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Abstract 

 Numerous experimental and computational approaches have been developed to 

predict human drug metabolism. As databases of human drug metabolism information are 

widely available these can be used to train computational algorithms and generate 

predictive approaches. In turn these may be used to assist in the identification of possible 

metabolites from a large number of molecules in drug discovery based on molecular 

structure alone. In the current study we have used a commercially available database 

(MetaDrugTM) and extracted a fraction of the human drug metabolism data. This data was 

used along with augmented atom descriptors in a predictive machine learning model, 

Kernel Partial Least Squares (K-PLS). 317 molecules including parent drugs and their 

primary and secondary (sequential) metabolites were used to build these models 

corresponding to individual metabolism rules, representing the formation of discrete 

metabolites e.g. N-dealkylation. Each model was internally validated to assess the 

capability to classify other molecules that were left out. Using receiver operator curve 

statistics models for N-dealkylation, O-dealkylation, aromatic hydroxylation, aliphatic 

hydroxylation, O-glucuronidation and O-sulfation had area under the curve values from 

0.75-0.84 and were able to predict between 61-79 % active molecules upon leave-one-out 

testing. This preliminary study indicates that K-PLS and possibly other similar machine 

learning methods (such as support vector machines) can be applied to predicting human 

drug metabolite formation in a classification manner. Improvements can be achieved 

using considerably larger datasets that contain more positive examples for the less 

frequently occurring metabolite rules as well as the external evaluation of novel 

molecules. 
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Introduction 

With the emphasis now on increasing the efficiency of drug discovery there is 

interest in using predictive computational approaches to complement in vitro and in vivo 

studies. In the area of metabolism prediction these techniques encompass 

pharmacophores (Ekins et al., 2001), quantitative structure activity relationships (QSAR) 

(Shen et al., 2003; Balakin et al., 2004), electronic models (Korzekwa et al., 2004), 

commercial drug metabolism databases (Borodina et al., 2004) as well as other methods 

that have been comprehensively reviewed elsewhere (de Graaf et al., 2005; Ekins et al., 

2005a; de Groot, 2006). Some approaches have combined metabolite data and rules for 

suggesting metabolic pathways across multiple species (Erhardt, 2003). Such databases 

may also be useful for calculating the probability for a given metabolic reaction (Boyer 

and Zamora, 2002) to then indicate potential metabolites and the sites of metabolism 

using statistical or algorithmic approaches (Borodina et al., 2004). Although these types 

of comprehensive databases generally enable numerous search options to retrieve 

molecule structures and published information, the predictive capabilities seem limited at 

present (Wishart et al., 2006). A major limitation is that they are unlikely to have a 

complete dataset of reactions and molecular structures to extrapolate for a new molecule. 

In turn the user is reliant on the quality of the published in vitro or in vivo data which in 

many cases may predate modern analytical methods, such that older published metabolic 

pathways may be incomplete. In reality such database approaches provide knowledge of 

most published data and are perhaps limited to interpolation.  
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 The combination of different approaches to drug metabolite prediction may 

balance the strengths and weaknesses of each approach and several commercial methods 

are now pursuing this direction. MetaDrugTM represents one such method combining a 

manually annotated database of human drug metabolism information including 

xenobiotic reactions, enzyme substrates and enzyme inhibitors with kinetic data (Ekins et 

al., 2005b; Ekins et al., 2006). This database has enabled the generation of rules for 

predicting likely metabolic reactions. The parent molecule and metabolites may then be 

scored through integrated QSAR models and rules for molecule reactivity before 

visualizing molecules as nodes on a network diagram (Ekins et al., 2005b; Ekins et al., 

2006).  

Such rule based metabolite predictions indicate that it is possible to generate 

many more metabolites than have been identified in the literature which may make the 

methods less useful (Ekins et al., 2006). We are therefore investigating approaches to 

limit the metabolites to those that are most likely. Recently a number of machine learning 

approaches including Support Vector Machines and Kernel-Partial Least Squares (K-

PLS) (Rosipal and Trejo, 2001) have been implemented in a single software package 

(Analyze/Stripminer) and this was used with several benchmark datasets (Bennett and 

Embrechts, 2003) including protein binding and other physicochemical properties. The 

results with K-PLS indicated that it could be favorably applied to other datasets to enable 

QSAR model construction and aid drug discovery research. In the current proof of 

concept study we have used K-PLS to generate preliminary classification models to 

identify whether a metabolite is likely to be produced for a particular parent molecule. 
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Materials and Methods 

Literature data. Three hundred and seventeen molecules were randomly extracted 

from the MetaDrugTM  database (GeneGo Inc, St. Joseph, MI) (Ekins et al., 2006) and this 

represents a small fraction of the human drug metabolism content. These molecules were 

prepared as an sdf file containing data for the 65 metabolic pathways of interest (Ekins et 

al., 2005a) with binary data for the presence or absence of a metabolite.  

Descriptor calculation. ChemTree software (GoldenHelix, Bozeman, MT) 

running on a Pentium 4 processor was used to generate augmented atom molecular 

descriptors (Young et al., 2002) representing the presence or absence of a particular 

heavy atom with its immediately bonded neighbors. In total 61 descriptors were 

generated for the set of molecules. 

Data preprocessing. Metabolic reactions with greater that 2 examples of the 

metabolite rule were then used for modeling, this narrowed down the dataset 

considerably. The matrix of molecular descriptors and biological activity data was then 

scaled (normalized) and variables with unchanging values were removed using feature 

selection with the StripMiner/Analyze software (software available from M.J.E. at 

http://www.rpi.edu/locker/82/001182/) (Embrechts et al., 2001). From the descriptors 

with more that 95 % correlation between each other (i.e., “cousin descriptors”), only the 

descriptors most correlated with the response was retained. In addition 4 sigma outliers 

were brought within 2.5 sigma. 

K-PLS Modeling method and testing. The Analyze software uses the Kernel 

Partial Least Squares (K-PLS) method (Rosipal and Trejo, 2001) with two key 

parameters, the number of latent variables and the Parzen window or Gaussian kernel 
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sigma. In this study the number of latent variables is held fixed at 5, and the Gaussian 

kernel sigmas are tuned using a second order Newton method where the performance 

criterion is the error minimization on the validation data using five-fold cross-validation. 

The sigmas were tuned just once, using the metabolite with the most positive instance 

cases. Sigma tuning on just one single metabolite is a conservative approach that prevents 

over-tuning. Furthermore the fact that the model still has a good predictive power on the 

other metabolites is another indication that over tuning did not occur in this case.   

K-PLS uses kernels and can therefore be seen as a nonlinear extension of the PLS 

method. The commonly used radial basis function kernel or Gaussian kernel was applied, 

where the kernel is expressed as follows (Christianini and Shawe-Taylor, 2000): 

( ) 2
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i exxK

rr

rr

−
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=  

The K-PLS method can be reformulated to resemble support vector machines, but it can 

also be interpreted as a kernel with centering transformation of the descriptor data 

followed by a regular PLS method (Bennett and Embrechts, 2003).  

For the predictive modeling on the other metabolites, the same sigmas were used. 

Sigma-tuning also allows for an identification procedure for pointing out the most 

relevant attributes by considering that the attributes with the larger sigma values are less 

relevant. After sigma tuning, the individual metabolites were predicted using K-PLS with 

a Gaussian kernel with multiple sigmas, using a leave-one-out procedure. Because the 

number of positive examples of a metabolite generally exceeded by the number of 

negative instances, the discrimination between positive and negative cases was made 

using a bias with a threshold of -0.5 for choosing the operating point on the receiver 
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operator curve (ROC). The area under the curve (AUC) values were also calculated, with 

higher values approximating to better classifications. Because of the imbalance in the 

number of positive and negative examples, the balanced error rate was calculated taking 

the average of the number of correct that were positive and the number correct that were 

negative. In this case higher numbers are preferable. 

 

Results and Discussion 

Tools for predicting potential metabolites of small molecule substrates in early drug 

discovery are important in guiding lead optimization to produce drug candidates with 

desirable metabolic and toxicological properties. We have recently developed and tested 

a computational tool that comprises a rule based method for metabolite prediction, 

integrated QSAR models and a database of human metabolic and signaling information 

(Ekins et al., 2006). In silico metabolite prediction typically generates many more 

potential metabolites than are actually observed. The emergence of machine learning 

tools combined with databases of human metabolism information represent methods for 

producing more reliable predictions of metabolites from an input structure alone. In the 

current study, for each of the over 300 molecules selected from the MetaDrug database 

with metabolism information, 2D molecular descriptors were calculated. Twenty three of 

the 65 reactions had sufficient binary data for modeling and a K-PLS model was 

produced for each using the Analyze/Stripminer software (Bennett and Embrechts, 2003). 

We evaluated the resulting classification models for predicting metabolic reactions after 

leave one out testing (Table 1). In general, we found that the reactions that are well 

populated with literature data (e.g. N-dealkylation, aromatic and aliphatic hydroxylation 
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and O-glucuronidation) produced K-PLS models that perform well when assessed using 

the AUC value and the ROC plots (Table 1, Figure 1). As expected, those models that are 

sparsely populated with few positive instances of a metabolite being observed 

corresponding to a particular reaction (generally non-P450 related), are of poorer quality, 

indicative that no reliable classification can be made. Exceptions include N-

hydroxylation and double bond peroxidation in which there are remarkably few positive 

examples but results are favorable for predictions, indicative that the examples provided 

generate useful rules based on path length descriptors.  This preliminary work with both 

phase I and II reactions indicates such an approach requires generally much larger 

databases than used here which will be available in later versions of MetaDrugTM. 

Despite this, K-PLS models for N-dealkylation, O-dealkylation, aromatic hydroxylation, 

aliphatic hydroxylation, O-glucuronidation and O-sulfation reactions had AUC values 

between 0.75-0.84 and were able to predict between 61-79 % active molecules upon 

leave out testing while more importantly the balanced error predictions were between 70-

82 %. Therefore this represents a useful method to classify the potential for an unknown 

molecule to undergo these particular metabolic reactions. However this approach requires 

further testing using considerably more data for the many sparsely populated metabolic 

reactions. In addition external validation of all models with a large test sets of molecules 

will be required alongside measures to ensure that a prediction is reliable such as those 

based on molecule similarity. This work represents the first occasion to our knowledge 

that K-PLS has been used for metabolite prediction, and the results obtained are 

promising with unbalanced datasets.  The integration of this K-PLS approach with rule-

based and other QSAR methods could result in a more effective method for metabolite 
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prediction that would be useful in numerous drug discovery applications were reliable 

metabolite identification is important.  
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Footnotes Page 

a) Unnumbered Footnote: The development of MetaDrug was supported by a National 

Institutes of Health Grant 1-R43-GM069124-01 and 2-R44-GM069124-02 “In silico 

Assessment of Drug Metabolism and Toxicity”.  

b) Send reprint requests to: Sean Ekins, ACT LLC, 601 Runnymede Avenue, Jenkintown, 

PA 19046. Email ekinssean@yahoo.com 

c) Numbered footnotes: 1 Current Address: ACT LLC, 601 Runnymede Ave, Jenkintown, 

PA 19046. 

d) Competing Financial Interest: MetaDrugTM is a proprietary tool developed and 

licensed by GeneGo, Inc.  

 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 1, 2006 as DOI: 10.1124/dmd.106.013185

 at A
SPE

T
 Journals on A

pril 16, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #13185 
 

 15

Figure legend 

 
Figure 1. Representative Receiver Operator Curves to demonstrate the leave one out 

validation of K-PLS classification model for N-dealkylation (red line). Diagonal = 

random rate. 
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Table 1. Results of applying kernel partial least squares (K-PLS) models to human drug metabolism data for different reactions using 

317 molecules. Percent correct represents the prediction for positive instances for a metabolite. Balanced error represents the average 

of the correct positive and correct negative predictions. 

Metabolite type AUC 

Balanced 

error 

Number predicted 

active 

Actual 

Number 

active Percent correct 

N-dealkylation 0.843 74.49 36 53 68 

O-dealkylation 0.815 74.82 17 28 61 

Aromatic hydroxylation 0.756 65.9 70 95 74 

Aliphatic hydroxylation 0.779 70.11 64 86 74 

Double bond peroxidation 0.935 81.39 6 9 67 

Hydroxyl-carbonyl oxidation 0.67 60.42 13 35 37 

Double bond formation (desaturation) 0.776 73.8 9 17 53 

Aldehyde oxidation 0.839 72.16 9 18 50 

Double bond epoxidation 0.818 86.44 2 16 12 
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N-oxide formation 0.756 58.85 6 24 25 

N-hydroxylation 0.928 82.21 4 6 67 

Carboxyl reduction 0.878 49.52 0 3 0 

Ester hydrolysis 0.849 49.52 0 3 0 

Epoxide hydrolysis 0.841 69.85 5 12 42 

N-glucuronide transfer 0.683 67.59 7 17 41 

O-glucuronide transfer 0.773 70.71 89 112 79 

O-sulfate transfer 0.848 82.17 15 21 71 

Glutathione S-transfer to benzyl 0.8 49.52 0 3 0 

O-methyl transfer 0.783 71.58 5 11 45 

N-acetyl transfer 0.2675 49.36 0 3 0 

Sulfoxide oxidation 0.6369 49.52 0 3 0 

Carbonyl reduction 0.566 65.86 2 6 34 

Unsaturated bond hydration 0.647 49.2 0 4 0 

Sulfide oxidation 0.723 49.2 0 4 0 
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