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Abstract  

Quantitative mappings were established between drug physicochemical properties (PCPs) and parameter 

values of a physiologically based, mechanistically realistic, In Silico Liver (ISL).  The ISL plugs together 

autonomous software objects that represent hepatic components at different scales and levels of detail.  

Microarchitectural features are represented separately from the mechanisms that influence drug 

metabolism.  The same ISL has been validated against liver perfusion data for sucrose and four cationic 

drugs: antipyrine, atenolol, labetalol, and diltiazem.  Parameters sensitive to drug-specific PCPs were 

tuned so that ISL outflow profiles from a single ISL matched in situ, perfused rat liver, outflow profiles of 

all five compounds.  Quantitative relationships were then established between the four sets of drug PCPs 

and the corresponding four sets of PCP-sensitive, ISL parameter values; those relationships were used to 

predict PCP-sensitive, ISL parameter values for prazosin and propranolol given only their PCPs.  

Relationships were established using three different methods: 1) a simple linear correlation method, 2) the 

Fuzzy c-Means algorithm, and 3) a simple artificial neural network.  Each relationship was used 

separately to predict ISL parameter values for prazosin and propranolol given their PCPs.  Those values 

were applied in the ISL used earlier to predict the hepatic disposition details for each drug.  Although we 

had available only sparse data, all predicted disposition profiles were judged reasonable (within a factor 

of two of referent profile data).  The order of precision, based on a Similarity Measure, was 3 > 2 > 1.   
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Introduction  

The In Silico Liver (ISL) (Hunt et al., 2006) (Yan et al., 2007) (Fig. 1) is a first generation example of 

synthetic, discrete, physiologically based, analogues that are intended for refining, exploring, and testing 

hypotheses about the details of hepatic drug disposition.  Autonomous components represent spatial 

aspects of hepatic organization and function.  Different drugs can be represented and studied 

simultaneously or separately.  Each ISL component can interact uniquely with any drug-representing 

object that enters its local environment.  The consequences of simulated systemic and local interactions 

can be measured and studied simultaneously, analogous to how wet-lab experiments are conducted.   

In (Yan et al., 2007), the simulated hepatic disposition of atenolol, antipyrine, labetalol, and diltiazem, 

along with co-administered sucrose, used only one parameterized, ISL structure for all compounds.  A 

subset of components interacted differently with the particular compounds.  Monte Carlo ISL variants 

simulated compound-specific outflow profiles that matched referent profiles.  The results supported two 

hypotheses.  1) The mappings in Fig. 2 between ISL components and corresponding liver components 

were sufficiently realistic for the stated model use.  2) The simulated drug-ISL-component interaction 

events mapped to corresponding hepatic disposition events.  A goal for this project has been to discover 

and verify ISL counterparts to the relationships between drug physicochemical properties (PCPs) and 

pharmacokinetic (PK) mechanisms, and use them to make predictions.   

A vision motivating research on this class of models is identical to one that has motivated 

development of traditional physiologically based (PB) PK models: by “accounting for the causal basis of 
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the observed data, … the possibility exists for efficient use of limited drug-specific data (italics added) in 

order to make reasonably accurate predictions as to the pharmacokinetics of specific compounds, both 

within and between species, as well as under a variety of conditions” (Rowland et al., 2004).  PCP-

sensitive, PBPK model parameters necessarily conflate features and properties of the biology (aspects of 

histology, etc.) with drug PCPs.  In doing so, there is a risk that “the causal basis” becomes obscured due 

to the conflated biological features that were especially influential in causing some property of the data.  

Interconnections between sinusoids might be such a feature.  In the ISL, because we have built a 

collection of mechanisms from finer-grained components, we have precise control over conflation, yet the 

causal basis is still there in the drug-component interaction logic (axioms, rules).  Our expectation has 

been that at some level of granularity, the complexity will be sufficiently unraveled so that the logic for a 

given ISL component-drug interaction (the “causal basis”) will rely heavily on only a small subset of 

easily specified, drug and biological attributes.  In some cases, information about the molecular attributes 

may be represented adequately by just one or a few PCPs (or, more specifically, knowledge of the drug-

environment interaction for which a PCP is a measure).  Once we have validated ISL models that exhibit 

some of these characteristics, we will have moved closer to the above vision of being able to accurately 

anticipate the hepatic disposition properties of a new compound, given only its molecular formula and 

structure (and/or validated PCPs).   

Are the mechanisms in the current ISL sufficiently realistic to enable such predictions using only 

limited data?  We hypothesized that the differences in the tuned values of the ten PCP-sensitive ISL 

parameters were due primarily to differences in PCPs.  If that is the case, then quantitative PCP-to-ISL 
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mappings exist and, when discovered, should enable us to predict the disposition of a new compound 

given its PCPs.  Failure to provide better than ballpark predictions could be taken as evidence invalidating 

that hypothesis and possibly aspects of the ISL mechanisms.  The goal of this project has been to suggest 

quantitative PCP-to-ISL mappings and then use them to predict the disposition properties of prazosin and 

propranolol given only their PCPs.   

Three different methods were used to implement quantitative PCP-to-ISL mappings: linear 

regression, an artificial neural network, and a well-established fuzzy clustering algorithm.  Each method 

predicted the PCP-sensitive, ISL parameter values for prazosin and propranolol.  Those predicted values 

were then combined with the already-validated, drug-insensitive ISL parameter values.  Simulation of the 

resulting ISLs gave three different, independent versions of expected hepatic disposition details for 

prazosin and propranolol along with expected liver perfusion outflow profiles.  Those profiles were 

surprisingly good matches to the observed profiles, strengthening the ongoing validation of ISL 

mechanisms and supporting the existence of the mapping relationships in Fig. 2.  Together they represent 

an important advance in our ability to predict PK properties for drugs given only their structure.   

Methods 

To distinguish clearly in silico compounds and processes from corresponding hepatic structures and 

processes, we use SMALL CAPS when referring to the former.  

Model Structure and Design.  ISL structure is illustrated in Fig. 1.  Brief summaries of its novel 

structure and design follow for convenience.  Consult (Hunt et al., 2006) and (Yan et al., 2007) for 
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additional details.  An ISL mimics essential features of the in situ perfused rat liver systems used in 

(Hung et al., 2001) to study the hepatic disposition of the cationic drugs.  We assumed that rat, hepatic, 

secondary unit function is similar throughout a normal liver, and that, on average, the function of different 

lobules would be indistinguishable.   

We therefore represented the entire liver as a collection of lobules.  Blood flow is represented as 

entering lobules via portal vein tracts and vascular septa, and draining into branches of a common central 

vein (CV).  The ISL represents each lobule as a network of cell-lined sinusoids connected by solute flows.  

The network is a directed graph; each node (or vertex) represents a cell-lined sinusoid and a link (or edge) 

between two nodes represents directional flow.  For each LOBULE simulation, the graph structure is 

determined stochastically within parameter-specified constraints.  Objects representing sinusoidal spaces 

and functions, along with related spatial features, are called “Sinusoidal Segments” (SSs).  One SS is 

placed at each graph node.  The parameters that control LOBULE form and function for the experiments in 

this report are listed in (Yan et al., 2007) along with all other ISL features.  For convenience, they are also 

listed in Table S1 of the Data Supplement.  Only ten parameters were modified during the course of this 

study.  Except as noted below, all other parameter values were the same as those specified in Table S1.  

The meaning of each parameter is in its name.  For example, parameter C2BJumpProb is the probability 

that a COMPOUND, when given the option, will move from Grid C to Grid B; parameter 

BindersPerCellMax specifies the maximum number of binders that can be contained in any one CELL.  

A SS is a tube-like structure with a blood “Core” surrounded by three identical size spaces in the form 

of 2D grids.  Grid A represents the sinusoid rim.  Grid B, which represents endothelial cells and fenestra, 
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is wrapped around Grid A.  Grid C, which represents all other spaces, including the space of Disse and 

hepatocytes, is wrapped around Grid B. Different sinusoids can experience different flows and have 

different surface-to-volume ratios.  Such heterogeneity is represented by specifying two SS classes: S1 

and S2.  Compared to a S2, a S1 has a shorter internal path length and a smaller surface-to-volume ratio.  

We represented the lobule interior as being subdivided into three concentric zones in order to 

distinguish the quantitative difference in intralobular structural characteristics and, when needed, 

enzymatic and transporter gradients.  The number of directed graph nodes per zone is always in the order 

of Zone 1 > Zone 2 > Zone 3.  Each LOBULE zone contains at least one node.  Because interconnections 

between sinusoids are frequent in the periportal region and are rare near the CV, there are more 

interconnections between Zone 1 nodes than between Zone 2 nodes.  There are no interconnections 

between Zone 3 nodes.  All of these features are controlled by parameters (Table S1), many of which are 

stochastic to simulate uncertainty and biological variability.   

Simulation of Drug Disposition.  ISL experiments follow the same protocol used for in situ perfused 

rat liver experiments.  Specifically, in (Hung et al., 2001), a bolus containing similar amounts of the 

extracellular space marker sucrose and a cationic compound was injected into the portal vein through a 

catheter (because of this, drug does not enter the liver as a bolus or a short duration square wave).  

Consequently, the ISL dosage function is a modified gamma function (given in Table S1; see (Hunt et al., 

2006) for details) rather than an impulse to simulate effects of catheters and large vessels.  Perfusate was 

collected using a fraction collector.  The fraction of the administered dose contained per collection 

fraction was measured.  Hepatic compounds of interest in the ISL are represented as COMPOUNDS (also 
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called DRUGS): they are objects that move through the LOBULE.  Each COMPOUND represents a large 

number of drug molecules and can interact with each encountered SS feature.  A COMPOUND’s behavior is 

determined by the PCPs of its referent, along with the consequences of its interaction with the LOBULE 

and SS features encountered during its unique trek from portal vein tracts to CV.  

After COMPOUNDS enter the LOBULE, they can enter a SS in Zone 1 at either the Core or Grid A.  

Thereafter, until each is collected at the CV, they have several stochastic options.  The parameter 

CoreFlowRate biases COMPOUND movement in the Core in the CV direction, simulating blood flow.  The 

parameter SinusoidTurbo biases COMPOUND movement in the three spaces in the CV direction, but much 

less so than CoreFlowRate; it simulates turbulent flow.  In the Core or Grid A, a COMPOUND can move 

within that space, jump from one space to another, or exit the SS.  When a COMPOUND jumps to Grid B, it 

can move within the space, jump back to the Grid A, or on to Grid C.  All COMPOUNDS can move within 

the extracellular portions of Grids B and C.  When a COMPOUND encounters a CELL in Grid B or C, it can 

move into it if allowed to do so by the CELL (it is allowed when the parameter isMembraneCrossing is 

true).  When a CELL sees SUCROSE, it also sees that its value of isMembraneCrossing is false; 

consequently, it will not allow SUCROSE to enter.  All CELLS in Grid C represent HEPATOCYTES.  After a 

COMPOUND exits a SS in Zone 3, it enters the CV.  Its arrival is recorded, simulating being collected by a 

fraction collector.  An animated visualization of these events during a simulation, from start to finish, at 

both individual ISL and SS levels, for SUCROSE and ANTYPYRINE administered together, is available 

through Supplemental Data of (Yan et al., 2007). 
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The only subcellular functions that were needed to simulate behaviors of the six drugs under study 

were binding and metabolism.  As done in (Liu and Hunt, 2005; Liu and Hunt, 2006; Sheikh-Bahaei et al., 

2006), transporters can be added when needed.  At the start of each simulation, objects functioning as 

containers and representing CELLS are placed randomly at some fraction of the available locations in 

Grids B and C.  All cellular components that bind or metabolize drugs, such as transporter, enzymes and 

other cellular materials, are conflated and represented by simple functional objects called BINDERS.  Each 

CELL contains a randomly specified (within parameter-controlled limits) number of BINDERS in a well-

stirred space.  A BINDER within a Grid B CELL can only bind and later release a DRUG.  A BINDER within 

a Grid C HEPATOCYTE, referred to as an ENZYME, can bind DRUG and either release or METABOLIZE it.  In 

the later case, the DRUG vanishes; for this report, a METABOLITE replacement is not used.   

Because there are 38 ISL parameters (Table S1) that specifically influence disposition events, a major 

simulation task in (Yan et al., 2007) was to locate a region of ISL parameter space capable of providing 

parameter vectors that generate biologically realistic ISL outflow profiles for SUCROSE and each of the 

four DRUGS.  To accomplish that, the LOBULE graph and SS structure was first tuned for SUCROSE; we 

held those values constant and then tuned the ten PCP-sensitive parameters until we matched outflow 

profiles for each of the four cationic drugs.  For this study, the parameters in Table 1 were specified as 

being sensitive to differences in PCPs.  All 28 other ISL parameter values (PVs) are unchanged: they 

control LOBULE and simulation features that were considered independent of administered COMPOUND 

and are identical to those specified in (Yan et al., 2007).  Five of the ten parameters are used only for 

COMPOUNDS that can enter CELLS.  We located a specific ISL parameter domain that could generate valid 
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outflow profiles for all five compounds.  The values of the PCP-sensitive parameters provided a base 

from which we could predict ISL PVs for two new simulated cationic drugs: PRAZOSIN and 

PROPRANOLOL.  

Due to the stochastic nature of ISL simulations, each in silico experiment generates a slightly 

different outflow profile.  In this report, the outflow profiles from 48 simulation trials are summed to 

represent one experiment.   

Mapping PCPs to ISL Parameter Values.  Traditional parameter estimation methods (Ljung, 1998) 

are often infeasible for synthetic, discrete, agent-oriented, biomimetic models of the ISL type, because 

many of the mathematical assumptions underlying these traditional methods are not satisfied.  Therefore, 

in addition to simply stating and describing the methods used, we also state considerations and provide 

the rationale.  

It is widely held that a mapping exists between the hyperspace of drug PCPs and the hyperspace of 

measured PK properties (Mager, 2006).  Correlation results, as in (Hung et al., 2001), frequently 

demonstrate relationships between a PCP and values of one or more fitted PK parameters, providing 

evidence of such mappings.  Validation of the ISL for five compounds provided evidence for mappings A, 

B and C illustrated in Fig. 2: the mapping between A) ISL outflow profiles and their in situ counterparts; 

B) ISL events and hepatic disposition events; and C) local ISL mechanisms and their drug-hepatic 

component counterparts.  Because a mapping exists between PCPs and the causal hepatic mechanisms, 

we infer that a logical mapping can also be constructed between drug PCPs and the PCP-sensitive subset 

of tuned, ISL parameters of the four compounds in Table 1.   
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How can we establish specific, quantitative mappings so that ISL PVs for a new drug can be 

approximated directly based on its PCPs?  How can we accomplish the task when we have “only limited 

drug-specific data”?  An example of how this can be done for a synthetic, discrete event, agent-oriented 

model having design features similar to the ISL, was recently presented (Sheikh-Bahaei and Hunt, 2006), 

and theirs is one of the methods that we use.   

Methods for Predicting ISL Parameter Values.  What is the best method and approach for 

predicting PCP-sensitive ISL PVs for a researcher-selected set of PCPs?  We know from exploratory ISL 

experiments that the change in an outflow profile caused by changing the value of one parameter can be 

compensated by modest adjustments in the values of several other parameters: the relationships among 

ISL PVs and outflow profiles are nonlinear (Hunt et al., 2006).  From accumulated PK knowledge, we 

also know that mappings between PCPs and traditional PK model PVs can also be nonlinear.  When 

attempting to identify and unravel complicated mappings, more data is always preferred.  Unfortunately, 

the reality in the PK domain is that because of the high costs of wet-lab experiments and given the 

combinatorial size of all the factors involved in any PK mechanism, there will always be a shortage of 

specific data for any particular sub-system.  In addition, most PCPs have their own uncertainty issues.  

Such considerations make predicting ISL parameters challenging.  Before suggesting an answer to the 

lead question, we also need to take into account the following two issues.  

1) A goal for this class of models is to incorporate the parameter prediction method(s) into the 

simulation system so that the ISL and its components can automatically adjust their DRUG-component 

interaction rules, “on the fly,” using the PCP information carried by each COMPOUND.  This will allow the 
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ISL components to adjust their interactions with DRUGS even though the particular COMPOUND has not 

been previously encountered, and so no validated interaction rule is available.   

2) The ISL is not a static model.  It is expected to evolve iteratively with continued use.  We can 

anticipate that components and interaction events will be invalidated and changed.  For example, a 

specific mechanistic detail may be invalidated when the set of targeted attributes is expanded by inclusion 

of a new attribute (based on wet-lab observations from other experiments).  In order to validate against 

the expanded set of targeted attributes, a current mechanistic ISL feature may need to be replaced by a 

revised, possibly more detailed version.  Consequently, parameter prediction methods need to be easily 

transferable to new components as the ISL evolves.   

Research in quantitative (drug) structure-PK parameter relationships has considered many mapping 

methods ranging from simple linear regression to partial least squares regression (for examples see (Hou 

et al., 2006) and (Ng et al., 2004)) and nonlinear regression methods, including artificial neural networks 

(e.g., see (Nestorov et al., 1998)).  Each has advantages and limitations.  For results of the more 

sophisticated methods to exhibit statistical significance, larger data sets are required, often acquired 

considering the nature and capabilities of the prediction method.  We can use any of these methods as 

long as we are cognizant of the limitations, especially when working with sparse data: over-fitting is an 

important limitation, but it does not preclude cautious use of a method.  Another is the sensitivity of the 

model’s behavior (e.g., the outflow profile) to changes in predicted PVs.  The impact of such limitations 

depends on the intended use to which the predicted outflow profile will be put.  Precise, verifiable 

predictions are beyond the scope of ISL class models (see discussions in (Hunt et al., 2006) and (Yan et 
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al., 2007)).  At best, an ISL can be used to anticipate the behavior of a new compound in the context of 

considerable uncertainty, given its assumptions.  An example of the latter: the hypothesized mappings B 

and C in Fig. 2 are acceptably realistic for the intended use and can be extended to include the new 

COMPOUND.  It becomes clear that ISL simulations made using predicted PCPs is a rough approximation 

of what might be expected if all assumptions are valid.  Further, this is not a stand-alone prediction: it 

should be considered only relative to validated ISL behaviors.   

With the full weight of the above caveats in mind, a logical strategy would be to use several 

parameter prediction methods.  Simulations made using each of the predicted parameter sets for the new 

drug can then be compared to in situ outflow profile of that same drug.  We can state the following.  

Consider the hepatic disposition properties of prazosin and propranolol determined from wet-lab 

experiments and analogous properties of the two in an in silico experiment, where the in silico and wet-

lab experimental designs are effectively the same.  The relative differences and similarities in simulated 

disposition properties between the two compounds would approximate those of the wet-lab experiment.   

Our expectation is that the ISL will be revised and reused to represent the hepatic disposition 

properties of an increasing number of drugs under a variety of experimental conditions.  With 

improvement, the two hypothesized mappings, B and C in Fig. 2, will become more realistic because 

validated, finer granularity versions of the simulated mechanisms will be available.  As the simulated 

mechanisms become less abstract, we can expect a shrinking subset of PCPs (or molecular descriptors 

calculated from structure information) will become increasingly important in determining the outcome of the 

referent event.  In that case, the differences between predicted, PCP-sensitive PVs, arrived at using 
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different methods may decrease.  If so, the scientific usefulness of the simulations can be expected to 

increase.   

Many molecular descriptors and PCPs (measured and calculated) are available (for examples, see (Ng 

et al., 2004)).  However, motivated by the desire to keep new methods as simple as possible, while still 

achieving the objective, we elected to focus initially on just the nine in Table 2, the same set used in (Yan 

et al., 2007).  We elected not to include pKa values for this study set for the sake of simplicity: we wanted 

to postpone dealing with the potentially complicated issues of multiple pKa values and the variety of drug-

specific pKa values that one can encounter in the literature.   

Below, we describe how we used three fundamentally different parameter prediction methods.   

Method 1: Correlation and Linear Regression.  The simplest method for specifying a quantitative 

mapping is to use correlation and linear regression.  We correlated each of four sets of PCP values in 

Table 2 against each of four sets of PCP-sensitive, ISL PVs in Table 1.  Next, we selected the one 

correlated pair having the largest correlation coefficient (CC).  We then used the corresponding, least-

squares regression line to predict a value of that ISL parameter for both PRAZOSIN and PROPRANOLOL, 

given the value of the selected PCP.  

Method 2: Fuzzy c-Mean Clustering.  To handle uncertainty that arises during mappings of this 

type, we used the Fuzzy c-Mean algorithm (FCMA) introduced by Bezdek et al. (Bezdek et al., 1984; Pal 

and Bezdek, 1995).  It can be used to transform descriptive mappings into quantitative relationships.  It 
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starts with influence relationships between subsets of PCPs and subsets of PCP-sensitive, ISL PVs from 

validated ISLs.   

Sheihk-Bahaei and Hunt (Sheikh-Bahaei and Hunt, 2006) used the FCMA and “only limited drug-

specific data” to predict parameter values for their analogue of sandwich-cultured hepatocytes.  They 

made the estimation method available to the model to enable it to reasonably anticipate (predict) the 

biliary transport and excretion properties of a new compound, enkephalin, based on the acceptable, 

already tuned PVs of salicylate, taurocholate, and methotrexate.  By assuming the similarity among PCPs 

extends to model PVs, acceptable values of the latter for enkephalin (with PCPs that are very different 

from the three other drugs) were predicted that had good similarity measure values.  They established a 

single mapping between thirteen selected PCPs and fourteen PCP-sensitive model PVs (the ISL has just 

ten).  However, correlations between specific PCPs and specific PK parameter values (Mager, 2006) 

suggest that a small set of PCPs will have a dominant influence on specific drug-component interactions 

during disposition, an observation confirmed recently by Ng et al. (Ng et al., 2004).  It thus seemed 

reasonable to expect that different subsets of PCPs will map to the hepatic counterpart of different ISL 

events, such as moving between Grids B and C and movement into CELLS.  Further, the artificial neural 

network method discussed below provides a mapping between all nine PCPs and all ten ISL PCP-

sensitive, PVs.  Therefore, for this second prediction method, we elected to seek usable relationships 

between subsets of PCPs and the ISL parameters controlling specific ISL events.   

Consider the six compounds in Table 2.  Each drug's nine PCP values, combined into a vector, can be 

viewed as a single point in a nine-dimensional hyperspace.  The six vectors or points (also referred to by 
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the name of the compound that the PCPs describe) can be classified into one-to-six groups based in part 

on their closeness in PCP hyperspace.  Any compound can be a member of more than one group: the 

groups or clusters overlap.  The researcher can specify the number of groups, or use the FCMA to search 

for the optimal number.  The FCMA assumes that each point has some degree of membership in each 

group.  It then assigns a membership degree value to every vector in each cluster.  The FCMA inputs are: 

1) the data set of n cases to be clustered (for our use, each case is a single drug, a vector of nine PCP 

values); 2) a parameter m known as the fuzzy exponent; and 3) the number of user specified clusters c.  

The first two of these inputs are discussed further in the following sections.  As recommended in (Pal and 

Bezdek, 1995), we always set m = 2.  The output of a FCMA, illustrated in Fig. 3, is a c-by-n matrix, 

containing the membership values of the fuzzy clusters. 

ISL Parameter Categories.  There are three categories of ISL parameters.  Those that control lobule 

graph and sinusoid structures are the same for all drugs.  Those that control the PCP-sensitive parameters 

comprise the third category.  We need only predict the values of PCP-sensitive parameters.  We divided 

the ten PCP-sensitive ISL parameters in Table 1 into four subgroups: those that reflect the influence of a 

COMPOUND’S A) effective size, B) movement between spaces, C) binding to LOBULAR components, and 

D) METABOLISM.   

We took the nine PCPs in Table 2 and divided them into five groups, as follows, according to their 

perceived similarity in influence: I) MW and volume; II) partition coefficient (logPapp); III) unbound 

fraction (fuB); IV) topological parameters: number of rotatable bonds (RB count) and topological polar 

surface area (TPSA).  These two PCPs are known to be good descriptors for characterizing drug 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 28, 2008 as DOI: 10.1124/dmd.107.019067

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 DMD #19067 

 18

absorption, including intestinal absorption, bioavailability, Caco-2 permeability, and blood-brain barrier 

penetration (Ekins et al., 2000; van de Waterbeemd and Gifford, 2003).  And, V) hydrogen bond related 

parameters: hydrogen bond donor (HBD) count, hydrogen bond acceptor (HBA) count, and tautomer 

count.  These three PCPs are known to be important to a compound’s chemical interactions with other 

solutes and migration capabilities in aqueous materials(Ekins et al., 2000; Hansch et al., 2004).  Because 

the relationship between PCPs and ISL parameters are believed to be non-linear, we conservatively 

assumed that more than one set of PCPs could influence more than one set of ISL parameters.  We then 

made the following mapping assumptions (Fig. 4) and took them as specifications for moving forward:  

1) logPapp is the primary PCP reflecting a drug’s partitioning ability and so is expected to map to a 

compound’s ability to move between spaces.  We also assumed that parameters in PCP subgroup IV, 

which reflect drug flexibility and topology, also contribute to a compound’s ability to move between 

spaces: in the ISL, that ability is controlled by ISL parameter subgroup B.  We specify that a 

quantitative mapping can be established between PCP subgroups II and IV, and ISL subgroup B.  The 

mapping is illustrated in Fig. 4.  

2) In addition to fuB, parameters in PCP subgroup V are expected to contribute to drug binding to (or 

sequestration in) various cellular components.  We therefore specify that a quantitative mapping can 

be established between PCP subgroups III and V, and ISL subgroup C (see Fig. 4). 

3) DRUG METABOLISM (ISL parameter group D) simulates a complicated process and so it may map to a 

broader range PCPs.  We included the following: logPapp (subgroup II) along with the PCPs in 

subgroups IV and V.    
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4) Both MW and volume are known to influence a compound’s effective size in biological systems 

(Hansch et al., 2004).  We specify that a quantitative mapping can be established between them, and 

ISL2WetLabScaling. 

Fuzzy Cluster Prediction Strategy.  In this section, we explain how we used FCMA results to 

construct quantitative mappings between the PCP and ISL parameter spaces, and how we used those 

mappings to predict the PCP-sensitive, ISL PVs for PRAZOSIN and PROPRANOLOL.  For clarity, we first 

describe the prediction method using an example.  

The properties in PCP subgroups II and IV are posited to map to the PCP-sensitive subgroup B 

parameters (Fig. 4).  We illustrate a method to calculate a value of B2CJumpProb for PRAZOSIN.  The 

subgroup II and IV values are listed in Table 3.  We apply the FCMA to these five, three-value, parameter 

vectors, specifying three fuzzy groups: we get the degree of membership in each cluster listed in Table 3.  

We see that prazosin is primarily a member of a group that contains at least one of the four already-

studied drugs.  In this case, it is within a group to which labetalol and diltiazem also primary members.  

Atenolol and antipyrine are primarily in different groups.  We assume that the position of prazosin in ISL 

parameter space relative to the other four drugs is approximately the same as its position in PCP space 

relative to the other four drugs.  As a first approximation, we specify that it is the case.  Given that 

assumption, we can calculate a value of B2CJumpProb using PRAZOSIN’S PCP degree membership values 

in each of the three clusters along with the average values of B2CJumpProb for all the members in each 

of the three clusters.  LABETALOL and DILTIAZEM are members of cluster 1.  The average B2CJumpProb 

value is 0.5; the value for the only primary member of cluster 2 (antipyrine) is 0.35; the value for the only 
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primary member of cluster 3 is 0.3.  Given that data, for PRAZOSIN, we have 

B2CJumpProb = (0.506)(0.5) + (0.179)(0.35) + (0.316)(0.3) = 0.41 

Additional, detailed calculations are provided in the Data Supplement.  

The same approach can be used to calculate the remaining three members of ISL subgroup B.  The 

method can also be extended to calculate expected values for the other ISL parameters.  The generalized 

statement of the method follows.   

Parameter Estimation via Analysis of Fuzzy Clusters.  In this section, we present an algorithm that 

uses fuzzy clustering to estimate simulation parameters for a new situation given the tuned parameters of 

several, previously validated situations.  For additional detail, see (Sheikh-Bahaei and Hunt, 2007).  In 

this work, the new situation is the ISL encountering two new types of objects, one representing prazosin 

and the other representing propranolol.  The algorithm starts with the highest possible number of clusters 

and iteratively decreases the number of clusters until the new compound is placed in a cluster with at least 

one of the already-tuned compounds.  The compounds in that cluster represent those “most similar” to the 

new compound.  

In general, for a set S, containing n data points S = {c1, c2, … cn} (one data point corresponds to one 

situation—one drug, in our case, with its associated PCP values), the following algorithm estimates the 

simulation parameters of a new situation, cn+1: 

Step 1.  Let q = n, and Snew= {c1 , c2… cn , cn+1}. 

Step 2.  If q = 1 go to step 4.  Else, classify Snew into q clusters using the FCMA. 
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Step 3.  If cn+1 is not in the same group with at least another member, then decrease q to q – 1.  Repeat 

steps 2 and 3.  

 Else, let G-value be the number of group-mates of cn+1 

Step 4.  Call the q groups G1, G2, … Gq, where cn+1 ∈ G1.  Let µk be the membership degree of cn+1 in Gk.  

Estimate the needed ISL simulation parameters of cn+1 as:  

 
 (1) 

where PGk is the weighted average parameter vector of all the members of group k: 

 
 (2) 

The accuracy or usefulness of the resulting estimates depends, of course, on how many data points 

similar to cn+1 exist in the data set, i.e. the higher the G-value, the better the accuracy.  Because we are 

starting with just four compounds, four data points, our expectations must necessarily be modest.   

Method 3: Artificial Neural Network (ANN).  To establish a traditional nonlinear mapping, we 

used a simple feed-forward ANN having a single hidden node (Hudson and Cohen, 1999).  The neuron 

transfer function is y(x) = b/(1 + e–ax); we chose a = b = 1.  We recognized that the small training set 

would lead to an over-fitted prediction model.  Nevertheless, we used it because the method is known to 

be good at finding patterns and establishing quantitative relationships between data sets based on those 

patterns.  We also used it to provide an indication of what might be expected from an ANN-based, 

predictive mapping, recognizing that such mappings have often done better than one of the many 

available multivariate linear mapping options, when the relationships between the data sets are known to 
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be complicated, as is the case here.  We used a backpropagation training algorithm that used normalized 

values of the four sets of nine PCPs in Table 2 as inputs; values of the four sets of ten ISL PVs in Table 1 

were obtained as outputs.  We then used the trained ANN to separately predict a full set of ten PCP-

sensitive, ISL PVs for PRAZOSIN and PROPRANOLOL, given their full set of nine PCPs as inputs.   

Values were normalized as follows: divide each point by its vector Norm.  E.g., if drug (point) X has 

PCPs A, B and C, then it was divided by its length N, i.e., N 2 = A2 + B2 + C2 and Xnormalized = (A/N, B/N, 

C/N).  The output values were normalized in the same way.  Consequently, the predictions too were 

normalized; to be used, the predictions had to be scaled: multiplied by the norm of the training vector. 

Similarity Measure.  The Similarity Measure (SM) used to compare in silico with the lag-time 

adjusted, referent outflow profiles is detailed and discussed in (Hunt et al., 2006) and (Yan et al., 2007).  

Briefly, we assumed that the coefficients of variation of identically timed observations between t = 1 and t 

= 100 seconds from repeat experiments (referent) are constant.  For each referent outflow profile measure 

P, we create two curves, Pl =P(1 – d) and Pu=P(1 + d).  They form the lower and upper bounds of a band 

around P.  The SM value is the fraction of evenly spaced, outflow profile measures falling within the 

band.  Here, d is the standard deviation (SD) of the relative differences between each of six repeated in 

situ experiments and the mean value for a given collection interval, pooled over all collection intervals.  

In (Yan et al., 2007), where the ISL outflow profile was iteratively tuned to give a good match to the 

referent profile, we used d = 1 (SD), and an ISL outflow profile was deemed similar to the referent if 80% 

or more of ISL outflow values were within the band (SM ≥ 0.8).  Here, using predicted PVs without any 

post-prediction refinement, we speculated that having a predicted profile fall within a factor of two of the 
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referent profile could be considered a good result.  Nevertheless, we calculated SM values using two 

reference bands: d = 1 and 1.5, which corresponds to factors of 0.45 and 0.675.    

ISL Execution.  Experiments were executed on an eight node OSCAR cluster 

(oscar.openclustergroup.org/) running RedHat's Fedora 5.  The distribution of the runs uses MPICH 1.2.7 

(www-unix.mcs.anl.gov/mpi/mpich1/).  The ISL was compiled using GCC 4.1.1 against the Swarm 2.2.3 

Objective-C libraries (swarm.org/wiki/Main_Page).  The initial PRN seed was extracted from the 

machine's clock.  Each completed experiment was archived and logged with the date and time using a 

Makefile target.  Examination and processing of data from simulations used a combination of Matlab 

(7.0.0) and R (2.4.0) (www.r-project.org/) scripts, and Microsoft Excel.  As done previously (Hunt et al., 

2006) (Yan et al., 2007), we smoothed results from each simulation experiment using the 

Smodulus_smoothing function from the Rwave (version 1.22) package of R.  For the results presented, a 

wavelet window of three observations at 0.5-second intervals was used.   

Results 

Predicted PCP-sensitive ISL Parameter Values.  Ninety correlations were performed: four values 

of each of ten ISL PVs (from having already tuned the ISL for four drugs) with the four values of each of 

nine PCPs corresponding to those four drugs.  Table 4 lists the CC values.  The regression line for the ten 

pairs having the largest CCs (bold) was used to predict the ISL parameter value for both PRAZOSIN and 

PROPRANOLOL listed in Table 5. 
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The PCP-sensitive ISL PVs for PRAZOSIN and PROPRANOLOL predicted using Eqs. 1 and 2 in 

combination with the mappings specified in Fig. 4 are also listed in Table 5, along with the ISL PVs for 

the two drugs predicted using the ANN.  Because the referent outflow profiles for prazosin and 

propranolol included co-administered sucrose, equations 1 and 2 were also used to calculate new PCP-

sensitive ISL PVs for SUCROSE.  Those values are also listed in Table 5.  Several examples of using the 

FCMA method to predict specific ISL parameter values are provided in the Data Supplement along with 

the predicted sucrose outflow profiles (Fig. S1) when SUCROSE was co-administered with PRAZOSIN and 

PROPRANOLOL. 

Hepatic Disposition Predictions.  We used the predicted ISL PVs in Table 5 along with the 

previously specified, PCP-independent, ISL parameter values (Table S1) to parameterize new ISLs, three 

for PRAZOSIN and three for PROPRANOLOL.  Simulations using each of these ISLs generated the expected 

outflow profiles presented in Figs. 5-7.  One simulated outflow profile is the result of pooling 48 separate 

Monte-Carlo trials.  One trial represents a single lobule and 48 trials represent the whole liver.   

As previously discussed (Yan et al., 2007), the structural and microarchitectural details of the ISL 

used for each simulation trial were nondeterministic.  Even though the number of nodes per zone and the 

number of intra- and interzone edges were specified, the connectivity pattern was determined randomly at 

the start of each simulation.  SS structures for a given set of parameter values are also stochastic: the 

actual structures of the 72 SSs used for each ISL run were highly constrained yet different.  Because of 

theses differences, combined with the many forms of discretization, there was variability between ISL 

instantiations and, consequently, the raw outflow profiles were noisy.  That variability reflects, and to 
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some extent simulates, interindividual hepatic differences along with the uncertainty in our knowledge 

about the exact details of the generative mechanisms.  Increasing the number of averaged simulation runs 

makes outflow profiles smoother.  The additional wavelet smoothing was described under Methods.  

As described under Similarity Measure, when matching the simulated outflow profile with lag-time 

adjusted, in situ outflow profiles, we used a band of ±1 SD flanking the original wet-lab outflow profile 

values as a measure of the similarity of ISL simulations to those wet-lab results.  For the outflow profiles 

generated from the predicted parameter values, two reference bands were used: ±1 SD and ±1.5 SD, and 

SM values were calculated for each.  For these data, a band of ± 1 SD corresponds to a constant, 45% 

coefficient of variation; ± 1.5 SD corresponds to a constant, 67.5% coefficient of variation.  The ±1 SD 

SM values, in the order PRAZOSIN and PROPRANOLOL, shown in Table 5, were as follows.  Method 1 

(simple linear regression): 0.36 and 0.68; Method 2 (the FCMA): 0.50 and 0.58; and Method 3 (ANN): 

0.79 and 0.97.  The corresponding ±1.5 SD SM values: Method 1: 0.55 and 0.82; Method 2: 0.77 and 0.72; 

and Method 3: 0.97 and 0.98.  

Drug-specific Prediction Strategies.  Although the predicted ISL parameter values from the FCMA 

method generated good predicted PRAZOSIN and PROPRANOLOL outflow profiles, they were the result of 

applying simultaneously a common PCP-to-ISL mapping strategy to both drugs.  We recognize that 

prazosin and propranolol have significantly different PCPs.  What if we had sought parameter predictions 

for each drug separately?  Would individualized mappings yield improved outflow profile predictions?  

The mapping between each compound’s PCPs and the matched ISL parameter values are not expected to 

be identical.  We explored the consequences of individualizing the mappings.  Several dozen mappings 
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were explored.  Starting with the strategy in Fig. 4, we made one mapping change, then predicted 

parameter values, and simulated outflow profiles.  We then repeated the process for a second, third, etc. 

mapping change.  For both drugs, we kept the number of PCP-ISL mappings constant at four, for four 

subgroups of ISL parameters, as in Fig. 4.  We removed or added single PCP values or single PCP groups.  

Most of the mapping options resulted in expected drug outflow profiles having SM values for both 

PRAZOSIN and PROPRANOLOL that were smaller than those in Table 5 for the FCMA method.  In several 

cases, the SM values showed little change.  Only a few showed improved SM values, but they were 

modest.  The individualized mappings for two of the latter cases (Fig. S2), along with the corresponding 

simulated outflow profiles (Fig. S3) are provided in the Data Supplement.  

Discussion 

Prediction of PK parameter values plays an increasingly important role in decision making 

concerning drug candidates in development.  The methods and issues, which have been thoroughly 

reviewed, fall into two categories: empirical, data-based approaches (Stouch et al., 2003; Beresford et al., 

2004; Yamashita and Hashida, 2004; Li et al., 2007) and structure-based approaches (Ng et al., 2004; Li et 

al., 2007).  Data-based approaches can be subdivided into linear and non-linear methods, and each 

approach may involve clustering.  Examples of the former include multiple linear regression, partial least 

squares analysis, and linear discriminant analysis.  Examples of the latter include ANNs, genetic 

algorithms, support vector machines, and k-nearest neighbor algorithms.  Popular clustering techniques 

include partitional algorithms (including k-Means Clustering), nearest neighbor clustering, ANNs, 
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evolutionary approaches, search-based approaches (including simulated annealing), and fuzzy clustering.  

We employed clustering, specifically fuzzy clustering, as one of the three methods used because it is 

difficult to classify PCPs and the drug’s they characterize into crisp, disjoint clusters.  Conventional 

clustering produce partitions: each pattern fits in one and only one cluster.  Fuzzy clustering assigns each 

pattern within each cluster a membership value.  We speculated that this feature may make it an effective 

tool for clustering PCPs for mapping to ISL PVs, especially when data are sparse.   

The relative merits of linear and non-linear methods when dealing with traditional PK parameter 

estimation are now reasonably well understood.  However, the ISL is representative of a new class of 

models.  It contains more mechanistic detail than traditional PK models, and only a sub-set of its 

parameters is PCP-sensitive.  Consequently, we had no a priori basis for selecting one of the preceding 

methods over another.  We chose three quite different methods to begin building insight into their relative 

merits for parameter estimation within the ISL context, given the multiple levels of uncertainty.   

We started with a simple version of each method.  We treated the predictions arising from their use as 

semi-independent “votes” for how to parameterize an ISL, given a set of PCPs of prazosin and 

propranolol, along with ISL PVs that are independent of PCPs from having validated ISLs for sucrose, 

altenolol, antipyrine, labetalol, and diltiazem.  Simulations arising from use of the three different sets of 

predicted ISL parameter values gave us different hepatic disposition and outflow predictions.  Because 

referent data were sparse, we were not trying to select a best prediction method.  We took each outflow 

prediction in Figs. 5–7 as a plausible estimate what one might expect following administration of prazosin 

and propranolol to a perfused liver.  In the case of the ANN (Fig. 7), we recognized the risks associated 
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with over-parameterization (Hudson and Cohen, 1999).  All three methods gave rise to predicted profiles 

that were within a factor of two of the actual profiles.  We found it noteworthy that the simple, single PCP 

correlation method (Fig. 5) lead to ISL outflow profiles that were close to those of FCMA and ANN. 

A single point in discretized PCP space represents an unique compound.  The space is not continuous.  

Each point can map to a relatively unique hepatic outflow profile, which is a consequence of many 

entangled local, intralobular mechanisms.  A mapping from PCP space to a disposition outflow profile (an 

attribute of the drug-liver phenotype) is complex.  A small shift in location in PCP space is expected to 

correspond to distinguishable outflow profile changes.  Table 2 shows that for this work, PCP space has 

nine dimensions.  It is relatively simple to calculate dozens of additional physicochemical descriptors, 

ranging from simple geometric to sophisticated electrostatic and thermodynamic.  On the other hand, with 

larger data sets, one can reduce the number of dimensions using a linear dimensionality reduction method 

such as Principal Component Analysis.  However, the goal of this work is not finding the optimal size of 

PCP space.  Rather, it is to explore the usefulness of the new methods in this context.   

The ISL is an assembly of componentized mechanisms: purposefully separated and abstracted aspects 

of hepatic form, space, and organization interacting with COMPOUNDS.  Each component mechanism has 

been unraveled from the complex whole of the hepatic-drug phenotype; it has its own unique phenotype, 

but that phenotype is much simpler than that of the entire lobule mechanism.  Hence, a mapping from 

component behavior space to PCP space is also simpler and fundamentally different from the PCP-

outflow profile mapping described above.  For each ISL component, a small location change in PCP 

space may correspond to a negligible or modest change in the properties of that component mechanism, 
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as well as to the value of the parameter controlling its behavior.  We see evidence of this in Tables 1 and 

5: there are cases where different compounds have similar ISL PVs.  Note also that for both PRAZOSIN 

and PROPRANOLOL, there are cases where each of the three methods predicted similar PVs for the same 

drug.  Therefore, considered in retrospect, it is not surprising that even an overly simple estimation 

method can lead to an acceptable parameterization.  Interestingly, the current level of mechanistic 

granularity is sufficiently fine-grained so that the subtle patterns in PCPs and in the PCP-sensitive, ISL 

PVs that are needed to achieve larger SM values (Fig. 7; Table 5) are just enough for the simple ANN 

parameter estimation technique, the more complicated of the three, to find them.   

The results suggest that when using the synthetic method of assembling separated aspects of 

mechanism, a parameter estimation method, which reasonably quantifies the relative differences between 

compound-specific behaviors at the level of detail represented by those mechanisms, will provide 

satisficing (the minimum satisfactory outcome), ballpark estimates.  That bodes well for using the ISL 

class of models for predicting PK properties, given only molecular structure information.  However, the 

six drugs in this study are all weak bases.  As such, they occupy a common sub-region of PCP space.  

More drug cases, spanning additional regions, will be needed to build confidence that the above, 

apparently favorable parameter prediction situation is a consequence of the synthetic method and its 

instantiation for the ISL (rather than fortuity).   

Because it is a synthetic model, the ISL successfully shrinks the PCP-sensitive phenomenal manifold 

relative to that of tightly coupled mathematical PK models.  Traditional equation-based, PK models 

reduce the phenomenal manifold to a set of real-valued parameters interacting within and assuming a 
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relational continuum.  Although one can reduce the number of parameters being considered with these 

models, in order to maintain accurately quantified relationships, the set of reduced parameters must still 

accurately capture the aggregated relationships of the larger parameter set.  This implies that, for tightly 

coupled PK models, the phenomenal manifold remains just as complex even though there are fewer 

parameters in the PK equations.  The parsimony achieved by such reduction is, in a sense, illusory.  The 

fine-grained relationships that traditional PK models conflate into mathematical parameters are deeply 

embedded in the coarse-grained relationships of these parameters.  In contrast, the ISL can be actually 

simplified because it is an assemblage of coupled, abstract mechanisms, such as transfer between spaces 

and entry into cells, where the fine-grained relationships can be completely ignored.   

Of course, a negative consequence of the ISL’s componentized simplification is that the model can 

sometimes yield dramatically inaccurate and abiotic simulations.  Here are three examples: 1) a 

parameterization makes too much space available to DRUGS causing a prolonged, abiotic lag-time to occur 

before a slowly rising wave of DRUG emerges.  2) When the diversity in travel paths becomes too limited, 

travel paths can form distinct clusters, rather than being smoothly distributed.  That discontinuity in path 

options can cause abiotic, oscillations to occur in outflow profiles.  Evidence of oscillations can be seen in 

the PROPRANOLOL profile prediction in Fig. 6.  3) Inaccurate and abiotic crowding can occur when too 

many DRUGS converge too quickly on a too small space; this can occur when too many edges connect to 

one SS.  However, all models are inaccurate.  A central purpose to the synthetic method is to clearly 

identify and denote both the accurate and inaccurate assumptions and behaviors that characterize a model.  

Similar phenomena occur with all wet-lab models.  Aspects of in vitro phenotype are expected to map to 
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corresponding attributes in animal species or patients.  However, combinations of experimental 

specifications can cause in vitro behaviors and phenomena for which there is no counterpart in the 

referent. 

As long as we maintain awareness of the above negative consequence, such effects can be minimized.  

For research that adopts the motivating vision of PBPK, it seems important to use both the synthetic 

method for chronicling modeling assumptions (heuristic value) and the inductive method to achieve high 

tolerance predictive value.  We posit that, by having simplified, yet fine-grained, heuristic models, like 

the ISL, which are commensurate with relatively simple parameter estimation methods, the biological 

mechanisms become more understandable and accessible.  Increased accessibility can provide the 

methodological leverage needed to build synthetic analogues that will enable us to explore, digest, 

categorize, understand, and use the massive amounts of data being generated by “omic” technologies.   
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Figure Legends 

Fig. 1.   Illustrations of ISL model components.  The six levels of ISL organization, from largest to 

smallest, are: 1) the ISL experiment system, 2) SINUSOID network, 3) SINUSOID segment, 4) SINUSOID 

spaces, 5) CELLS and EXTRACELLULAR domains, 6) ENZYMES and binders.  Upper left: a schematic of a 

cross-section of a hepatic lobule.  Blood flow enters lobules via terminal portal vein tracts, goes through 

sinusoids in three concentric zones, and drains into branches of a common central vein (CV).  The three 

different zones have quantitative differences in structural characteristics and DRUG interaction capabilities.  

Upper right: objects representing drug and sucrose are injected as a bolus into a simulated catheter that 

feeds into the portal vein tracts.  Middle-right: a portion of the SINUSOID network is represented by an 

interconnected, three zone, directed graph.  Objects called SINUSOID segments (SSs) are placed at each 

graph node: they simulate sinusoid functions.  Lower-left: a schematic of SS component organization: 

Grids represent spaces and can contain objects representing the functions associated with a portion of 

SINUSOID space.  Objects representing DRUG and SUCROSE enter and exit a SS via the Core and Grid A.  

From Grid A, a COMPOUND can access the other spaces.  Grid locations have properties that govern their 

interaction with mobile COMPOUNDS.  The potential for heterogeneous properties within different grids is 

illustrated by different shadings of grid locations.  Objects functioning as containers (for other objects) are 

used to represent cells, and can be assigned to any grid location.  The Core represents blood flow; Grid A 

represents the sinusoid rim; Grid B represents endothelial cells and fenestra; Grid C represents all other 

spaces, including the Space of Dissé and hepatocytes.  Lower-right: A HEPATOCYTE container: objects 
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representing all needed intracellular components can be placed within.  All enzymes that metabolize drug 

are represented by ENZYME objects (e.g., CYP); cell components that simply bind, sequester, and release 

drugs are represented by BINDERS.  Additional binders representing transporters and other capabilities can 

be easily added as needed.  Cell containers can distinguish between DRUG and SUCROSE; they do not 

allow SUCROSE to enter.  Bile was not needed for these simulations, but it can be represented easily as an 

extension, as described in (Sheikh-Bahaei and Hunt, 2006).   

 

Fig. 2.  Illustration of relationships between ISL mechanisms and its components, along with 

relationships between the ISL and referent, perfused liver counterparts.  To the extent that mappings A, B 

and C are realistic, the relationship between a drug’s physicochemical properties (PCPs) and specific 

hepatic disposition events will have an ISL counterpart.  Discovering plausible methods to make a 

quantitative mapping between a drug’s PCP and PCP-sensitive ISL parameter values will allow prediction 

of DRUG–specific, PCP-sensitive ISL parameter values, given only a new drug’s PCPs.  ISL simulations 

using those predicted parameter values stand as a prediction of the expected disposition behavior of that 

new drug.   

 

Fig. 3.  Inputs and output of the Fuzzy c-Means algorithm (FCMA).  The FCMA locates c clusters within 

the set of n points (corresponding to n drugs) in PCP hyperspace and assigns a membership degree, µi j , 

for each point i to each cluster j.   
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Fig. 4.  Mappings between PCP subgroups and ISL parameter subgroups.  The four ISL subgroups are 

specified in Table 1; the five PCP subgroups are specified in Table 2.  Each line represents a hypothesized 

strong influence.  E.g., the partitioning and topology related PCPs are thought to have a strong influence 

on the wet-lab counterpart of the four PCP-sensitive ISL parameters values controlling movement 

between spaces within SSs.  The identified PCP subgroups are the ones used by the FCMA to provide the 

membership degree values used in Eq. 1 to predict ISL PVs for PRAZOSIN and PROPRANOLOL in Table 5.  

The FCMA treats the identified PCPs as having equal influences.  The influence of the other PCPs is 

neglected.  

 

Fig. 5.  Expected outflow profiles (black circles) for prazosin and propranolol using predicted parameter 

values.  These semilog plots show results of simulation experiments for which the PCP-sensitive PVs 

were predicted using the Simple Linear Regression Method values listed in Table 5.  All other ISL 

parameter values were identical to those reported in (Yan ‘07).  Open squares: observed, referent wet-lab 

data.  The data are the fraction of dose per outflow unit (per ml for the referent) as a function of time (1 

simulation time unit = 1 second) after dosing with DRUG.  The light gray band spans the range for the 

mean of the referent data ± one standard deviation (SD) as specified in the text.  The dark gray band spans 

the range for the mean of the referent data ± 1.5 SD.  Each ISL datum is the smoothed (window size: 3 

values) mean value of 48 independent ISL runs.   

 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 28, 2008 as DOI: 10.1124/dmd.107.019067

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 DMD #19067 

 39

Fig. 6.  Expected outflow profiles (black circles) for prazosin and propranolol using predicted parameter 

values.  These semilog plots show results of simulation experiments for which the PCP-sensitive PVs 

were predicted using the FCMA values listed in Table 5.  Otherwise, the graph components are same as 

specified in Fig. 5.   

 

Fig. 7.  Expected outflow profiles (black circles) for prazosin and propranolol using predicted parameter 

values.  These semilog plots show results of simulation experiments for which the PCP-sensitive PVs 

were predicted using the ANN Method values listed in Table 5.  Otherwise, the graph components are 

same as specified in Fig. 5.   
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TABLE 1 

Tuned PCP-sensitive ISL parameter values for four cationic drugs 

ISL Attribute or Event ISL Parameters Atenolol Antipyrine Labetalol Diltiazem 

A. Effective DRUG size ISL2WetLabScalinga 7 7 6 1 

B. Movement between 

spaces 

A2BJumpProb 

B2AJumpProb 

B2CJumpProb 

C2BJumpProb 

0.1 

0.6 

0.3 

0.6 

0.1 

0.6 

0.35 

0.65 

0.35 

0.2 

0.5 

0.5 

0.9 

0.2 b 

0.5 

0.2 

C. Binding to LOBULAR 

components 

BindersPerCellMin 

BindersPerCellMax 

SoluteBindingProb 

SoluteBindingCycles 

5 

10 

0.35 

25 

5 

10 

0.5 

25 

5 

10 

0.6 

25 

10 

20 

0.35 

20 

D. METABOLISM MetabolizeProb 0.35 0.4 0.3 0.02 

a ISL2WetLabScaling = 7 for SUCROSE when administered alone or in combination with any drug.  

b B2AjumpProb =0.35 for SUCROSE when co-administered with DILTIAZEM (compensates for difference 

ISL2WetLabScaling values). 
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TABLE 2 

Physicochemical properties of sucrose and six cationic drugs 

Category Parameters Suc- 

rose 

Aten- 

olol 

Anti- 

pyrine 

Prazo- 

sin 

Labeta 

lol 

Pro- 

pranolol 

Dilti- 

azem 

MW 342.3 266.3 188.2 383.4 328.4 259.4 414.5 I: Size  

Volume 283.6 260.9 178.3 336.0 314.8 257.8 377.8 

II: Partitioning logPapp
a – 0.14 0.33 1.88 2.69 3.10 3.53 

III: Binding fuB
 b – 0.74 0.60 0.54 0.52 0.45 0.28 

RB count c 5 8 1 4 8 6 7 IV: Topology 

related 
TPSA d 189.5 84.6 26.9 107.0 95.6 41.5 59.1 

HBD counte 8 3 0 1 4 2 0 

HBA countf 11 4 2 8 4 3 5 

V: Hydrogen 

bound related 

Tautomer 

countg 

1 2 0 3 7 0 0 

a logPapp: log of the octanol-water partition coefficient at pH 7.4, 37ºC  
b fuB: Unbound fraction of each drugs in the liver perfusion medium as determined in (Hung et al., 2001) 
c RB: number of rotatable bonds, a measure of molecular flexibility; amine C-N bonds are not considered 

because of their high rotational energy barrier  
d TPSA: topological polar surface area is a sum of fragment contributions; O- and N- centered polar fragments 

are considered (Ertl et al., 2000) 
e HBD: hydrogen bond donor 
f HBA: hydrogen bond acceptor 
g Tautomers are organic compounds that are interconvertible by tautomerization.  

 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 28, 2008 as DOI: 10.1124/dmd.107.019067

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 DMD #19067 

 42

TABLE 3 

Values used in the text example for predicting a value of B2CJumpProb for prazosin   

Top: values comprising PCP subgroups II and IV.  Middle: the results of applying the FCMA to the five 

sets of three PCP values.  Bottom: tuned B2CJumpProb values for the four already-studied drugs along 

with the predicted value for prazosin.   

PCP Subgroups 

II & IV 
Atenolol Antipyrine Labetalol Diltiazem 

 
Prazosin 

RB count 8 1 8 7  4 

TPSA 84.58 26.94 95.58 59.09  106.96 

logPapp 0.14 0.33 2.69 3.53  1.88 

       

Cluster       

C 1 0.007 0.001 0.930 0.895  0.506 

C 2 0.006 0.998 0.020 0.045  0.179 

C 3 0.987 0.001 0.050 0.060  0.316 

       

ISL Parameters       

B2CJumpProb 0.3 0.35 0.5 0.5  (0.41) 
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TABLE 4 

Correlation coefficients between each PCP-sensitive, ISL parameter and each PCP for atenolol, antipyrine, 

labetalol, and diltiazem 

The least squares regression line corresponding to the largest correlation coefficient (bold) was used to predict 

that ISL parameter value for PRAZOSIN and PROPRANOLOL, given their value of that PCP.  Those ten, predicted 

parameters values are listed in Table 5 and were used to generate the outflow profiles in Fig. 5.  

 ISL2WetLabScaling A2BJumpProb B2AJumpProb B2CJumpProb C2BJumpProb 

MW 0.87 0.92 0.87 0.79 0.94 

Volume 0.82 0.88 0.87 0.77 0.91 

logPapp 0.83 0.91 0.98 0.97 0.89 

TPSA 0.06 0.04 0.41 0.25 0.10 

RB 0.28 0.34 0.50 0.34 0.42 

fu B  0.93 0.95 0.81 0.85 0.92 

HBD 0.46 0.36 0.14 0.02 0.31 

HBA 0.71 0.75 0.69 0.55 0.80 

Tautomer 0.31 0.16 0.44 0.38 0.16 

 
 BindersPerCellMin BindersPerCellMax BindingProb BindingCycle MetabolizeProb 

MW 0.80 0.80 0.27 0.80 0.92 

Volume 0.75 0.75 0.25 0.75 0.88 

logPapp 0.73 0.73 0.08 0.73 0.84 

TPSA 0.16 0.16 0.12 0.16 0.06 

RB 0.20 0.20 0.20 0.20 0.40 
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(Table 4, continued) 

fu B  0.88 0.88 0.08 0.88 0.90 

HBD 0.57 0.57 0.40 0.57 0.36 

HBA 0.66 0.66 0.43 0.66 0.80 

Tautomer 0.45 0.45 0.70 0.45 0.23 
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TABLE 5 

Predicted ISL parameter values for sucrose, prazosin, and propranolol   

For each of the three methods, the listed parameter values were combined with the PCP-insensitive 

parameter values.  The resulting ISLs were used to generate the expected outflow profiles in Figs. 5–7.   
Method 1: Simple 

Linear Regression 

Method 2: 

FCMA 

Method 3: 

ANN 

ISL parameter values PRAZOSINPROPRANOLOL SUCROSE
A PRAZOSIN PROPRANOLOL PRAZOSIN PROPRANOLOL 

ISL2WetLabScaling 5.3 4.1 6.0 3.0 7.0 4.6 2.8 

A2BJumpProb      0.35 0.52 0.35 0.37 0.86 0.62 0.75 

B2AJumpProb  0.37 0.21* 0.22 0.40 0.21* 0.29 0.21* 

B2CJumpProb  0.42§ 0.50* 0.49 0.41§ 0.50* 0.50§ 0.50* 

C2BJumpProb  0.56§ 0.31 0.50 0.48§ 0.22 0.42§ 0.32 

MetabolizeProb  0.34 0.13* - 0.25 0.12* 0.19 0.09* 

BindersPerCellMin  6 12 - 7 6 8 8 

BindersPerCellMax  7 14 - 14 13 15 17 

SoluteBindingProb  0.47§ 0.39* - 0.41§ 0.42* 0.43§ 0.42* 

SoluteBindingCycles 24§ 23* - 23§ 24* 24§ 23* 

SM values (±1 SD)  0.36 0.68  0.50 0.58 0.79 0.97 

SM values (±1.5 SD) 0.55 0.82  0.77 0.72 0.97 0.98 

aThe predicted outflow profiles for SUCROSE co-administered with PRAZOSIN and PROPRANOLOL, 

obtained using these FCMA-predicted parameter values, are provided in Fig. S1 in the Data Supplement 

along with the predicted sucrose outflow profiles (Fig. S1) when SUCROSE was co-administered with 

PRAZOSIN and PROPRANOLOL. 

§ The three predicted values of these four prazosin parameters are within 15% of each other. 

* The three predicted values of these five propranolol parameters are within 15% of each other.   
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