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Abstract 

The anthracycline drugs are important for the treatment of a number of malignancies; 

however, their clinical use is associated with dose-dependent severe chronic cardiotoxicity.  

While the mechanism for this side effect has not yet been identified, the alcohol metabolites 

formed during DAUN and DOX therapies have been implicated.  The alcohol metabolites of 

DAUN and DOX, DAUNol and DOXol, respectively, are generated through reduction of the C-

13 carbonyl function, which is reportedly mediated by members of the aldo-keto reductase and 

carbonyl reductase families of proteins.  In our search for potential biomarkers for the occurrence 

of this side effect, we examined the activity of recombinant aldo-keto reductase enzymes, 

AKR1A1 and AKR1C2, with DAUN and DOX as substrates.  Using purified histidine-tagged 

recombinant proteins and the direct measurement of metabolite formation with an HPLC-

fluorescence assay, we did not observe DAUNol or DOXol generation in vitro by AKR1C2, 

whereas AKR1A1 did catalyze the reduction reactions.  DAUNol was generated by AKR1A1 at a 

rate of 1.71±0.09 pmol/min/mg protein and a low level of DOXol was produced by AKR1A1, 

however, it was below the limits of quantification for the method.  These data suggest that the 

generation of DAUNol or DOXol by AKR1C2 metabolism in vivo is unlikely to occur during 

anthracycline treatment. 
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The anthracycline antibiotics, DOX and DAUN, are commonly-used, effective treatments for 

solid tumors and acute myeloid leukemias (Weiss, 1992).  Unfortunately, the widespread use of 

the anthracyclines is limited by the development of dose-dependent chronic cardiotoxicity in 

patients.  This side effect manifests as an irreversible disorder following long-term treatment with 

approximately 20% of cases leading to congestive heart failure (Singal and Iliskovic, 1998).  

Though the mechanism by which this side effect develops is not yet identified, evidence 

implicates metabolism as an important factor (Olson and Mushlin, 1990).  Following DOX or 

DAUN administration, the C-13 alcohol metabolites, DOXol and DAUNol, are the major 

identified metabolites (Takanashi and Bachur, 1976), and these metabolites are speculated to be 

responsible for causing cardiac tissue damage (Del Tacca et al., 1985; Boucek et al., 1987; 

Cusack et al., 1993; Behnia and Boroujerdi, 1999; Olson et al., 2003; Sacco et al., 2003). 

Formation of DOXol and DAUNol is mediated by cytosolic oxidoreductase enzymes of the 

AKR and short-chain dehydrogenase/reductase families, with the AKR1A1, AKR1B10, 

AKR1C2, and carbonyl reductase enzymes identified as major catalysts (Licata et al., 2000; 

Martin et al., 2006; Jin and Penning, 2007; Oppermann, 2007).  Inhibition of the anthracycline-

metabolizing enzymes is suggested as a strategy for avoiding treatment-related cardiotoxicity 

(Behnia and Boroujerdi, 1999) and chemical inhibitors for reductases and anthracycline 

derivatives that are metabolically less labile have been explored for their potential roles as safer 

alternatives to the currently-used anthracycline drug treatments.  In part, the success of these 

strategies relies on accurately identifying the enzymes responsible for anthracycline metabolism. 

In this paper, we characterize the involvement of two recombinant aldo-keto reductase 

enzymes, AKR1A1 and AKR1C2, in mediating the in vitro production of DAUNol and DOXol 

from DAUN and DOX using a specific and sensitive HPLC-fluorescence assay for direct 

measurement of the alcohol metabolites. 
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MATERIALS AND METHODS 

Chemicals and enzymes.  1-acenaphthenol, p-nitrobenzaldehyde, DL-glyceraldehyde, 

DAUN, DOX, idarubicin, postassium phosphate, and NADPH were purchased from Sigma-

Aldrich (St. Louis, MO).  HPLC-grade acetonitrile and formic acid were purchased from Fisher 

Scientific (Fair Lawn, NJ).  DNA modifying and restriction enzymes were obtained from 

Fermentas (Burlington, ON) and New England Biolabs, Inc. (Ipswich, MA).  An authentic 

chemical standard for DOXol was obtained from Qventas Inc. (Branford, CT, USA). 

Cloning of human AKR1A1 and 1C2.  The AKR1A1 and AKR1C2 genes were sub-

cloned from lab vector constructs (p2ZOp2N-AKR1A1 and p2ZOp2N-AKR1C2) using standard 

molecular cloning techniques to the prokaryotic expression vector pET28a (Novagen, Madison, 

WI) as previously described (Bains, O.S.B. et al., 2008).  The expression constructs encoded an 

AKR with a six-histidine affinity tag separated by a 23-amino acid residue linker attached to the 

amino terminus of the expressed protein. 

Expression of recombinant enzymes.  The AKR proteins were expressed and purified from 

Escherichia coli cultures.  Briefly, pET28a-AKR constructs were transformed by heat-shock into 

BL21 (DE3) pLysS and grown in 500 ml low-salt LB media supplemented with 50 µg/ml 

kanamycin sulfate and 25 µg/ml chloramphenicol at 37ºC.  Expression was induced by addition 

of isopropyl β-D-1-thiogalactopyranoside administration to a final concentration of 1 mM and the 

cultures grown for a further 3 hours.  Bacterial pellets were collected by centrifugation (4000 rpm 

for 20 mins at 4ºC), then resuspended at 5 ml per gram wet weight with 300 mM NaCl, 50 mM 

NaH2PO4, (pH 8.0).  Lysis of the cell suspensions and purification of the AKR proteins using Ni-

NTA agarose were carried out according to the manufacturer’s recommendations (QIAGEN, 

Mississauga, Ontario).  Glycerol was added to the tagged purified protein to a final concentration 

of 20% and the samples stored at -20oC. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on March 5, 2008 as DOI: 10.1124/dmd.108.020388

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #20388 6

The recombinant proteins were detected by Western blot analysis using the Odyssey Infrared 

Imaging System (LI-COR® Biosciences, Lincoln, NE) with the primary monoclonal AKR1A1 

and AKR1C2 antibodies (Abnova Corporation, Taipei City, Taiwan) diluted 1:5000 and 1:3000, 

respectively, and secondary IRDye 800CW goat anti-mouse IgG antibody (LI-COR® 

Biosciences), diluted 1:5000.  Protein concentrations were determined by the Bradford method 

using bovine serum albumin as a standard (BioRad, Hercules, CA).  Protein purity was assessed 

by SDS-PAGE stained with Sypro Ruby (Invitrogen, Burlington, ON). 

Measurement of AKR enzyme activities.  AKR activity was measured by monitoring the 

initial rate of NADP(H) oxidation/reduction reactions using standard conditions (Penning, 2004).  

Fluorescence measurements of reduced cofactor were made with excitation and emission 

wavelengths of 355 and 460 nm, respectively, using a Fluoroskan Ascent FL (Thermo Fisher 

Scientific, Waltham, MA).  The assays were carried out with 200-275 ng purified protein, 

cofactor (180 µM NADPH for AKR1A1; 2.3 mM NADP+ for AKR1C2) and 1 mM test substrate 

(p-nitrobenzaldehyde or DL-glyceraldehyde for AKR1A1; 1-acenaphthenol for AKR1C2) in a 

reaction mixture of 150 µl 100mM potassium phosphate, pH 7, at 25ºC.  Maximal rates (min-1) 

were calculated from the Ascent® program (version 2.6) using a 5 min interval.  Enzymatic 

activities (µmol cofactor consumed/min/mg purified protein) were calculated based on a standard 

curve constructed from fluorescence measurements for known NADPH concentrations.  Organic 

solvents at a concentration below 4% (v/v) in the final mixture were used to solubilize some 

substrates and were not observed to affect enzyme function.  All incubations were conducted in 

quadruplicate for each purified protein preparation. 

Measurement of anthracycline reduction.  Identification and quantification of DOXol and 

DAUNol were performed using high-performance liquid chromatography (HPLC; Waters 
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Alliance 2695, Milford, MA) and fluorescence detection with excitation and emission 

wavelengths of 460 and 550 nm, respectively (Waters 2475 Multi λ Detector).  Quantification 

was based on peak area ratio of DOXol to the internal standard.  Linear calibration was 

determined over the concentration range 25-500 nM using a 1/x2 weighting scheme.  Because an 

authentic chemical standard for DAUNol could not be obtained, DAUNol was quantified as 

DOXol equivalents using a response ratio of 1.0.  The limit of quantification for DOXol was 

estimated as 25 nM.  All data processes were performed with Waters Empower software (ver 2.0). 

Purified tagged AKR1A1 and AKR1C2 proteins were incubated in 150 µl reaction mixtures 

containing 25 mM KH2PO4, pH 7.4; and 1 µM of DOX or DAUN at 37ºC.  Reaction conditions 

were selected to reflect a human physiological environment.  Reactions were initiated with the 

addition of 1 mM NADPH.  Incubations were conducted with up to 1 µg of purified protein for 

120 and 240 minutes for DAUN and DOX, respectively, to maximize metabolite generation 

given the apparent low activity of these enzymes.  At the end of the incubations, reductase 

activity was stopped with the addition of 150 µl of ice-cold acetonitrile that contained idarubicin 

as an internal standard.  Protein was removed from the sample by vortex mixing and 

centrifugation at 10,000×g for 10 minutes at 4ºC, and the supernatant was removed for HPLC 

analysis.  All incubations were conducted in triplicate for each purified protein preparation. 

RESULTS AND DISCUSSION 

The expression of the recombinant tagged AKR1A1 and AKR1C2 was confirmed by Western 

blot analysis showing bands with mobility corresponding to the molecular weight of the tagged 

AKRs (~41-42 kDa) (Figure 1).  Total protein staining of a SDS-PAGE gel demonstrated that the 

only detectable bands for the purified preparations corresponded to the AKR1A1 and AKR1C2 

proteins identified by Western blotting (Figure 1). 
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Activities of the recombinant AKR1A1 using the test substrates p-nitrobenzaldehyde and DL-

glyeraldehyde were 5.39±0.35 and 1.56±0.16 µmol/min/mg purified protein, respectively, while 

the activity of the recombinant AKR1C2 using 1-acenaphthenol was 2.23±0.08 µmol/min/mg.  

These activities are in good agreement with data reported for purified recombinant and native 

proteins by other laboratories: AKR1A1, p-nitrobenzaldehyde, 6.0 µmol/min/mg (Palackal et al., 

2001); DL-glyceraldehyde, 1.26 µmol/min/mg (O'Connor et al., 1999); AKR1C2, 1-

acenaphthenol, 2.5 µmol/min/mg (Burczynski et al., 1998), providing confidence that the 

recombinant proteins have retained full reductase function. 

Formation of DAUNol and DOXol by AKR1A1 and absence of metabolite generation by 

AKR1C2 were measured by HPLC-fluorescence (Figure 2).  The C-13 metabolites were 

positively identified by identical chromatographic retention times to an authentic chemical 

standard of DOXol and to the metabolites generated in incubations with human liver cytosolic 

fractions.  Mordente et al. (2001) measured the formation of DAUNol and DOXol by human 

cardiac cytosol reductases with average rates of 27.5 and 2.3 pmol/min/mg protein, respectively.  

The high substrate specificity of AKR1A1 was also demonstrated in our results from 

recombinant enzymes where DAUN was metabolized to a much greater extent than DOX.  The 

levels of DOXol generated were too low for quantification using the HPLC assay, whereas 

specific reductase activities of 1.71±0.09 pmol/min/mg were determined for DAUN reduction. 

Our findings of a lack of AKR1C2 involvement in DOX and DAUN metabolism differ from 

previously published results (Ohara et al., 1995).  This discrepancy may be due to contaminating 

proteins in previous enzyme preparations or non-specific measurement of reductase activities.  

SDS-PAGE gel staining for our enzyme preparations shows absence of any detectable 

contaminating proteins following affinity chromatography.  Sypro Ruby total protein staining 
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provides detection of proteins at 1-2 ng (Berggren et al., 2000) and therefore we estimate protein 

contamination in our preparations at less than 0.01%.  Monitoring NADPH absorbance is the 

standard assay to characterize reductase enzyme function; however, this method cannot 

distinguish contaminating protein-catalyzed or non-enzyme catalyzed cofactor usage, potentially 

leading to erroneous identification of reductase function or substrate use.  In our attempts to use 

the spectroscopic method to measure cofactor usage in AKR1C2-catalyzed DOX and DAUN 

metabolism, we could not distinguish enzyme and non-enzyme catalyzed signal decrease with 

substrate concentrations of 10, 50, and 250 µM (data not shown).  To specifically measure AKR 

activities for the anthracycline drugs DOX and DAUN, we have used a direct and sensitive 

HPLC-fluorescence assay and do not identify any alcohol metabolites formed by AKR1C2 that 

exceed the limit of quantification of the assay (25 nM).  In our in vitro system, the initial 

anthracycline concentrations are 1 µM, a physiologically-relevant concentration for patient 

cardiac tissue (Stewart et al., 1993). 

The failure of AKR1C2 to generate alcohol metabolites in vitro suggests that it is 

unimportant for the generation of DOX or DAUN metabolites in vivo.  We recognize that in vivo 

studies are needed to clearly define the role of AKR1C2 in anthracycline metabolism; however, 

the conduct of definitive studies will be difficult.  Several reductase enzymes are involved in the 

metabolism of these drugs and distinguishing their individual contributions to the total 

metabolism will be a challenge using the traditional approaches of correlation studies and 

chemical or antibody inhibition.  It is with these considerations that we present our in vitro 

findings to focus future work on anthracycline metabolism on the other AKR isoforms and 

carbonyl reductases. 
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FIGURE LEGENDS 

 

Figure 1—Purification of recombinant histidine-tagged human (A) AKR1A1 and (B) AKR1C2.  

(Left) SDS-PAGE stained with Sypro Ruby shows purified protein samples, 1A1 or 1C2 (700 ng), 

free of contaminating proteins from bacterial lysates (L) (20 µg total protein).  Removal of 

contaminating proteins is observed in fractions from Qiagen purification procedures (Ni-NTA 

column flow through (F), 15 µg total protein).  (Right) Western blotting of purified protein 

samples, 1A1 or 1C2 (700 ng), confirms expression of the desired AKR protein with mobility at 

expected molecular weight (~41-42 kDa).  Positive controls for antibody immunoreactivity are 

human liver cytosol (H) and GST-tagged purified human recombinant AKR enzymes (G; 700 ng).  

No antibody immunoreactivity is observed for untransformed bacterial lysate (U; 20 µg total 

protein). 

 

Figure 2—Generation of DAUNol and DOXol in vitro by purified recombinant AKR1A1 

incubated with (A) DAUN and (B) DOX.  Measurement of DAUNol and DOXol was performed 

using HPLC-fluorescence.  Representative chromatograms show clear resolution of DAUNol and 

DOXol from DAUN, DOX, and idarubicin (internal standard).  Retention times observed for 

DOXol, DOX, DAUNol, DAUN, and idarubicin (internal standard) are 4.5, 5.5, 6.0, 6.8, and 7.3 

minutes, respectively. 
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