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Abstract 

Glutathione S-transferase Theta 1 (GSTT1) has been regarded as one of the key enzymes 

involved in phase II reactions because of its unique substrate specificity. In this study, we 

generated mice with disrupted glutathione S-transferase, Theta 1 (Gstt1) gene (Gstt1-null mice) 

by gene targeting, and analyzed the metabolic properties in cytosolic and in vivo studies. The 

resulting Gstt1-null mice failed to express the Gstt1 mRNA and GSTT1 protein by RT-PCR 

analysis and 2-dimensional fluorescence difference gel electrophoresis/mass spectrometry 

analysis, respectively. However, the Gstt1-null mice appeared to be normal and were fertile. In an 

enzymatic study using cytosolic samples from the liver and kidney, GST activity toward 

1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), dichloromethane (DCM) and 

1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was markedly lower in Gstt1-null mice than in the 

wild-type controls, in spite of there being no difference in GST activity toward 

1-choloro-2,4-dinitrobenzene between Gstt1-null mice and the wild-type controls. Gstt1-null 

mice had GST activity of only 8.7 to 42.1% of the wild-type controls to EPNP, less than 2.2% of 

the wild-type controls to DCM and 13.2 to 23.9% of the wild-type controls to BCNU. Plasma 

BCNU concentrations after a single intraperitoneal administration of BCNU to Gstt1-null mice 

were significantly higher and there was a larger AUC5-60 min (male, 2.30 times; female, 2.28 times, 

versus the wild-type controls) based on the results. In conclusion, Gstt1-null mice would be useful 

as an animal model of humans with GSTT1-null genotype. 
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Introduction 

Glutathione S-transferases (GSTs) form a superfamily that is characterized by catalysis of the 

conjugation of glutathione (GSH) with various electrophilic compounds. At least seven distinct 

classes (Alpha, Mu, Pi, Theta, Zeta, Omega and Sigma) of soluble GSTs have been identified so 

far, according to substrate specificity, chemical affinity, structure and the kinetic behavior of the 

enzyme (Mannervik et al., 1985; Meyer et al., 1991; Board et al., 1997; Board et al., 2000; 

Jowsey et al., 2001). Theta class GSTs are distinguished from other classes by their failure to bind 

to immobilized GSH affinity matrices and their negligible activity toward 

1-chloro-2,4-dinitrobenzene (CDNB), which is the substrate of various GSTs (Meyer et al., 1984; 

Meyer et al., 1991). There is a genetic polymorphism of the null genotype in the human GSTT1 

gene, with about 15% of Caucasians and 60% of Asians lacking GSTT1 activity (Nelson et al., 

1995; Chen et al., 1996). The relationship between the GSTT1-null genotype and the incidence of 

cancer has been investigated extensively in order to detect GSTT1-associated differential 

susceptibility toward carcinogens. Many epidemiologic investigations have shown that the 

GSTT1-null genotype is related to a slightly increased risk of cancer of the bladder and 

gastro-intestinal tract, and smoking-related cancer of the lung or oral cavity (Landi, 2000). 

However, there is no direct evidence yet that the GSTT1-null genotype causes carcinogenesis.  

The alkylating drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is used to treat brain tumors, 

multiple myeloma, Hodgkin’s disease and non-Hodgkin’s lymphomas (Wasserman et al., 1975). 

BCNU is thought to exert the anti-tumor effect by the formation of a chloroethyl-adduct at the O6 

position of guanine bases in the DNA (Bodell et al., 1984). The critical problem in BCNU 

treatment is the acquisition of BCNU-resistance, which is implicated in many mechanisms in the 
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tumor cells. The major resistant factors are O6-alkylguanine-DNA-alkyltransferase, which repairs 

DNA damage by removing the alkyl groups from the O6 position of guanine, and GSTs as a 

BCNU detoxifying enzyme (Bodell et al., 1986; Smith et al., 1989). It has been reported that 

human GSTM2, GSTM3 and GSTT1 have BCNU denitrosation activity (Lien et al., 2002). In 

particular, GSTT1 displayed a much higher activity toward BCNU. The existence of a 

GSTT1-null genotype may influence both the sensitivity of tumors to BCNU and the severity of 

adverse side-effects of BCNU in patients. So, it is important to study the metabolic properties to 

BCNU in GSTT1-null individuals. However, there is no report about it yet. 

In this study, we generated mice with a disrupted Gstt1 gene (Gstt1-null mice) and analyzed 

the metabolic activity toward the specific substrates 1,2-epoxy-3-(p-nitrophenoxy)propane 

(EPNP), DCM and BCNU. Furthermore, we measured the plasma BCNU concentrations after a 

single intraperitoneal administration of BCNU, in order to evaluate the metabolic properties of 

GSTT1 to the specific substrates. 
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Materials and Methods 

Generation of Gstt1-null Mice 

To construct the targeting vector, DNA from a W9.5 ES cell was used to amplify the Gstt1 

genomic fragments for both the 5' and 3' arms. For the 5' arm, a 4.9-kb 5'-flanking sequence of the 

Gstt1 gene was cloned into the HpaI and XhoI sites of the pKO Scrambler V901 plasmid. For the 

3' arm, a 2.5-kb 3'-flanking sequence of the Gstt1 gene was cloned into the SacII and SalI sites. 

The primers for the 5' arm were 5'-AGACCCGGGGCCAGGACTCTGACCTGCCATATTG-3' 

and 5'-CCCCTCGAGCCTAATGAGCTGTGTCTAACCTCTC-3'. The primers for the 3' arm 

were 5'-AGACCGCGGAGGAGTGAGCCTAGTGAATCTGCTC-3' and 

5'-CGCGTCGACGCCAGGTACTCGTCTACACGAGCAC-3'. For the positive negative 

selection, a Neomycin resistant (Neor) cassette from the pKO SelectNeo V800 plasmid and the 

Diphteria Toxin A chain gene (DT) from pKO SelectDT V840 plasmid was used. All the plasmids 

were supplied by TAKARA BIO Inc. W9.5 ES cells (107) were electroporated (250 V, 500 F) 

with 20 µg of linearized targeting vector and selected with 250 µg (active form)/mL G418 for 8 - 

10 days (Fujimoto et al., 2006). G418 resistant clones were primarily screened on the 3' arm by 

PCR with the primer pair, NeoF3: 5'-CTGCTAAAGCGCATGCTCCAGACTGCCTTG-3' and 

T1R1: 5'-ACATTTCCGGTCTTACCTTATGCCACAGGG-3'. The PCR positive clones were 

twice checked on the 5' arm by PCR with the primer pair, GT43: 

5'-ATAAGGCAGGAAAGAAGTGTTACTG-3' and NP3: 

5'-AATGAGGAAATTGCATCGCATT-3'. Finally, the homologous recombination was 

confirmed by the direct sequence of the amplified PCR fragments on both regions using an ABI 

PRISM 3700 DNA Analyzer (Applied Biosystems). 
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Chimera mice were generated using the targeted ES cell clone with a near-diploid karyotype 

by an aggregation method (Wood et al., 1993). The ES cell clone was aggregated with two 

zona-pellucida free 8-cell embryos from C57BL/6J mice, and cultured for 24 h. Aggregated 

blastcysts were transferred into the uteros of the surrogate mothers. Male chimera mice were 

crossed to C57BL/6J mice, and F1 heterozygous offspring to which the targeted ES cells had 

contributed were identified by coat color and PCR genotyping using a NeoF3/T1R1 primer pair. 

Furthermore, the F1 heterozygous mice were intercrossed to produce F2 mice, which were 

determined to be wild-type, heterozygote or homozygote (Gstt1-null mice) by PCR genotyping 

using two forward primers (NeoRF for the mutant allele: 

5'-TGCTAAAGCGCATGCTCCAGACT-3', and GSTT1-WF for the wild allele: 

5'-GCATCTTGGGCACATGAACTCATG-3') and one common reverse primer (GSTT1-WR: 

5'-TGAGCAGATTCACTAGGCTCACTC-3'). To analyze the Gstt1 mRNA expression, the total 

RNA was isolated from the livers of the Gstt1-null mice, the heterozygotes and the wild-type 

controls using a QIAGEN RNeasy Kit. After DNase I treatment, cDNA were synthesized using 

an oligo-dT primer and SuperScript II reverse transcriptase (Invitrogen). RT-PCR was performed 

using the primers specific for the mouse Gstt1 gene (forward: 

5'-GTTCTGGAGCTGTACCTGGATC-3', and reverse: 

5'-AGGAACCTTATACTTGTGTGCC-3') and beta-actin gene (forward: 

5'-ATGGAATCCTGTGGCATCCATG-3', and reverse: 

5'-TAGAAGCACTTGCGGTGCACGAT-3'). The amplified RT-PCR fragments were confirmed 

by direct sequence using an ABI PRISM 3700 DNA Analyzer. 
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The mice were housed under a controlled temperature (23 ± 1°C) with free access to water and 

mouse chow. The experimental protocol was approved by the Ethics Review Committee for 

Animal Experimentation of Sankyo Co., Ltd. 

Hepatic Protein Expression Analysis by 2-dimensional fluorescence difference gel 

electrophoresis/mass spectrometry (2D-DIGE/MS) 

Liver samples of male mice were homogenized with DIGE-compatible lysis buffer containing 

30 mM Tris-HCl, 7 M urea, 2 M thiourea, 5 mM magnesium acetate, 4% (w/v) CHAPS, and 0.5 

mM Pefabloc SC PLUS (Roche Diagnostics GmbH). After ultrasonic treatment, the samples were 

centrifuged at 850 g for 20 min at 4°C, and the supernatant was collected and centrifuged at 

20,000 g for 10 min at 4°C. The protein content in the supernatants was measured by the method 

of Bradford. Each 50 µg of the protein extracts from Gstt1-null mice, the heterozygotes and the 

wild-type controls was labeled minimally with 400 pmol of Cy3 or Cy5, according to the 

manufacturer's instructions (GE Healthcare UK Ltd.). A mixture of protein extracts (50 µg) from 

all the liver samples used was labeled with 400 pmol of Cy2 to provide an internal standard for the 

normalization of spot abundance. The Cy2, Cy3 and Cy5-labeled proteins were mixed evenly. 

The labeled protein samples were mixed with equal volumes of 2× sample buffer containing 7 M 

urea, 2 M thiourea, 4% (w/v) CHAPS, 2% (v/v) Pharmalyte (pH 3-10) and 2.4% (v/v) DeStreak 

Reagent (GE Healthcare UK Ltd.), and were added to rehydration buffer containing 7 M urea, 2 

M thiourea, 4% (w/v) CHAPS, 1% (v/v) Pharmalyte (pH 3-10) and 1.2% (v/v) DeStreak Reagent 

to make 450 µL of total sample volume. The labeled protein mixtures were applied to IPG strips 

(pH 3-10) (GE Healthcare UK Ltd.), and subjected to isoelectric focusing (IEF) and SDS-PAGE 

(12.5% polyacrylamide gels, 25 cm X 20 cm X 0.1 cm) using IPGphor IEF System and an 
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Ettan-DALT II system, respectively, according to the manufacturer’s instructions (GE Healthcare 

UK Ltd.). 

Cy dye images were collected using a Typhoon 9400 fluorescence scanner (GE Healthcare 

UK Ltd.) and analyzed using DeCyder software Version 5.02 (GE Healthcare UK Ltd.). The 

expression level of each protein spot was evaluated by the ratio of the spot volume compared to 

the internal standard. Protein spots that showed significant up- or down-regulation (P value of 

<0.01) between Gstt1-null mice and the heterozygotes, Gstt1-null mice and the wild-type controls, 

or the heterozygotes and the wild-type controls in the 2D-DIGE analysis were subjected to protein 

identification. Protein extracts (500 µg) were separated by IEF and SDS-PAGE in the 

above-mentioned manner. After migration, the gels were treated with SYPRO Ruby dye 

(Molecular Probes Inc.) and the protein images were visualized. The significant spots were 

excised from the gels using an Ettan-spot picker (GE Healthcare UK Ltd.). The gel pieces were 

washed twice with 50% (v/v) methanol containing 50 mM ammonium bicarbonate for 20 min, 

dehydrated with 75% (v/v) acetonitrile, and dried completely in a vacuum centrifuge. The 

proteins were digested overnight at 37 °C with sequencing grade modified trypsin solution 

(Promega, Madison, 10 ng/µL in 20 mM ammonium bicarbonate). After digestion, the peptides in 

each gel piece were eluted sequentially with 50% (v/v) acetonitrile with 1% (v/v) trifluoroacetic 

acid (TFA), 50% (v/v) acetonitrile with 0.2% (v/v) TFA, and 100% acetonitrile with sonication. 

The samples were concentrated with a vacuum centrifuge, and dried after desalination with C18 

ZipTip pipette tips (Millipore Corp.). The peptides were resuspended in 1 µL CHCA-saturated 

matrix solution containing 0.5% (v/v) TFA and 50% (v/v) acetonitrile. The 0.5 µL peptide 

solution was transferred onto the MALDI target and dried. Mass spectrometry of the peptides was 
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performed using Ettan MALDI-TOF Pro (GE Healthcare UK Ltd.). For protein identification, the 

obtained mass information was searched against the NCBI nr database using Ettan MALDI-TOF 

software Version 1.11 (GE Healthcare UK Ltd.). 

Measurement of GST activities toward CDNB, EPNP, DCM and BCNU in the cytosols of 

the liver and kidney 

The liver and kidney samples of the Gstt1-null mice, the heterozygotes and the wild-type 

controls were mixed with 0.154 M potassium chloride and homogenized in an ice bath. The 

homogenates were centrifuged at 9,000 g for 20 min at 4°C, and the supernatant fraction was 

further centrifuged at 105,000 g for 1 h at 4°C to isolate the cytosolic fractions. The protein 

concentrations in the cytosolic fractions were determined by the method of Lowry et al. (1951).  

The GST activity toward CDNB (GST-CDNB activity) and EPNP (GST-EPNP activity) was 

measured according to the method of Habig et al. (1974). In the measurement of GST-CDNB 

activity, the cytosols were diluted 30-fold with 0.154 M potassium chloride, and 0.3 mL of 20 

mM GSH and 0.06 mL of the diluted cytosols were mixed in 5.34 mL of 100 mM potassium 

phosphate buffer (pH 6.5). After the addition of CDNB at a final concentration of 1 mM, the 

change in absorbance at 340 nm was measured for 1 min with a spectrophotometer. In the 

measurement of GST-EPNP activity, 0.3 mL of 100 mM GSH and 0.2 mL of the cytosols were 

mixed in 5.2 mL of 100 mM potassium phosphate buffer (pH 6.5). After the addition of EPNP 

solution (10 mM in ethanol) at a final concentration of 0.5 mM, the change in absorbance at 360 

nm was measured for 2 min with a spectrophotometer. The GST-CDNB and GST-EPNP 

activities were expressed as the amount of CDNB-GSH and EPNP-GSH conjugate moles formed 

per unit weight of protein per unit of time (nmol/min/mg protein), respectively.  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on September 7, 2007 as DOI: 10.1124/dmd.107.017905

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

 

DMD #17905 

 - 11 - 

The GST activity toward DCM (GST-DCM activity) and BCNU (GST-BCNU activity) were 

measured according to the method of Nash et al. (1953) and Talcott and Levin (1983), 

respectively. Briefly, the cytosols of the liver and kidney were diluted 5-fold and 2-fold with 

0.154 M potassium chloride, respectively. In the measurement of GST-DCM activity, 0.5 mL of 

reaction buffer (10 mM GSH, 20 mM Tris/HCl, pH 7.4) was mixed with 0.1 mL of the diluted 

cytosols and 2 µL of DCM. After incubation for 30 min at 37 °C, this reaction was mixed 

thoroughly with 0.201 mL of a 20% trichloroacetic acid solution and centrifuged for 2 min at 

16000 g. An amount of 0.1 mL of the supernatant was mixed with 0.1 mL Nash-reagent (15 g 

ammonium acetate, 0.2 mL acetylacetone, 0.3 mL acetic acid brought to a volume of 100 mL with 

distilled water) and incubated at 37 °C. After 60 min, the absorption at 412 nm was measured 

using a spectrophotometer. The GST-DCM activity was expressed as the amount of 

formaldehyde moles formed per unit weight of protein per unit of time (nmol/min/mg protein). In 

the measurement of GST-BCNU activity, 0.65 mL of 0.1 M phosphate buffer (pH 7.4) with 5 mM 

GSH was mixed with 0.1 mL of the diluted cytosols and 7.5 µL of 200 mM BCNU. After the 

incubation for 20 min at 37 °C, this reaction was mixed thoroughly with 0.75 mL of chloroform. 

After 5 min centrifugation at 21,500 g, 0.5 mL of the aqueous phase was extracted with 0.75 mL 

of chloroform again. After the second extraction, 0.2 mL of the aqueous phase was mixed with 0.4 

mL of 50 mM sulfanilamide and 0.5 mM N-(1-naphthyl)ethylenediamine dihydrochloride 

dissolved in 3M HCl and incubated at 55 °C. After 20 min, the absorption at 540 nm was 

measured using a spectrophotometer. The GST-BCNU activity was expressed as the amount of 

nitrite moles formed per unit weight of protein per unit of time (nmol/min/mg protein).  
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Measurement of plasma BCNU concentration after a single intraperitoneal administration 

of BCNU 

Gstt1-null mice and the wild-type controls were treated via a single intraperitoneal 

administration with 20 mg/mL BCNU dissolved in 5% ethanol/saline solution at dose levels of 20 

mg/kg. Approximately 0.5 mL of blood was collected at 5, 15, 30 and 60 min postdose. The blood 

samples were centrifuged at 10,000 rpm for 2 min at room temperature to prepare the plasma 

samples. Then, 10 µL of plasma sample was placed in disposable glass tubes and 465 µL of 0.1% 

acetic acid in water was added and vortexed. After adding 25 µL of ethanol, the solution was 

applied to 1 mL of Oasis HLB solid phase extraction cartridge (Waters, Milford, MA). The 

cartridge was washed previously with 1 mL of acetonitrile followed by 1 mL of water. After the 

sample was loaded, the cartridge was washed with 1 mL of 0.1% acetic acid in water and then 

eluted with 0.5 ml of 0.1% acetic acid in acetonitrile. The eluted sample was analyzed on a C18 

reverse phase column (Sunfire; 3.5 µm; 2.1 x 50 mm; Waters) using a step gradient of 95% B until 

6 min followed by a step gradient of 5% B until 12 min at a flow rate of 0.2 ml/min. The column 

effluent was directed into the electrospray ionization (ESI) source of a QTRAP mass spectrometer 

(MDS Sciex, Toronto, ON, Canada). The ESI conditions were: assist gas flow rate, 85 L/min; 

evaporation gas, 85 L/min; ionization voltage, -4.5 kV; evaporation temperature, 300°C; field 

voltage, -0.3 V; and collision energy, -6 V. The data were acquired in negative ion mode using 

Analyst software (MDS Sciex). BCNU was detected as ion pairs at m/z 271.9/211.9.  

Statistical analyse 

All data were analyzed by an F-test to evaluate the homogeneity of variance. If the variance 

was homogeneous, a Student's t-test was applied. If the variance was heterogeneous, an 
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Aspin-Welch's t-test was performed. The value of P<0.05 was chosen as an indication of 

statistical significance except hepatic protein expression analysis. Microsoft Excel (Microsoft 

Corporation) was used for statistical analysis. 
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Results 

Generation of Gstt1-null Mice 

Mice with a disrupted Gstt1 gene were generated by a homologous recombination method 

with mouse ES cell. The targeting vector used in this study is shown in Figure 1A. Mouse Gstt1 

gene consists of 5 exons in a region of about 5 kb. This targeting vector was designed to achieve 

the deletion of exons 1 and 2 of the Gstt1 gene by replacing them with a Neor cassette. W9.5 ES 

cells were electroporated with the targeting vector and 306 of the colonies with G418 resistance 

were selected and screened by PCR for homologous recombination. Six independent 

PCR-positive clones, 1A3, 2A2, 3C6, 9D5, 11D4 and 12B6, were obtained by primary PCR 

screening with a NeoF3/T1R1 primer pair. However, secondary PCR screening with a GT43/NP3 

primer pair revealed that the 12B6 clone was not integrated into the targeted sequence by 

homologous recombination (data not shown). Chimera mice were generated using the 9D5 ES 

cell clone with near-diploid karyotype. The F1 offspring were confirmed to succeed to the 

homologous recombinant allele (Figure 1B). The F1 heterozygous mice were intercrossed to 

produce F2 mice, which were determined to be wild-type, heterozygote or homozygote 

(Gstt1-null mice) by PCR genotyping (Figure 2). Furthermore, RT-PCR analysis showed Gstt1 

mRNA expression was not detected in the livers of Gstt1-null mice (Figure 2). Gstt1-null mice 

appeared to be normal and were as fertile as the wild-type and heterozygote mice. No obvious 

histological, hematological and blood chemical differences in the basal condition were detected 

between Gstt1-null mice and the wild-type controls (data not shown). 

Hepatic protein expression analysis by 2D-DIGE/MS 

Hepatic protein expression analysis by 2D-DIGE/MS is summarized in Table 1. The 
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expression levels of the 3, 16, and 4 proteins were significantly different between Gstt1-null mice 

and the heterozygotes, the Gstt1-null mice and the wild-type control, and the heterozygotes and 

the wild-type controls, respectively. Among them, the expression levels of the 2 proteins were 

significantly different between all the genotypes. These proteins were identified as GSTT1 and 

Albumin 1 by MALDI-TOF MS. In particular, GSTT1 protein was absent in Gstt1-null mice 

(Figure 3). Although we succeeded in the identification of 13 proteins among the 16 proteins 

which showed significant differences in the expression level between Gstt1-null mice and the 

wild-type controls, the other GSTs were not among them. 

GST activities toward CDNB, EPNP, DCM and BCNU in the cytosols of the liver and 

kidney 

We measured the GST-CDNB, GST-EPNP, GST-DCM and GST-BCNU activity in cytosolic 

samples from the livers and kidneys of Gstt1-null mice. The results showed significantly low 

activity of GST-EPNP, GST-DCM and GST-BCNU in Gstt1-null mice, in spite of the same level 

of GST-CDNB activity in all the genotypes (Figure 4). The GST-EPNP activity of Gstt1-null 

mice was low in the livers of the males (42.1% of the wild-type control), and markedly low in the 

livers of the females (8.7% of the wild-type control) and in the kidneys of both sexes (male: 

27.7%, female: 18.3% of the wild-type control). The GST-DCM activity of Gstt1-null mice was 

nearly absent in the livers and kidneys of both sexes. The GST-BCNU activity of Gstt1-null mice 

was 13.2 – 23.9% of the wild-type control in the livers and kidneys of both sexes. The 

heterozygotes showed intermediate activity of GST-EPNP, GST-DCM and GST-BCNU between 

that of the homozygotes and wild-type controls, except for the GST-EPNP and GST-BCNU 

activity of the female kidney. 
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Plasma BCNU concentration after single intraperitoneal administration of BCNU 

We measured the plasma concentrations of BCNU after a single intraperitoneal administration 

of BCNU (20 mg/kg) to Gstt1-null mice and the wild-type controls by LC-MS/MS, to evaluate 

the pharmacokinetics of BCNU in the whole body. This result is shown in Figure 5. The AUC5-60 

min was 1102.79 ng·h/mL in the male wild-type controls, 2534.25 ng·h/mL in the male Gstt1-null 

mice, 768.13 ng·h/mL in the female wild-type controls, and 1752.54 ng·h/mL in the female 

Gstt1-null mice. After a single intraperitoneal administration of BCNU to Gstt1-null mice, the 

plasma concentration of BCNU was significantly higher (male, 1.50, 1.93, 4.12, and 3.48 times; 

female, 1.68, 2.88, 2.57, and 2.44 times at 5, 15, 30, and 60 min, respectively, versus the wild-type 

controls) and there was a larger AUC5-60 min (male, 2.30 times; female, 2.28 times, versus the 

wild-type controls) based on the results. 
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Discussion 

In this study, we generated Gstt1-null mice by homologous recombination in order to evaluate 

the metabolic properties of GSTT1 to the specific substrates. Homologous recombinant ES clones 

with the predicted mutant allele, confirmed by genomic PCR and direct sequencing analyses, was 

used to generate mice with a disrupted Gstt1 gene. Expression analysis by RT-PCR and 

2D-DIGE/MS showed that Gstt1 mRNA expression and GSTT1 protein expression were absent 

in the Gstt1-null mice. These results indicated success in the generation of Gstt1-null mice which 

failed to express Gstt1 mRNA and GSTT1 protein. 

It has been reported that in Gsta4 knockout mice and Gstz1 knockout mice the disruption of 

the Gst genes influences the expression level of other GST isoform genes or proteins. This 

expression change indicates that the disruption of the Gst gene may cause a chronic increase in 

oxidative stress (Engle et al., 2004; Lim et al., 2004). In fact, these knockout mice lines showed 

an increase in the expression levels of antioxidant enzymes, as well as other GST isoform genes 

or proteins. In the Gstt1-null mice, 2D-DIGE/MS analysis was conducted in order to evaluate the 

global protein expression in the liver. This result showed that the GSTT1 protein was absent in 

Gstt1-null mice, and that the expression levels of other GSTs were not different between the 

Gstt1-null mice and the wild-type controls. On the other hand, we also found that the expression 

level of Albumin 1 was different between all the genotypes. The significance of this Albumin 

expression change is not clear, but we observed that plasma albumin concentration and plasma 

albumin/globulin ratio were not significantly different between Gstt1-null mice and the wild-type 

control. Furthermore, we succeeded in the identification of 13 proteins among the 16 proteins 

which showed significant differences in the expression level between Gstt1-null mice and the 
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wild-type controls. Although 4 proteins among them (Protein disulfide isomerase-related protein, 

Aflatoxin B1 aldehyde reductase 1, Carbonic anhydrase 3 and Glutathione peroxidase) were 

reported to cause an increase in the expression levels by oxidative stress (Kyng et al., 2003; Ellis 

et al., 2003; Engle et al., 2004; Yamamoto et al., 2006), we observed that the expression levels of 

Aflatoxin B1 aldehyde reductase 1 and Carbonic anhydrase 3 were decreased in Gstt1-null mice. 

Therefore, these results suggest that GSTT1-deficiency does not necessarily cause an increase in 

oxidative stress under basal conditions. 

In the cytosolic study, GST-CDNB activity, a general GST activity, in the liver and kidney 

was not different between the Gstt1-null mice and the wild-type control. This result was 

consistent with the low GST-CDNB activity of mouse recombinant GSTT1 protein (Whittington 

et al., 1999). Furthermore, we also observed that P450 activity, assessed by measurement of 

7-alkoxycoumarin O-dealkylase (ACD) activity using a microsomal fraction, was not different 

between the Gstt1-null mice and the wild-type controls (data not shown). The GST-EPNP activity 

of the Gstt1-null mice was low in the liver and kidney of both sexes. However, the remaining 

GST-EPNP activity of the Gstt1-null mice ranged from 8.7% to 42.1% in the liver, and from 

18.3% to 27.7% in the kidney. This result suggests that EPNP is metabolized by not only GSTT1, 

but also by other xenobiotic metabolizing enzymes. Actually, it has been reported that EPNP is 

also metabolized by GSTA3, GSTA4, GSTM1, GSTM4, GSTP1 and GSTT3 (Jowsey et al., 

2003). The expression level of GSTP1 in the liver was observed to be higher in males than in 

females, whereas that in the kidney was not different between both sexes (Mitchell et al., 1997). 

We suppose that GSTP1 may contribute to the higher remaining GST-EPNP activity in the male 

liver. On the other hand, the GST-DCM activity was nearly absent in the liver and kidney of both 
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sexes in the Gstt1-null mice. Similar to Gstt1-null mice, humans with GST-null genotype also 

showed loss of GST-DCM activity in the cytosol of the liver and kidney (Their et al., 1998). 

These results suggest that DCM is a high specific substrate to GSTT1 from mice to humans. 

The GST-BCNU activity of Gstt1-null mice was markedly low in the liver and kidney of both 

sexes. In humans, GSTT1, GSTM2 and GSTM3 have GST-BCNU activity, and GSTT1 was 

demonstrated to have 14-fold higher GST-BCNU activity than GSTM2 and GSTM3 (Lien et al., 

2002). In this study, we also observed that GSTT1 was the most efficient catalyst in the liver and 

kidney cytosols of mice. The remaining GST-BCNU activity of Gstt1-null mice ranged from 

13.2% to 19.9% in the liver, and from 21.8% to 23.9% in the kidney. We suppose that the other 

GSTs contribute to the remaining GST-BCNU activity, which may be mouse counterparts of 

human GSTM2 and GSTM3. Furthermore, we measured the plasma BCNU concentrations after a 

single intraperitoneal administration of BCNU (20 mg/kg) to Gstt1-null mice and the wild-type 

controls by HPLC-MS/MS, to evaluate the pharmacokinetics of BCNU in the whole body. This 

result showed that plasma BCNU concentrations after a single intraperitoneal administration of 

BCNU to Gstt1-null mice were significantly higher than those of the wild-type controls, and that 

there was a larger AUC5-60 min (male, 2.30 times; female, 2.28 times, versus the wild-type controls) 

based on these results. Considering these results, Gstt1-null mice administered a specific 

substrate for GSTT1, such as BCNU, are highly exposed and toxicologically susceptible to the 

substrate. In humans, GSTT1 is expressed in the brain, a clinical target for BCNU treatment 

(Juronen et al., 1996; Sherratt et al., 1997). Therefore, the existence of a GSTT1-null genotype 

may influence both the sensitivity of tumors to BCNU and the severity of the adverse side-effects 

of BCNU in patients.  
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In conclusion, we generated knockout mice for the Gstt1 gene and found that GST-EPNP, 

GST-DCM and GST-BCNU activity in the liver and kidney cytosols markedly decreased in 

Gstt1-null mice, and that a single intraperitoneal administration of BCNU to Gstt1-null mice 

resulted in larger AUC5-60 min for the plasma BCNU concentration. Finally, we concluded that 

Gstt1-null mice would be useful as a toxicokinetically modified animal model, i.e. an animal 

model of a poor metabolizer to the specific substrates for GSTT1, such as an individual with a 

GSTT1-null genotype. Although the activity, expression level and distribution of GSTT1 are 

markedly different between humans and mice (Mainwaring et al., 1996; Their et al., 1998), we 

believe that Gstt1-null mice would offer great advantages in determining the roles of GSTT1 in 

physiological homeostasis, drug metabolism and cancer susceptibility. 
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Figure Legends 

Figure 1. Targeted disruption of the mouse Gstt1 gene.  

A. The targeting vector construct (top), the wild allele of the Gstt1 gene (middle), and the 

predicted mutant allele (bottom) are shown. The targeting vector was constructed by replacing the 

exon 1 (E1) and exon 2 (E2) of the Gstt1 gene with a neomycin-resistant (Neor) cassette. The 

Diphtheria toxin A chain gene (DT) fragment was ligated at the 5’ end of the vector for negative 

selection. The mutant allele was detectable by PCR using the indicated primer sets, GT43/NP3 

and NeoF3/T1R1, which confirmed the homologous recombination on the 5’ and 3’ arm, 

respectively. B, PCR analyses of the homologous recombination on the 5’ and 3’ arm. GT43/NP3 

primer set was amplified by a 5.1-kb fragment contained in the 5’ arm on the mutant allele (left). 

NeoF3/T1R1 primer set was amplified by a 2.7-kb fragment contained in the 3’ arm on the mutant 

allele (right). Lambda/HindIII digest was used as a molecular size marker. WT-ES, intact ES cell. 

9D5-ES, the homologous recombinant ES cell clone. WT-F1, F1 pup with the wild allele. 

Hetero-F1, F1 heterozygote with the mutant allele. 

 

Figure 2. PCR genotyping and RT-PCR analysis of Gstt1-null mice.  

A. The genotype was determined by PCR using two forward primers distinctive between the wild 

allele and the mutant allele, and one common reverse primer. The wild allele and the mutant allele 

indicated a 196-bp fragment and a 154-bp fragment, respectively. B. RT-PCR was performed 

using the primers specific for the mouse Gstt1 gene and b-actin gene. The Gstt1 and b-actin 

mRNA expression indicated a 270-bp fragment and a 323-bp fragment, respectively. The 

amplified fragments were confirmed by direct sequence using the ABI PRISM 3700 DNA 
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Analyzer. M, Phi X174/HincII digest as a molecular size marker; Homo, homozygote (Gstt1-null 

mice); Hetero, heterozygote; Wild, wild-type control. 

 

Figure 3. Comparative analysis of GSTT1 spot using the 2D gel image and DeCyder software. 

A. Representative 2D gel image of GSTT1 (Spot No. 1929). B. 3D visualization analyzed using 

DeCyder software. 

 

Figure 4. GST-CDNB, GST-EPNP, GST-DCM and GST-BCNU activity in a cytosolic sample of 

the liver and kidney. Enzymatic activity was measured spectrophotometrically. Open, gray and 

filled bars indicate wild-type, heterozygote and homozygote, respectively. The values are 

depicted as the mean ± S.D. of five mice per group. *, P<0.05; **, P<0.01; ***, P<0.005; ****, 

P<0.001; significant difference from the wild-type controls. N.D., Not detectable. 

 

Figure 5. Plasma BCNU concentrations after a single-dose intraperitoneal administration of 

BCNU (20 mg/kg) to Gstt1-null mice. Open and filled squares indicate wild-type and Gstt1-null 

mice, respectively. The values are depicted as the mean ± S.D.. of five mice per group. 
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Table 1. List of proteins showing significantly altered expression between Gstt1-null mice and the wild-type controls, and identified by MALDI-TOF MS 

Homo vs Wild  Hetero vs Wild  Homo vs Hetero 
Spot No. Identified protein 

Fold change* P value  Fold change* P value  Fold change** P value 

320 Methylmalonyl-CoA mutase 0.76 1.3E-03  0.88 0.047  0.86 0.042 

382 Histidine ammonia lyase 0.55 2.7E-03  0.86 0.12  0.64 0.031 

454 Heat shock protein 8 1.11 1.1E-03  1.06 0.061  1.05 0.100 

486 Albumin 1 0.81 2.6E-05  0.92 9.0E-03  0.88 4.3E-03 

695 Glucose regulated protein 1.22 1.1E-03  1.10 0.020  1.10 0.036 

747 Fibrinogen, beta polypeptide 1.65 5.7E-03  1.29 8.3E-03  1.28 0.094 

944 Protein disulfide isomerase-related protein 1.21 2.6E-04  1.08 0.019  1.12 0.011 

1328 Aflatoxin B1 aldehyde reductase 1 0.83 2.3E-03  0.91 0.043  0.92 0.088 

1443 Glycine N-methyltransferase 1.36 4.7E-04  1.03 0.33  1.31 4.8E-03 

1604 Apolipoprotein E 0.83 2.3E-03  0.93 1.3E-03  0.90 0.041 

1791 Carbonic anhydrase 3 0.65 4.2E-04  0.88 0.079  0.74 0.019 

1929 Glutathione S-transferase, theta 1 0.10 4.2E-05  0.52 2.1E-04  0.18 1.1E-03 

2076 Glutathione peroxidase 1.47 3.7E-04  1.09 0.11  1.35 0.011 

*: Fold change to the wild-type controls. **: Fold change to the heterozygotes. 

The proteins with fold change values shown in bold type were considered to be significantly different (P < 0.01) compared to the respective control. Homo, 

homozygote (Gstt1-null mice); Hetero, heterozygote; Wild, wild-type control. 
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