures. J Chem 

Inf Comp Sci 43:113-119. 

Plant N (2004) Interaction networks: coordinating responses to xenobiotic exposure. Toxicology 202:21-

32. 

Sanchez RI, Wang RW, Newton DJ, Bakhtiar R, Lu P, Chiu SH, Evans DC and Huskey SE (2004) 

Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P 

receptor antagonist aprepitant. Drug Metab Dispos 32:1287-1292. 

Svensson US and Ashton M (1999) Identification of the human cytochrome P450 enzymes involved in 

the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48:528-535. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 29

Svensson US, Maki-Jouppila M, Hoffmann KJ and Ashton M (2003) Characterisation of the human liver 

in vitro metabolic pattern of artemisinin and auto-induction in the rat by use of nonlinear mixed 

effects modelling. Biopharm Drug Dispos 24:71-85. 

Thomas RS, Rank DR, Penn SG, Zastrow GM, Hayes KR, Pande K, Glover E, Silander T, Craven MW, 

Reddy JK, Jovanovich SB and Bradfield CA (2001) Identification of toxicologically predictive 

gene sets using cDNA microarrays. Mol Pharmacol 60:1189-1194. 

Ulrich RG (2003) The toxicogenomics of nuclear receptor agonists. Curr Opin Chem Biol 7:505-510. 

Waters M, Boorman G, Bushel P, Cunningham M, Irwin R, Merrick A, Olden K, Paules R, Selkirk J, 

Stasiewicz S, Weis B, Van Houten B, Walker N and Tennant R (2003) Systems toxicology and the 

Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenomics 111:15-

28. 

Willet P (2003) Similarity-based approaches to virtual screening. Biochem Soc Trans 31:603-606. 

Young SS, Gombar VK, Emptage MR, Cariello NF and Lambert C (2002) Mixture deconvolution and 

analysis of Ames mutagenicity data. Chemo Intell Lab Sys 60:5-11. 

Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Butina D, Beck G, Sherborne B, 

Cooper I, Platts JA and Boutina D (2001) Evaluation of human intestinal absorption data and 

subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham 

descriptors. J Pharm Sci 90:749-784. 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 30

Funding and Competing Financial Interest 
 
The development of MetaDrugTM was supported by a National Institutes of Health Grant 1-R43-

GM069124-01 and 2-R44-GM069124-02 “In silico Assessment of Drug Metabolism and Toxicity”.  

MetaDrug and MetaCore are proprietary tools developed and licensed by GeneGo, Inc. All authors are 

employees of GeneGo Inc. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 28, 2005 as DOI: 10.1124/dmd.105.008458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #8458 

 31

Figure legends 
 
Figure 1. The process flow for using MetaDrugTM. HT data = Microarray type data but could also be used 

with in vitro screening data. 

 

Figure 2. Molecules tested in this study with metabolites discussed in the text. Those highlighted in bold 

were predicted by MetaDrugTM. 

 

Figure 3. Network visualizations. Aprepitant (pink hexagon) predicted interactions and microarray data 

for L-742694. Microarray expression data are overlaid on the key proteins involved in drug metabolism 

following rat treatment with L-742694 (Hartley et al., 2004)(red circles = up regulation). Interactions 

types between nodes on the network are hidden for purposes of clarity. Highlighted lines show predicted 

interactions. Ligands (purple hexagons) linked to transfactors (red), enzymes (yellow arrows) and 

transporters (blue) from the MetaDrugTM database. Highlighted lines show predicted interactions. Small 

colored hexagons on network edges represent functional interactions (green – positive, red- negative, 

black –unspecified effects). 

 

Figure 4. A. Network visualization generated with MetaCoreTM and the Analyze Networks algorithm 

using microarray expression data overlaid on proteins following rat treatment with L-742694 (Hartley et 

al., 2004)(red circles = up regulation). B. GO process highlighted for xenobiotic metabolism on Figure 3A 

network. Small colored hexagons on network edges represent functional interactions (green – positive, 

red- negative, black –unspecified effects). 
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Supplemental Figures (available online along with supplemental tables at journal website only) 
 
Supplemental Figure 1. Network visualizations (A) Network for OHT (pink hexagon) with microarray 

expression data are overlaid on the key proteins involved in drug metabolism, from published studies with 

human MCF-7 cells (Hodges et al., 2003) Effects are hidden for clarity. (B) Network for Artmisinin (pink 

hexagon) using PCR data from human hepatocytes (red circles) (Burk et al., 2005). Small molecules are 

hidden from this network for clarity. (C) Network for Artemisinin (pink hexagon) using Microarray data 

from the NCI cell lines (Efferth and Oesch, 2004). Small molecules are hidden from this network for 

clarity Ligands (purple hexagons) linked to transfactors (red), enzymes (yellow arrows) and transporters 

(blue) from the MetaDrugTM database. Highlighted lines show predicted interactions. Small colored 

hexagons on network edges represent functional interactions (green – positive, red- negative, black –

unspecified effects). 

 
Supplemental Figure 2 A. Network visualization generated with MetaCoreTM and the Analyze Networks 

algorithm using microarray expression data overlaid on proteins following human hepatocyte treatment 

with Trovafloxacin (Liguori et al., 2005). B. GO processes highlighted for intracellular signaling cascade 

on Figure 4A. Red circles = up regulation, blue circles = down regulation. Small colored hexagons on 

network edges represent functional interactions (green – positive, red- negative, black –unspecified 

effects). 

 

Supplemental Figure 3 A. Network visualization generated with MetaCoreTM and the Analyze Networks 

algorithm using microarray expression data overlaid on proteins following MCF-7 cell treatment with 4-

OHT (Hodges et al., 2003). Small colored hexagons on network edges represent functional interactions 

(green – positive, red- negative, black –unspecified effects). 
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Supplemental Figure 4 A. Network visualization generated with MetaCoreTM and the Analyze Networks 

algorithm using microarray expression data overlaid on proteins following cell line treatment with 

Artemisin analogs (Efferth and Oesch, 2004). B GO processes highlighted for oxidative stress on Figure 

7A. Small colored hexagons on network edges represent functional interactions (green – positive, red- 

negative, black –unspecified effects). 
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