EFFECTS OF SPICE CONSTITUENTS ON P-GP-MEDIATED TRANSPORT AND CYP3A4-MEDIATED METABOLISM IN VITRO

Wenxia Zhang and Lee-Yong Lim

Department of Pharmacy, National University of Singapore (WZ), 18 Science Drive 4, Singapore 117543

Pharmacy M315, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia (LYL), 35 Stirling Highway, Crawley WA 6009, Australia
Running Title: Effects of spices on P-gp and CYP3A4 activities in vitro.

Address Correspondence to:

Dr. Lee-Yong Lim
Pharmacy M315
School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia
35 Stirling Highway, Crawley WA 6009, Australia
Telephone: (61) (8) 64884413
Fax: (61) (8) 64881025
E-mail: limly@cyllene.uwa.edu.au

Number of Text Pages: 28
Number of Tables: 2
Number of Figures: 3
Number of References: 40
Number of Words in:
 Abstract: 250
 Introduction: 597
 Discussion: 1471

Abbreviations: P-gp, P-glycoprotein; MDRI, multi-drug resistance gene 1; HLM, human liver microsomes; AMD, allyl methyl disulfide; MDZ, midazolam; TEER, transepithelial electrical resistance; HPLC, high-performance liquid chromatography; DMSO, dimethyl sulfoxide; ANOVA, analysis of variance; GI, gastrointestinal
ABSTRACT

The effects of 8 components from 6 commonly consumed spices on P-glycoprotein (P-gp) transport and CYP3A4 metabolism were evaluated in vitro. P-gp-mediated [3H]-digoxin fluxes across the L-MDR1 (LLC-PK1 cells transfected with human \textit{MDR1} gene) and Caco-2 (human colon carcinoma) cell monolayers showed a marked asymmetry compared to that in the LLC-PK1 (porcine kidney epithelial cells) cell monolayers. Curcumin (from turmeric) at 30-60 µM and 6-gingerol (from ginger) at 100-500 µM were observed to inhibit P-gp-mediated [3H]-digoxin transport in L-MDR1 and Caco-2 cells. Effects of spices on midazolam (MDZ) 1'-hydroxylation and 4-dydroxylation of CYP3A4 activity were performed in pooled human liver microsomes (HLM). The IC\textsubscript{50} values of spices on MDZ 1'-hydroxylation in HLM were obtained as follows: 29 µM for Curcumin, 1.17 mM for allyl methyl disulfide (AMD, from Chinese chive), 1.02 mM for 1,8-cineole (from coriander), and 1.28 mM for β-caryophyllene (from curry leaf). CYP3A4-mediated 4-hydroxylation of MDZ was inhibited by curcumin at 30, 45 and 60 µM (4-OH MDZ formation was decreased to 52, 30 and 29%, respectively, compared to control), 6-gingerol at 60, 100 and 500 µM (71, 68 and 38%); AMD at 1 and 4 mM (29 and 14%); d-limonene (from coriander) at 4 mM (65%); 1,8-cineole at 0.5, 1 and 4 mM (74, 64 and 59%); and citral (from lemongrass) at 1 mM (59%). Among the spices that showed inhibitory effect on MDZ metabolism in HLM, only AMD showed a pre-incubation time-dependent inhibitory effect on MDZ metabolism in HLM, suggesting AMD as an irreversible CYP3A4 inhibitor.
INTRODUCTION

P-glycoprotein (P-gp)-mediated efflux and CYP3A4-mediated metabolism play important roles in influencing the oral bioavailability of their substrates (Watkins, 1997). Intestinal P-gp and CYP3A4 are further hypothesized to form a coordinately-regulated alliance, acting in tandem to limit the absorption of xenobiotics, including drugs (Johnson et al., 2003). Both proteins are localized at the villus tip of mature enterocytes (Watkins, 1997), and they exhibit overwhelming overlaps in substrate, inhibitor and inducer specificities (Schuetz et al., 1996a). P-gp activity and expression may also have an influence on cellular CYP3A4 levels (Schuetz et al., 1996b), and the expressions of both proteins have been shown to be coordinately regulated by nuclear receptors, an example of which is the steroid and xenobiotic receptor, SXR (Synold et al., 2001).

Given the wide substrate specificities of the intestinal P-gp and CYP3A4, undesirable therapeutic outcomes can result from co-administration of potent drugs with xenobiotics that are substrate, inhibitor or inducer of either protein. Of concern is the increasing use of complementary and alternative medicines (CAM) (Eisenberg et al., 1998), particularly herbal medicines (Tindle et al., 2005) with prescription medicines in the USA. Unintended herb-drug interactions have already been documented and are become a growing medical concern (Brazier and Levine, 2003). Drug interactions involving the P-gp and CYP3A4 have, for example, been reported for St. John's wort (Hypericum perforatum) (Johne et al., 1999) and garlic (Allium sativum) (Piscitelli et al., 2002).

On the other hand, a variety of spices are widely consumed on a daily basis by many Asian populations, yet little is known of the influence of spices on P-gp- and CYP3A4-mediation of drug bioavailability. Curcumin (from turmeric) was only recently reported to inhibit cellular P-gp function and expression in vitro (Anuchapreeda et al., 2002). Although our laboratory observed that this spice component also inhibited CYP3A function in liver
microsomes, subsequent experiments in the rat model showed co-administered curcumin to increase the AUC and C\text{max} of peroral midazolam (CYP3A substrate) and celiprolol (P-gp substrate) (Zhang et al., 2007). Curcumin did not attenuate the function of CYP3A and P-gp in vivo, but affected the pharmacokinetics of midazolam and celiprolol through down-regulation of CYP3A and P-gp protein expression in the small intestine. Similarly, while garlic inhibited CYP3A4 function in vitro (Foster et al., 2001), clinical experiments suggested that this spice induced CYP3A4 expression in vivo to decrease the AUC and C\text{max} of saquinavir, a CYP3A4 substrate (Piscitelli et al., 2002). Clearly, more research is required to provide understanding of the clinical effects of spices on drug transport and metabolism.

In the present study, we screened 8 components from 6 commonly consumed spices for their modulating activities on the P-gp and CYP3A4 with a view to isolating promising components for further experimentation. Pure components were preferred to whole spices as the compositions of the latter could be highly variable, being influenced by plant species, as well as the conditions of growth, post-harvest processing and storage. The spice components were allyl methyl disulfide (AMD), present both in garlic (Allium sativum) and Chinese chive (Allium tuberosum), curcumin from turmeric (Curcuma longa), 6-gingerol from ginger (Zingiber officinale), myrcene and citral from lemongrass (Cymbopogon citratus), 1,8-cineole and d-limonene from coriander (Coriandrum sativum), and \(\beta\)-caryophyllene from curry leaf (Murraya koenigii). Their chemical structures were shown in FIG. 1. Of these, curcumin, garlic and turmeric have in recent years attracted significant research interest as potential anticancer adjuvants (Aggarwal and Shishodia, 2006). To evaluate P-gp efflux activity, bi-directional transport studies of \([^3H]\)-digoxin were carried out using the LLC-PK1, L-MDR1 and Caco-2 cell monolayers. CYP3A4-mediated metabolism of midazolam (MDZ) was evaluated using pooled human liver microsomes (HLM).
METHODS

Cell Culture

LLC-PK1 is a porcine kidney-derived cell line that expresses very low level of P-gp (Weiss et al., 2003), whereas the L-MDR1 cells are LLC-PK1 cells stably transfected with the human *MDR1* gene (Schinkel et al., 1996). Caco-2 is a human colon carcinoma cell line that constitutively expresses P-gp, and has been widely employed as a surrogate for the human intestinal epithelium. L-MDR1 cells (passage 220) were kindly provided by Dr. A. H. Schinkel (Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam, Netherlands), LLC-PK1 cells (passage 230) were obtained from the American Type Culture Collection (ATCC; Rockville, MD, USA), and Caco-2 cells (passage 40) were from the Riken Cell Bank (Tsukuba, Ibaraki, Japan).

LLC-PK1 (passage 232-240) and L-MDR1 (passage 223-230) cells were cultured in M199 medium (Gibco BRL Life Technology, Grand Island, NY, USA) supplemented with 50 U/ml of penicillin (Sigma, St. Louis, MO, USA), 50 μg/ml of streptomycin (Sigma) and 10% (v/v) of FBS (Gibco). Caco-2 cells at passages 50-60 were cultured in MEM (Gibco) supplemented with 10% of FBS, 1% of nonessential amino acids (Sigma), 100 U/ml of penicillin and 100 μg/ml of streptomycin. Cell cultures were incubated at 37°C in a humidified atmosphere of 5% CO₂ and 95% air (NuAire US autoflow, NuAire Inc., MN, USA), with medium exchange on alternate days. Cells were sub-cultured every 3 days after trypsinization.

In Vitro Cytotoxicity Studies

Cytotoxicity of spices was determined by the MTT assay (Scudiero et al., 1988). L-MDR1 and LLC-PK1 cells were cultured on 96-well plates at a seeding density of 1×10^4 cells/well in 100 μl of M199 medium. Caco-2 cells were similarly seeded at a density of $8 \times$
10^3 cells/well in MEM medium. Cells were cultured in 5% CO_2/95% air at 37°C for 48 h following which the culture medium was exchanged for 100 µl of spice samples (0 to 4 mM in HBSS-HEPES transport medium containing 0.5% DMSO, pH 7.4) and the cells further incubated for 4 h at 37°C. All spice components were obtained from Sigma, except for 6-gingerol, which was from the Wako Pure Chemical Industries, Osaka, Japan, and AMD, a gift from Flavor Consultants, Las Vegas, NV, USA. Control samples comprised of HBSS-HEPES, 1% sodium lauryl sulfate (SDS) in HBSS-HEPES (positive control), and 1% dextran in HBSS-HEPES (negative control), all of which were supplemented with 0.5% DMSO. To determine cell viability, the spice or control samples were decanted and the cells incubated with 100 µl of MTT solution (1 mg/ml in HBSS-HEPES, pH 7.4) for 4 h at 37°C. Intracellular formazan crystals were extracted into 100 µl of DMSO, and quantified by measuring the absorbance of the cell lysate at 590 nm (Spectra Fluor plate reader, Tecan, Austria). Cell viability was calculated as a percent based on the absorbance measured relative to the absorbance obtained from cells exposed only to the HBSS-HEPES transport medium containing 0.5% DMSO.

Transport Experiments

LLC-PK1 and L-MDR1 cells were separately cultured in M199 medium (apical 0.5 ml; basal 1.5 ml) at a seeding density of 4 × 10^5 cells/12-mm well on 3.0 µm polycarbonate membrane filters (Transwell™ 3402, Costar, Bedford, MA, USA). Cells were supplemented with fresh media every 2 days and used for transport experiments on the sixth or seventh day after plating when they registered a transepithelial electrical resistance (TEER) of 200 Ω·cm² or greater (Millicell ERS ohmmeter, Millipore, Bedford, MA, USA). Caco-2 cells for transport experiments were cultured in MEM medium at a seeding density of 1 × 10^5 cells/well on 0.4 µm polycarbonate membrane filters (Transwell™ 3401, Costar, Bedford,
MA, USA), with medium exchange on alternate days. On day 21-25, cell monolayers with TEER values greater than 300 $\Omega \cdot \text{cm}^2$ (corrected for blank) were used for transport experiments. The dosing solutions comprised of $[^{3}\text{H}]$-digoxin (5 μM, 0.51 μCi/ml) or $[^{14}\text{C}]$-mannitol (10 μM, 0.54 μCi/ml) (PerkinElmer Life and Analytical Sciences Inc., Boston, MA, USA) dissolved in the respective transport medium (Opti-MEM for L-MDR1 and LLC-PK1 cells; HBSS-HEPES at pH 7.4 for Caco-2 cells) supplemented with 0.5% DMSO and containing 0-60 μM of curcumin, 0-500 μM of 6-gingerol, 0-1 mM citral or 0-4 mM of AMD, d-limonene, 1,8-cineole, β-caryophyllene or myrcene. Dosing solutions without spices were spiked with 100 μM of verapamil HCl to serve as positive controls.

Transport experiments were initiated by replacing the culture medium in the apical and basal chambers with 700 μl of transport medium. After an hour of equilibration, the medium in the donor compartment was replaced with 700 μl of the respective dosing solution and that in the receiver compartment with 700 μl of corresponding blank transport medium (contained the same DMSO and spice concentrations as the dosing solution in the donor compartment). The amount of $[^{3}\text{H}]$-digoxin or $[^{14}\text{C}]$-mannitol appearing in the receptor compartment after 1, 2, 3 and 4 h was measured in 50 μl aliquots sampled from each receiver compartment and expressed as a percentage of the initial loaded dose. Solute concentration was determined by measuring the radioactivity (LS 3801, Beckman Instruments Inc., Fullerton, CA, USA) of the aliquot samples incubated overnight with 3 ml of scintillation fluid. The receiver chamber was replenished with 50 μl of the corresponding blank transport medium after each sampling. At the end of the transport experiment, the cell monolayers were re-incubated with the transport medium for 30 min at 37°C before the measurement of TEER to assess the integrity of the cell monolayers.

The apparent permeability (P_{app}) was calculated using the following equation,

$$P_{\text{app}} = \frac{(dQ/dt)}{(A \cdot C_0)} \ [\text{cm/s}]$$
where dQ/dt (µmol/s) was the initial transport rate, C₀ (mM) the initial drug concentration in the donor chamber, and A (cm²) the surface of the cell monolayer. Transport was conducted in the apical to basal (AB), and basal to apical (BA) directions. Net efflux was expressed as the quotient of P_{app} (BA) to P_{app} (AB). Data are presented as means ± SD (n = 4).

CYP3A4-mediated MDZ Biotransformation in HLM

The assay of MDZ 1'-hydroxylase and 4-hydroxylase activity of human CYP3A4 was performed according to the method of Kim et al. (Kim et al., 2006), utilizing the same microsome protein and MDZ concentrations, as well as incubation time. A preliminary study has shown that, at the protein concentration of 0.5 mg/ml, the formation of 1'-OH MDZ and 4-OH MDZ increased linearly with incubation time to reach maximum concentrations at 15-20 min. Thus, a reaction time of 15 min, which was within the range of values (5 – 20 min) reported in the literature for similar studies (Perloff et al., 2005), was chosen for subsequent experiments. Pooled HLM (H452161, Gentest, San Jose, CA, USA) was reconstituted at a concentration of 0.5 mg/ml in 100 mM phosphate buffer (pH 7.4) to a final volume of 250 µl, and pre-incubated with 10 µM of MDZ (Dormicum®, Roche Diagnosis, Basel, Switherland) for 5 min at 37 °C. Metabolic reactions were initiated by adding 15 µl of NADPH regenerating system (3.3 mM G6P, 1.3 mM β-NADP+, 3.3 mM MgCl₂, and 0.4 U/ml G6PDH, Gentest, San Jose, CA, USA), and terminated after 15 min by placing the incubation mixtures on ice and adding 250 µl of ice-cold acetonitrile. Norclomipramine (Sigma, St. Louis, MO, USA) as internal standard was added to a final concentration of 2 µg/ml, and the incubation mixtures were centrifuged at 20,000 g for 10 min at 4 °C (MIKRO 22R, Andreas Hettich GmbH & Co KG, Tuttlingen, Germany). The supernatants (20 µl) were subjected to HPLC analysis.
The effects of curcumin (0-60 μM), 6-gingerol (0-500 μM), citral (0-1 mM), AMD (0-4 mM), d-limonene (0-4 mM), 1,8-cineole (0-4 mM), β-caryophyllene (0-4 mM) and myrcene (0-4 mM) on CYP3A4-mediated metabolism of MDZ were investigated. Spices dissolved in DMSO were added into the HLM and MDZ mixture to give final DMSO concentration of 0.5%, and the enzyme reaction was initiated by adding the NADPH regenerating system. Control experiments were performed in parallel using ketoconazole (5 μM) as an inhibitor of CYP3A4-mediated MDZ 1'-hydroxylation and 4-hydroxylation (Perloff et al., 2005), α-naphthoflavone (3 μM, Sigma) as an activator of MDZ 1'-hydroxylation (Fujita et al., 2005), and testosterone (50 μM, Sigma) as an activator of MDZ 4-hydroxylation (Cameron et al., 2005). Ketoconazole, α-naphthoflavone and testosterone were also dissolved in DMSO and added to the enzyme mixture to give DMSO final concentration of 0.5%. The rates of formation of 1'-OH MDZ and 4-OH MDZ in the presence of the spices were expressed as the corresponding rates of metabolite formation in the absence of an effector. The IC₅₀ values for spices that exhibited inhibitory effects on 1'-OH MDZ formation in the HLM system were determined by linear regression analysis using the GraphPad Prism 4 software (San Diego, CA, USA). All experiments were performed in triplicates.

To evaluate the effect of pre-incubation on CYP3A4 activity, the spices were added to the HLM and NADPH regenerating system in the absence of MDZ, and after pre-incubation periods of 5, 10, 15 or 20 min, the enzyme reaction was initiated by the addition of MDZ (10 μM). Ketoconazole (1 μM) served as the negative control (Perloff et al., 2005) and verapamil (50 μM), a mechanism-based inhibitor of CYP3A4 (Wang et al., 2005) as the positive control.

Quantification of 1'-hydroxymidazolam and 4-hydroxymidazolam in HLM
1'-OH MDZ and 4-OH MDZ in the HLM mixture were quantified by HPLC assay (Good et al., 2004). The HPLC system consisted of an Agilent 1100 system (Agilent Technologies, Palo Alto, CA, USA) with DAD detector. Drugs and internal standard (norclomipramine) were separated on a Waters Symmetry C18 column (200 mm × 4.6 mm, 5 µm) (Waters, Milford, MA, USA), preceded by a Waters Symmetry C18 guard column. Gradient elution was performed at a flow rate of 1.0 ml/min. The mobile phase was maintained at 45% acetonitrile, 10% methanol and 45% KH2PO4 buffer (20 mM, pH 7.4) for 8 min before performing a linear gradient run from 8 to 20 min to give final concentrations of 56% acetonitrile, 10% methanol and 34% buffer. The detection wavelength was 220 nm. HPLC peaks were recorded and integrated using the Agilent data analysis software.

The HPLC was calibrated with 1'-OH MDZ and 4-OH MDZ in the concentration range of 0.05-3.2 µg/ml. Stock solutions, including those of the internal standard, norclomipramine, were prepared in methanol at 1 mg/ml and stored at -20°C. Standard solutions were prepared from corresponding stock solutions with heat-inactivated HLM mixture as solvent. The intraday and interday coefficients of variation were less than 15% for 1'-OH MDZ and 4-OH MDZ at the test concentrations of 0.1, 0.4 and 0.8 µg/ml. The lower limit of quantification was 25 ng/ml for both metabolites. Typical retention times recorded for 1'-OH MDZ, 4-OH MDZ and the internal standard were 6.1, 5.4 and 19.3 min, respectively.

Statistical Analysis

Data were analyzed by one-way ANOVA with the Tukey's test (SPSS 10.0, SPSS Inc., Chicago, IL, USA) applied for paired comparisons of mean values. A p value ≤ 0.05 was considered statistically significant.
RESULTS

In Vitro Cytotoxicity of Spices

In vitro cytotoxicity experiments were conducted with HBSS as control medium, and 1% SDS and 1% dextran as positive and negative controls, respectively. Based on the dextran data, the spices were considered to be cytotoxic when they reduced mean cell viability by 20% or more relative to HBSS. On this basis, the viabilities of LLC-PK1, L-MDR1 and Caco-2 cells were considered to be unaffected by 4 h of co-incubation with up to 60 µM of curcumin, 500 µM of 6-gingerol, 4 mM of AMD, 4 mM of d-limonene, 4 mM of 1,8-cineole, 4 mM of β-caryophyllene, 4 mM of myrcene, and 1 mM of citral. Cell viability was, however, adversely affected by the addition of 90 µM of curcumin and 1.5 mM of citral. The Caco-2 cells were more resilient (75% viability) than the L-MDR1 (21%) and LLC-PK1 (36%) cells to 90 µM of curcumin, although all 3 cell types exhibited equally poor viabilities in 120 µM of curcumin. Similarly, while the Caco-2 cells were more sensitive (50% viability) to 1.5 mM of citral than the L-MDR1 and LLC-PK1 cells (> 80%), all 3 cell types showed comparable reduction in viability when the citral concentration was raised to 3 mM. To avoid confounding the drug transport data, subsequent experiments were performed with spice concentrations that yielded cell viability ≥ 80%.

Effects of Spices on P-gp-mediated [³H]-digoxin Transport

Transepithelial [³H]-digoxin fluxes across the L-MDR1 cell monolayers showed a marked asymmetry, yielding a net efflux value of 6.36. The polarized permeability is characteristic of an efflux system that assists in the transfer of intracellular digoxin back to the apical chamber (Cavet et al., 1996). The unidirectional transport was abolished in the presence of 100 µM of verapamil HCl, a well-documented P-gp inhibitor (Greiner et al., 1999) (TABLE 1), which reduced the net efflux to 1.19 by increasing the AB permeability and
reducing the BA permeability of \[^{3}H\]-digoxin across the L-MDR1 cell monolayers. By comparison, transepithelial \[^{3}H\]-digoxin fluxes across the LLC-PK1 cells, the parent cell line of the L-MDR1 cells, were much less polarized (net efflux of 1.88) (TABLE 1), while those across the Caco-2 cell monolayers exhibited intermediate asymmetry, the net efflux value being 4.62 (TABLE 2). For both cell lines, the co-administration of verapamil HCl (100 µM) also abolished the polarity of digoxin transport (TABLE 1 and TABLE 2). These data, which corresponded to those reported in the literature (Kim et al., 1998; Bhardwaj et al., 2002), suggested a ranking of P-gp efflux activity in the order of L-MDR1 > Caco-2 > LLC-PK1. While the high level of P-gp functionality in the transfected L-MDR1 cells was expected, the data implicated the expression of low levels of porcine P-gp in the parental LLC-PK1 cells and a significant level of P-gp constitutively expressed in the Caco-2 cell monolayers.

Of the spices evaluated, d-limonene and myrcene at the concentrations evaluated did not affect \[^{3}H\]-digoxin transport in the L-MDR1 cells (p > 0.05, TABLE 1). For spices that did modulate the \[^{3}H\]-digoxin transport profiles in these cells, only curcumin and 6-gingerol produced transport profiles suggestive of P-gp inhibition. Curcumin at 30 and 60 µM significantly increased the AB \[^{3}H\]-digoxin flux with concomitant reduction of BA \[^{3}H\]-digoxin flux to lower the net efflux ratios to 3.49 and 2.01, respectively (TABLE 1). 6-gingerol at concentrations of 100, 250 and 500 µM produced similar effects, yielding net \[^{3}H\]-digoxin efflux ratios of 2.77, 2.34 and 1.66, respectively (TABLE 1). In contrast, AMD and β-caryophyllene at 1 and 4 mM were not regarded as P-gp inhibitors even though they reduced the \[^{3}H\]-digoxin efflux ratio (TABLE 1). This was because both spices lowered the BA \[^{3}H\]-digoxin flux without affecting its transport in the AB direction. On the other hand, 1,8-cineole (4 mM) and citral (1 mM) lowered the \[^{3}H\]-digoxin efflux ratio by increasing transport in the AB direction without changing the BA flux. These two spices were therefore also unlikely to be P-gp inhibitors.
[\(^{3}\)H]-Digoxin transport across the parent LLC-PK1 cell monolayers was less affected by the spices. Of the spices studied, d-limonene, myrcene, AMD and \(\beta\)-caryophyllene did not change the [\(^{3}\)H]-digoxin transport profiles of the LLC-PK1 cells when employed at the specified concentration ranges. Curcumin at up to 30 \(\mu\)M also did not affect the [\(^{3}\)H]-digoxin transport profiles, although it increased the AB flux at 60 \(\mu\)M. In the case of 6-gingerol, [\(^{3}\)H]-digoxin transport profiles reflecting effective P-gp inhibition were apparent only at the highest concentration of 500 \(\mu\)M. Only 1,8-cineole (4 mM) and citral (1 mM) changed the [\(^{3}\)H]-digoxin transport profiles of the LLC-PK1 cells in a manner consistent with those observed in the L-MDR1 cells.

The P-gp inhibitory activities of curcumin and 6-gingerol were further examined in the Caco-2 cells which, unlike the L-MDR1 cells, constitutively expressed the human P-gp. The data are presented in TABLE 2. Digoxin transport profiles obtained for the Caco-2 cells in the presence of curcumin and 6-gingerol correlated very well with those obtained for the L-MDR1 cells. Curcumin did not affect digoxin transport across the Caco-2 cells at the low concentration of 15 \(\mu\)M, but produced digoxin transport profiles reminiscent of P-gp inhibition at 30 and 60 \(\mu\)M (TABLE 2). Net digoxin efflux ratio was reduced to 2.78 and 2.46 at 30 and 60 \(\mu\)M of curcumin, respectively. 6-gingerol also increased the AB digoxin flux in the Caco-2 cells with concomitant reduction of digoxin transport in the BA direction at the concentrations of 100, 250 and 500 \(\mu\)M (TABLE 2). The corresponding net efflux ratios were 2.68, 2.17 and 1.87, comparable to those obtained for the L-MDR1 cell monolayers.

Effects of Spices on [\(^{14}\)C]-mannitol Transport

[\(^{14}\)C]-mannitol is a radiolabeled hydrophilic marker widely used to evaluate the paracellular transport pathway. It is not taken up by absorptive cells in significant amounts but is highly permeable through the tight junctions of cell monolayers (Artursson et al., 1996).
In the absence of spices, P_{app} values of 2.76×10^{-7} and $2.70 \times 10^{-7} \text{ cm/s}$ were obtained for $[14\text{C}]$-mannitol transport in the AB and BA directions, respectively, across the L-MDR1 cell monolayers (TABLE 2). Corresponding P_{app} values for the LLC-PK1 cells were 2.89×10^{-7} and $2.93 \times 10^{-7} \text{ cm/s}$, while those for the Caco-2 cells were 4.77×10^{-7} and $4.86 \times 10^{-7} \text{ cm/s}$. The P_{app} values obtained for the Caco-2 cells corresponded well with values reported in the literature (Demirbas and Stavchansky, 2003). $[14\text{C}]$-mannitol P_{app} values for the L-MDR1 and LLC-PK1 cell monolayers have not been reported; nevertheless, given the lower P_{app} values obtained for $[14\text{C}]$-mannitol transport across the L-MDR1 and LLC-PK1 cell monolayers, it was assumed that these cell monolayers also possessed acceptable integrity. Exposure to curcumin (15-60 μM) or 6-gingerol (100-500 μM) did not significantly alter the AB and BA $[14\text{C}]$-mannitol P_{app} values ($p > 0.05$, TABLE 2), suggesting that the 2 spices at the concentrations employed did not modulate the paracellular transport pathway in all 3 cell monolayers.

Effects of Spices on CYP3A4-mediated Metabolism in HLM

Experiments to investigate the spice effects on CYP3A4 activity were performed using 125 μg of pooled HLM as the enzyme source and 0.8 μg of MDZ as model substrate. After 15 min of enzymatic conversion, 0.39 and 0.04 μg, respectively, of $1'\text{-OH MDZ}$ and 4-OH MDZ were detected using the HPLC assay. Ketoconazole, a known inhibitor of CYP3A4-mediated $1'$- and 4-hydroxylation of MDZ (Perloff et al., 2005), was observed to inhibit 96% of the $1'$-OH MDZ and 100% of the 4-OH MDZ productions when administered at 5 μM. On the other hand, co-incubation with 3 μM of α-naphthoflavone, a stimulator of MDZ $1'$-hydroxylation (Fujita et al., 2005), caused a 1.68-fold increase in $1'$-OH MDZ production. Likewise, the addition of 50 μM of testosterone, a stimulator of MDZ 4-hydroxylation (Cameron et al., 2005), raised the production of 4-OH MDZ by 1.63-fold.
These control experiments indicated the presence of functional CYP3A4 in the HLM system that was amenable to inhibition and enhancement.

The following spices were found to inhibit CYP3A4-mediated 1'-hydroxylation of MDZ in the HLM: curcumin at 45 and 60 µM (73 and 82% inhibition, respectively, compared to control values); AMD at 1 and 4 mM (68 and 76%); 1,8-cineole at 1 and 4 mM (55 and 71%) and β-caryophyllene at 1 and 4 mM (51% and 71%). Corresponding IC₅₀ values were 29 µM for curcumin, 1.02 mM for 1,8-cineole, 1.17 mM for AMD, and 1.28 mM for β-caryophyllene. Compared to ketoconazole, which had a reported IC₅₀ of 0.04 µM (Perloff et al., 2000), these spices might be regarded as weak CYP3A4 inhibitors. CYP3A4-mediated 1'-hydroxylation of MDZ was enhanced by the addition of 6-gingerol at 100 µM (1.66-fold increase); d-limonene at 1 and 4 mM (1.55- and 1.57-fold, respectively); myrcene at 4 mM (1.38-fold); and citral at 60 µM (1.59-fold). None of these spices was as potent as α-naphthoflavone in stimulating CYP3A4-mediated 1-OH MDZ (FIG.2A).

CYP3A4-mediated 4-hydroxylation of MDZ was inhibited by a greater number of spices, including curcumin at 30, 45 and 60 µM (4-OH MDZ formation was decreased to 52, 30 and 29%, respectively, compared to control), 6-gingerol at 60, 100 and 500 µM (71, 68 and 38%); AMD at 1 and 4 mM (29 and 14%); d-limonene at 4 mM (65%); 1,8-cineole at 0.5, 1 and 4 mM (74, 64 and 59%); and citral at 1 mM (59%). Again, none of the spices was more potent than ketoconazole in inhibiting the formation of 4-OH MDZ. Two of the spices, myrcene at 1 and 4 mM, and β-caryophyllene at 60 µM, were observed to enhance the formation of 4-OH MDZ, although the increase in 4-OH MDZ concentration was not as high as that seen with 50 µM of testosterone (FIG.2B).

Since curcumin, AMD and 1,8-cineole showed inhibitory effects on both MDZ 1'-hydroxylation and MDZ 4-hydroxylation, these spices were further investigated for possible mechanism-based inhibition of CYP3A4 activity in the HLM. Ketoconazole, a known
reversible inhibitor of CYP3A4 (Perloff et al., 2005), was used as negative control and
verapamil, a mechanism-based inhibitor of CYP3A (Wang et al., 2005) as the positive control.
As expected, the inhibitory effect of ketoconazole on CYP3A4-mediated MDZ metabolism
did not increase with prolonged pre-incubation, while that of verapamil increased with
prolonged pre-incubation (FIG 3). Curcumin and 1,8-cineole did not exhibit any pre-
incubation time-dependent inhibition of 1′-hydroxylation and 4-hydroxylation of MDZ in the
HLM (FIG.3). In contrast, AMD showed increased inhibition of 1′-OH MDZ and 4-OH MDZ
formation with prolonged pre-incubation, suggesting that it might be a mechanism-based
inhibitor of the CYP3A4.

DISCUSSION

Food-drug interactions are everyday occurrences that can become clinically important
if they involve potent drugs with narrow therapeutic index. However, despite the widespread
consumption of spices in many populations, there have been few reports on spice-drug
interactions. In the present study, eight commercially available, purified components of
spices regularly consumed in South-east Asia were evaluated for their effects on P-gp-
mediated [³H]-digoxin transport and CYP3A4-mediated MDZ metabolism as a tool to assess
their potential to induce food-drug interactions.

Of the 8 spice components, curcumin (30-60 µM), 6-gingerol (100-500 µM), AMD
(1-4 mM), β-caryophyllene (1-4 mM), 1,8-cineole (4 mM) and citral (1 mM) were found to
significantly modulate [³H]-digoxin transport in the L-MDR1 and Caco-2 cell monolayers.
However, only curcumin and 6-gingerol at the concentrations employed produced [³H]-
digoxin transport profiles characteristic of P-gp inhibition. The mechanisms by which the
other spices modulate [³H]-digoxin transport across the cell monolayers are not known at
present. [³H]-digoxin transport across the cell monolayers could be affected not only by P-gp
efflux activity, but also by passage through the paracellular and transcellular pathways via passive diffusion (Tanigawara et al., 1992). Modulation of the paracellular or transcellular passive diffusion pathways would, however, lead to comparable changes in $[^3]$H-digoxin transport in both the AB and BA directions, with net efflux being unaffected (Tanigawara et al., 1992). This was not observed. While the effects of AMD, β-caryophyllene, 1,8-cineole and citral on the paracellular and transcellular transport pathways were not evaluated in this study, all 4 spices modified the $[^3]$H-digoxin efflux ratio by unidirectional modification of $[^3]$H-digoxin flux.

Of the 8 spice components, only curcumin and 6-gingerol inhibited P-gp activity. There may be a structural basis for this activity, as a comparison of the chemical structures in FIG. 1 indicates similarities in their chemical structures, specifically a 4-hydroxy-3-methoxyphenyl ring and a keto group on the 3rd carbon of the side chain. Both spices were concentration-dependent P-gp inhibitors, which is in agreement with previously published data that showed curcumin and 6-gingerol to inhibit the P-gp-mediated cellular accumulation of rhodamine 123 (Anuchapreeda et al., 2002; Nabekura et al., 2005). P_{app} values in TABLE 1 and TABLE 2 suggest curcumin to be the more efficient P-gp inhibitor on a concentration basis compared to 6-gingerol, although curcumin at the highest applied concentration of 60 µM was also incapable of completely abolishing the vectorial transport of $[^3]$H-digoxin. Higher curcumin concentrations were not employed in view of its significant cytotoxicity at concentrations ≥ 90 µM. Since the $[^3]$H-digoxin transport studies were conducted using sub-cytotoxic spice concentrations, the stronger P-gp-inhibitory action of curcumin was unlikely to be mediated by cell death or cell damage. Curcumin has, however, been reported to inhibit P-gp expression in the human KB-V1 cells (Anuchapreeda et al., 2002); whether this was the basis for its action on P-gp function in the L-MDR1 and Caco-2 cells remains to be determined.
The majority of the 8 spice components caused either an inhibition or enhancement of CYP3A4 activity in the HLM system. MDZ is a common probe to estimate CYP3A4 activity (Galetin et al., 2005), with modulation of MDZ 1'-hydroxylation generally viewed to play a more important role than changes in MDZ 4-hydroxylation since 1'-OH MDZ is the major metabolite (Dundee et al., 1984). Nevertheless, both the MDZ 1'-hydroxylation and 4-hydroxylation activities of the HLM CYP3A4 were quantified in this study to provide a comprehensive overview of the spice effect on CYP3A4 activity. CYP3A4-mediated transformation of MDZ to 1'-OH MDZ was inhibited by curcumin at 45 and 60 µM; AMD at 1 and 4 mM; 1,8-cineole at 1 and 4 mM and β-caryophyllene at 1 and 4 mM. A comparison of IC₅₀ values suggests that these spices were weaker CYP3A4 inhibitors compared to the control, ketoconazole. 6-gingerol at 100 µM; d-limonene at 1 and 4 mM; myrcene at 4 mM; and citral at 60 µM stimulated the CYP3A4-mediated 1'-hydroxylation of MDZ but none was as potent as the control stimulator, α-naphthoflavone. CYP3A4-mediated formation of 4-OH MDZ was inhibited by curcumin at 30, 45 and 60 µM; 6-gingerol at 60, 100 and 500 µM; AMD at 1 and 4 mM; d-limonene at 4 mM; 1,8-cineole at 0.5, 1 and 4 mM; and citral at 1 mM. Again, none of the spices was more potent than ketoconazole as inhibitor. Two of the spices, myrcene at 1 and 4 mM, and β-caryophyllene at 60 µM, enhanced the formation of 4-OH MDZ, again at lower potency compared to testosterone. The collective data therefore suggest that the spices were relatively weak, concentration-dependent modulators of CYP3A4 function.

An interesting phenomenon emerged in that, while some spices (curcumin, AMD, 1,8-cineole and myrcene) had similar effects on MDZ 1'-hydroxylation and 4-hydroxylation, other spices showed opposing effects on these two metabolic pathways. For example, β-caryophyllene inhibited MDZ 1'-hydroxylation but enhanced MDZ 4-hydroxylation while 6-gingerol, d-limonene and citral enhanced MDZ 1'-hydroxylation but inhibited MDZ 4-
hydroxylation. CYP3A4 is a complex heme-containing enzyme that exhibits non-Michaelis-Menten kinetics as well as both homotropic and heterotrophic cooperativity toward several substrates (Hutzler and Tracy, 2002). It has been shown that MDZ oxidation by CYP3A4 could be altered in favor of either the 1'-OH MDZ or the 4-OH MDZ, e.g. α-naphthoflavone promoted the formation of 1'-OH MDZ but not 4-OH MDZ, while the reverse was true of testosterone (Cameron et al., 2005). The underlying mechanism for the differential effects is not yet known. Another study showed α-naphthoflavone to increase and decrease, respectively, the carboxylic acid and ω-3-hydroxylated metabolites of losartan in cDNA-expressed CYP3A4 microsomes (Shou et al., 2001). One hypothesis proposes the existence of two or more possible MDZ-binding sites in the CYP3A4 enzyme, with at least one favoring the 1'-hydroxy metabolite and another favoring the formation of the 4-hydroxy metabolite. Effectors such as testosterone and α-naphthoflavone, and possibly the spices that showed differential effects on 1'-OH MDZ and 4-OH MDZ formation, could bind at sites that effectively block access to at least one but not all of the possible MDZ-binding sites. Kinetic models (Shou et al., 2001) and theoretical molecular models (Torimoto et al., 2003) have been developed to account for the allosteric interaction within the CYP3A4 active site. These models have attempted to differentiate between two substrates simultaneously bound to the active site, substrates competing for the active site, and changes activated by binding of an effector at a site other than the active site. However, there is to date no firm consensus on the mechanism for the differential effects of CYP3A4 modulators.

There is poor correlation of CYP3A4 and P-gp activities amongst the spices. While curcumin and 6-gingerol were modulators of both the P-gp and CYP3A4, the other spice components affected only the CYP3A4-mediated metabolism of MDZ. Moreover, while 6-gingerol inhibited the P-gp function, it promoted CYP3A4-mediated MDZ 1'-hydroxylation and inhibited CYP3A4-mediated MDZ 4-hydroxylation. Of the spices that modulated both
CYP3A4-mediated MDZ 1'-hydroxylation and 4-hydroxylation, only AMD appeared to be an irreversible (mechanism-based) inhibitor.

In conclusion, this study has shown spices to be capable of modulating the activities of human intestinal P-gp and CYP3A4. The data may suggest that the spice modulating effects were modest compared to established controls. Assuming that the 6-gingerol content in ginger is about 0.3% (Wang et al., 2002), and the volume of gastrointestinal (GI) fluid in the human is about 8 L (Lawson, 2003), a typical daily consumption of 8-10 g of fresh ginger root in the Indian diet (http://www.longwoodherbal.org/ginger/ginger.pdf, Longwood Herbal Task Force, accessed on Feb 19, 2008) could result in a 6-gingerol concentration only as high as 13 µM in the human GI tract. In the case of curcumin, the daily turmeric intake in India of about 0.6 g could result in a GI curcumin concentration of 10 µM, on the basis that turmeric contains 3-5% of curcumin (http://www.encyclopedia.com/doc/1G1-133803078.html, HighBeam Encyclopedia, accessed on Feb 19, 2008). At these concentrations, 6-gingerol and curcumin are unlikely to cause significant inhibition of P-gp or CYP3A function when administered as a single dose. However, P-gp expression in human KB-V1 cells has been observed to be attenuated by exposure to curcumin at 1-10 µM in a concentration-dependent manner (Anuchapreeda et al., 2002). Studies in our laboratory involving the rat model has further demonstrated that chronic curcumin administration could modulate P-gp and CYP3A expression, resulting in changes in the pharmacokinetic profiles of celiprolol, a P-gp substrate, and midazolam, a CYP3A substrate (Zhang et al., 2007). In this case, curcumin was administered intragastrically at a dose of 60 mg/kg/day, equivalent to 4 µM based on a rat GI fluid volume of 7.8 ml (McConnell et al., 2008), for 4 consecutive days. Thus regular consumption of curcumin could still potentially attenuate P-gp and CYP3A activity through modification of the tissue expression of these two proteins. Until proven otherwise in clinical
experiments, it may be prudent therefore to advise against the co-administration of potent drugs that are P-gp and/or CYP3A4 substrates with curcumin.
REFERENCES

Footnotes

This study was supported by a fund from the Biomedical Research Council, Singapore (01/1/21/19/142). Wenxia Zhang is the recipient of a graduate scholarship from the National University of Singapore.
LEGENDS FOR FIGURES

FIG. 1 Chemical structures of the components of spices.

FIG. 2 Effects of spices on the activity of CYP3A4 in human liver microsomes. A: midazolam 1'-hydroxylation; B: midazolam 4-hydroxylation. Concentrations are as follows: KTZ (ketoconazole): 5 µM; TST (testosterone): 50 µM; α-NA (α-naphthoflavone): 3 µM; Cur (Curcumin): 15, 30, 45 and 60 µM; Gin (6-gingerol): 60, 100 and 500 µM; AMD (allyl methyl disulfide), Lim (d-limonene), and Car (β-caryophyllene): 60 µM, 500 µM, 1 mM and 4 mM; Cin (1,8-cineole) and Myr (myrcene): 60 µM, 1 and 4 mM; Cit (citral): 60, 250 and 1000 µM. The corresponding control activity of midazolam 1'-hydroxylation and 4-hydroxylation by human liver microsomes was 2.31 and 0.243 nmol/min/mg protein, respectively. Data were shown in averages of triplicate experiments. * p ≤ 0.05 significant difference compare to control.

FIG. 3 The effect of pre-incubation time on the inhibition of midazolam 1'-hydroxylation (A) and 4-hydroxylation (B) by spices. KTZ (ketoconazole): 1 µM; Cur (curcumin): 45 µM; AMD (allyl methyl disulfide), Cin (1,8-cineole) and Car (β-caryophyllene): 1 mM. Data were shown in averages of triplicate experiments.
TABLE 1

Effects of spices on [³H]-digoxin transport in the AB and BA directions across confluent L-MDR1 and LLC-PK1 cell monolayers

Data are shown as mean ± SD (n = 4). * p ≤ 0.05 compared to control. Net efflux is expressed as the quotient of P_{app} (BA) to P_{app} (AB).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc (µM)</th>
<th>AB</th>
<th>BA</th>
<th>Net efflux</th>
<th>AB</th>
<th>BA</th>
<th>Net efflux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>1.03±0.13</td>
<td>6.60±0.18</td>
<td>6.36</td>
<td>1.78±0.27</td>
<td>3.34±0.48</td>
<td>1.88</td>
</tr>
<tr>
<td>Verapamil</td>
<td>100</td>
<td>2.72±0.05*</td>
<td>3.24±0.04*</td>
<td>1.19</td>
<td>1.95±0.07</td>
<td>2.03±0.03*</td>
<td>1.04</td>
</tr>
<tr>
<td>Curcumin</td>
<td>15</td>
<td>0.84±0.03</td>
<td>6.39±0.04</td>
<td>7.59</td>
<td>1.40±0.03</td>
<td>2.88±0.31</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.43±0.14*</td>
<td>4.98±0.15*</td>
<td>3.49</td>
<td>1.67±0.06</td>
<td>2.98±0.13</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2.14±0.02*</td>
<td>4.31±0.02*</td>
<td>2.01</td>
<td>2.60±0.30*</td>
<td>3.28±0.17</td>
<td>1.26</td>
</tr>
<tr>
<td>6-gingerol</td>
<td>100</td>
<td>2.11±0.27*</td>
<td>5.70±0.19*</td>
<td>2.70</td>
<td>1.89±0.06</td>
<td>2.93±0.08</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>2.34±0.06*</td>
<td>5.49±0.35*</td>
<td>2.34</td>
<td>1.94±0.05</td>
<td>2.45±0.10*</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>2.70±0.14*</td>
<td>4.49±0.31*</td>
<td>1.66</td>
<td>2.30±0.01*</td>
<td>2.30±0.08*</td>
<td>1.00</td>
</tr>
<tr>
<td>AMD</td>
<td>1000</td>
<td>1.12±0.02</td>
<td>5.71±0.23*</td>
<td>5.11</td>
<td>1.89±0.20</td>
<td>3.66±0.19</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1.33±0.05</td>
<td>5.24±0.21*</td>
<td>3.94</td>
<td>1.73±0.14</td>
<td>3.62±0.35</td>
<td>2.09</td>
</tr>
<tr>
<td>d-limonene</td>
<td>1000</td>
<td>1.16±0.04</td>
<td>6.54±0.28</td>
<td>5.64</td>
<td>1.59±0.11</td>
<td>3.20±0.32</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1.38±0.04</td>
<td>6.47±0.21</td>
<td>4.70</td>
<td>2.64±0.04</td>
<td>3.55±0.26</td>
<td>1.35</td>
</tr>
<tr>
<td>1,8-cineole</td>
<td>1000</td>
<td>1.61±0.04</td>
<td>7.18±0.27</td>
<td>4.59</td>
<td>1.82±0.14</td>
<td>3.42±0.40</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>2.77±0.07*</td>
<td>6.95±0.39</td>
<td>2.62</td>
<td>2.61±0.15*</td>
<td>3.61±0.28</td>
<td>1.38</td>
</tr>
<tr>
<td>β-caryophyllene</td>
<td>1000</td>
<td>1.15±0.01</td>
<td>5.54±0.19*</td>
<td>4.79</td>
<td>1.69±0.16</td>
<td>3.23±0.29</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1.33±0.05</td>
<td>5.81±0.11*</td>
<td>4.36</td>
<td>1.71±0.24</td>
<td>3.64±0.24</td>
<td>2.13</td>
</tr>
<tr>
<td>Myrcene</td>
<td>1000</td>
<td>1.16±0.06</td>
<td>6.28±0.13</td>
<td>5.42</td>
<td>1.40±0.15</td>
<td>3.13±0.11</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1.60±0.04</td>
<td>6.75±0.12</td>
<td>4.22</td>
<td>1.32±0.07</td>
<td>3.63±0.11</td>
<td>2.75</td>
</tr>
<tr>
<td>Citral</td>
<td>250</td>
<td>1.49±0.01</td>
<td>6.04±0.13</td>
<td>4.04</td>
<td>1.46±0.08</td>
<td>2.80±0.23</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2.52±0.08*</td>
<td>6.70±0.21</td>
<td>2.66</td>
<td>3.29±0.07*</td>
<td>3.35±0.06</td>
<td>1.02</td>
</tr>
</tbody>
</table>
TABLE 2

Effects of spices on \(^{3}H\)-digoxin and \(^{14}C\)-mannitol transport in the AB and BA directions across confluent Caco-2, L-MDR1 and LLC-PK1 cell monolayers

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc (µM)</th>
<th>[^{3}H]-digoxin (Caco-2)</th>
<th>[^{14}C]-mannitol (Caco-2)</th>
<th>[^{14}C]-mannitol (L-MDR1)</th>
<th>[^{14}C]-mannitol (LLC-PK1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(P_{\text{app}} (\times 10^{-6} \text{ cm/s}))</td>
<td>(P_{\text{app}} (\times 10^{-7} \text{ cm/s}))</td>
<td>(P_{\text{app}} (\times 10^{-7} \text{ cm/s}))</td>
<td>(P_{\text{app}} (\times 10^{-7} \text{ cm/s}))</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>1.52 ± 0.07</td>
<td>4.62</td>
<td>4.77 ± 0.63</td>
<td>2.76 ± 0.34</td>
</tr>
<tr>
<td>Verapamil</td>
<td>100</td>
<td>2.70 ± 0.07 *</td>
<td>3.32 ± 0.01 *</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Curcumin</td>
<td>15</td>
<td>1.77 ± 0.07</td>
<td>6.79 ± 0.55</td>
<td>3.84</td>
<td>5.21 ± 0.72</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.09 ± 0.04 *</td>
<td>5.81 ± 0.57 *</td>
<td>2.78</td>
<td>5.43 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2.16 ± 0.02 *</td>
<td>5.31 ± 0.32 *</td>
<td>2.46</td>
<td>5.77 ± 0.83</td>
</tr>
<tr>
<td>6-gingerol</td>
<td>100</td>
<td>2.21 ± 0.11</td>
<td>5.93 ± 0.31 *</td>
<td>2.68</td>
<td>5.23 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>2.39 ± 0.17</td>
<td>5.19 ± 0.27 *</td>
<td>2.17</td>
<td>5.77 ± 0.83</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>2.58 ± 0.25</td>
<td>4.83 ± 0.23 *</td>
<td>1.87</td>
<td>5.21 ± 0.57</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD (n = 4). * \(p \leq 0.05\) compared to control. Net efflux is expressed as the quotient of \(P_{\text{app}} (\text{BA})\) to \(P_{\text{app}} (\text{AB})\).
FIG. 1

- **curcumin**
- **6-gingerol**
- **allyl methyl disulfide**
- **β-caryophyllene**
- **1,8-cineole**
- **d-limonene**
- **citral**
- **myrcene**