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d) List of nonstandard abbreviations 

Flutamide, 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide; Flu-1, 4-nitro-3-

(trifluoromethyl)phenylamine; Flu-2: N-[4-nitro-3-(trifluoromethyl)phenyl]-acetamide; Flu-1-N-

OH, N-[4-nitro-3-(trifluoromethy)phenyl]hydroxylamine;  Flu-6, 2-methyl-N-[4-amino-3-

(trifluoromethyl)phenyl]-propanamide GSH, reduced glutathione; ESI, electrospray ionization; 

LC/MS, liquid chromatography/ mass spectrometry; amu, atomic mass unit. 
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Abstract 

Flutamide, a widely used nonsteroidal antiandrogen drug for the treatment of prostate cancer, 

has been associated with rare incidences of hepatotoxicity in patients.  It is believed that 

bioactivation of flutamide and subsequent covalent binding to cellular proteins is responsible 

for its toxicity. A novel N-S glutathione adduct has been identified in a previous bioactivation 

study of flutamide (Kang et al, 2007). Due to the extensive first pass metabolism, flutamide 

metabolites such as 2-hydroxyflutamide and Flu-1 have achieved plasma concentrations 

higher than the parent in prostate cancer patients. In vitro studies in human liver microsomes 

were conducted to probe the P450-mediated bioactivation of flutamide metabolites and identify 

the possible reactive species using reduced glutathione (GSH) as a trapping agent.  Several 

GSH adducts (G1, Flu-1-G1, Flu-1-G2, Flu-6-Gs) derived from the metabolites of flutamide 

were identified and characterized. A comprehensive bioactivation mechanism was proposed to 

account for the formation of the observed GSH adducts. Of interest were the formation of a 

reactive intermediate by the desaturation of the isopropyl group of M5 and the unusual 

bioactivation of 4-nitro-3-(trifluoromethyl)phenylamine (Flu-1). Studies using recombinant 

P450s suggested that the major P450 isozymes involved in the bioactivation of flutamide and 

its metabolites were CYP1A2, CYP3A4, and CYP2C19. These findings suggested that, in 

addition to the direct bioactivation of flutamide, the metabolites of flutamide could also be 

bioactivated and contribute to flutamide-induced hepatotoxicity.  
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Introduction 

Flutamide (2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide), a widely 

prescribed nonsteroidal antiandrogen drug, has been shown to increase survival time of 

prostate cancer patients in  combination therapy with luteinizing hormone-releasing agonists or 

orchiectomy (Brogden and Clissold, 1989; McLeod 1993, Schmitt et. al., 2001). However a 

number of hepatotoxicity cases were reported to be associated with the clinical use of this drug 

such as temporary increases in transaminase markers and rare incidences of severe liver 

dysfunction (Thole et al., 2004, Wysowski and Fourscroy, 1996, Osculati and Castiglioni, 2006, 

Nakagawa et. al., 1999, Gomez et. al., 1992, Cetin et al., 1999). Several cases of blood 

eosinophilia have been observed in patients treated with flutamide (Hart and Stricker, 1989), 

which indicates an immune-mediated mechanism in some patients.  

The mechanism of flutamide-induced hepatic dysfunction is currently unknown; 

however, bioactivation of flutamide has been considered to be the cause of flutamide-induced 

hepatotoxicity. When metabolically activated by P450s (CYP3A and CYP1A) flutamide has 

been shown to be covalently bound to microsomal and hepatocyte proteins (Berson et al., 

1993, Fau et al., 1994). Ichimura and co-workers have also illustrated the necessity of 

enhanced flutamide metabolism for development of severe hepatotoxicity (Ichimura et al. 

1999).  More recently, Matsuzaki and co-workers have demonstrated flutamide-induced toxicity 

in CYP1A2 knockout SV129 mice administered with 400 mg/kg dose after the mice were fed 

with an amino acid-deficient diet for 2 weeks, which reduced the glutathione (GSH) content to 

27% of initial (Matsuzaki et al. 2006). In vitro conjugation with GSH is widely used in the 

characterization of reactive metabolites in probing the mechanism of bioactivation (Samuel et 

al., 2003).  Recently a GSH conjugate of hydroxylated flutamide has been detected in human 
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liver microsomal and hepatocyte incubations (Soglia et al., 2006; Kostrubsky et al., 2007).  

Similarly, Tevell and co-workers (Tevell et al., 2006) have detected a mercapturic acid 

conjugate of hydroxylated flutamide in the urine of prostate cancer patients. In a previous study 

of the bioactivation of flutamide in human liver microsomes, a novel N-S glutathionyl adduct 

was detected and fully characterized by MS and NMR, which is formed by the direct 

bioactivation of the parent drug (Kang et al, 2007).  

Due to extensive metabolism of flutamide in the liver, some flutamide metabolites such 

as 2-hydroxyflutamide and Flu-1 achieved even higher plasma concentrations than the parent 

in prostate cancer patients. Steady state plasma concentrations of 635 ng/mL and 210 ng/mL 

have been determined for 2-hydroxyflutamide and Flu-1, respectively, 3 hours post dose in 

patients with prostate cancer whereas that of flutamide was only 23.6 ng/mL (Aizawa et al., 

2003). Thus, it is highly probable that metabolites of flutamide can also be bioactivated and 

contribute to flutamide-induced hepatotoxicity. Major metabolites of flutamide identified in vitro 

or in vivo so far are shown in Scheme 1 (Tevell et al., 2006; Goda et al., 2006). In addition to 

2-hydroxyflutamide, other oxidative metabolites are monohydroxylated flutamide M5, 

dihydroxylated flutamide M7, and trihydroxylated flutamide M8. Recently a new N-oxidized 

metabolite of flutamide, N-[4-nitro-3-(trifluoromethy)phenyl]hydroxylamine (Flu-1-N-OH), 

possibly derived from Flu-1, has been identified in the urine of prostate cancer patients and in 

human liver microsomal incubations (Aizawa et al., 2003; Goda et al., 2006). Additionally, a 

nitro reduced metabolite 2-methyl-N-[4-amino-3-(trifluoromethyl)phenyl]-propanamide (Flu-6) 

was found in human serum (Katchen and Buxbaum 1975, Takashima et al., 2003). Although 

studies with flutamide in liver microsomes failed to generate this metabolite, other reductive 

pathways exist in vivo to produce Flu-6. An acetylated metabolite of Flu-1, N-[4-nitro-3-
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(trifluoromethyl)phenyl]-acetamide (Flu-2), was also reported in the plasma samples of men 

who were treated with flutamide (Katchen and Buxbaum, 1975). 

The present study describes the bioactivation of flutamide metabolites (2-

hydroxyflutamide, M5, Flu-1, Flu-2, and Flu-6) in human liver microsomal incubations 

supplemented with GSH and NADPH. We herein report the detection and characterization of 

several GSH adducts (G1, Flu-1-G1, Flu-1-G2, Flu-6-G1) derived from the metabolites of 

flutamide. A comprehensive bioactivation mechanism has been proposed to account for the 

formation of the observed GSH adducts. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on April 14, 2008 as DOI: 10.1124/dmd.108.020370

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #20370 

 8

Materials and Methods 

Materials. Flutamide, Flu-1, Flu-2, and glutathione (reduced form, GSH) were 

purchased from Sigma-Aldrich (St. Louis, MO). Human liver microsomes were prepared from 

human livers (BD Gentest, Woburn, MA) using standard protocols and were characterized 

using P450-specific marker substrate activities. Aliquots from the individual preparations from 

56 individual human livers were pooled on the basis of equivalent protein concentrations to 

yield a representative microsomal pool with a protein concentration of 20.4 mg/ml. 

Recombinant P450 isozymes CYP1A2, CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 

supersomes were obtained from BD Gentest (Woburn, MA). All other commercially available 

reagents and solvents were of either analytical or HPLC grade. 

Synthesis of 2-methyl-N-(4-Amino-3-trifluoromethyl-phenyl)-propanamide (Flu-6). 

Flutamide (0.505 g, 1.83 mmol) was dissolved in 5 mL methanol. The reaction flask was 

placed in an oil bath at 55oC and a mixture of sodium sulfide nonahydrate (1.15 g, 4.79 mmol) 

and sodium bicarbonate (0.355 g, 4.23 mmol) in 5 mL water was added over 5 minutes. The 

solution began to turn from yellow to orange upon addition of the reducing agent. After addition 

of approximately 1 mL of the aqueous solution, precipitate began to form. Addition of 15 mL of 

methanol dissolved most of the precipitate and the reaction mixture was heated in an oil bath 

at 60oC for 1 h. The reaction appeared to be 50% complete (an aliquot was diluted with 

methanol and was examined by LC/MS). More of the mixture of sodium sulfide nonahydrate 

(1.15 g, 4.79 mmol) and sodium bicarbonate (0.355 g, 4.23 mmol) in 5 mL water was added 

over 3 minutes. After 20 min, water (10 mL) was added and the methanol was removed in 

vacuo. The remaining aqueous layer was extracted with dichloromethane (DCM) twice. The 

organic layer was dried over sodium sulfate and concentrated in vacuo producing 419.6 mg of 
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a yellow solid.  Purification was accomplished by radial chromatography (2 mm plate, DCM to 

90 DCM to 10 EtOAc, sample loaded in DCM). The second UV active band produced 90.5 mg 

of the target compound (20% yield) as a very light yellow solid.  LC/MS > 95% (254 nm); 1H-

NMR (400 MHz, MeOD) δ 7.63 (1 H, d, J = 2.5 Hz), 7.40 (1 H, dd, J = 8.8, 2.5 Hz), 6.79 (1 H, 

d, J = 8.8 Hz), 2.57 (1 H, dt, J = 13.6, 6.8 Hz), 1.17 (6 H, d, J = 6.8 Hz). 1H NMR (400 MHz, 

CDCl3) δ 7.54 (1 H, d, J = 2.3 Hz), 7.46 (1 H, dd, J = 8.6, 2.3 Hz), 7.14 (1 H, s), 6.69 (1 H, d, J 

= 8.6 Hz), 4.02 - 4.13 (2 H, m), 2.46 (1 H, dt, J = 13.7, 6.9 Hz), 1.23 (6 H, d, J = 7.1 Hz). 13C-

NMR (100 MHz, CDCl3) δ 175.4, 142.2, 128.6, 125.9, 124.5 (q, J = 273 Hz), 119.0, 117.6, 

113.8 (q, J = 30 Hz), 36.3, 19.5.  HRMS - C11H13N2OF3 Theoretical (M+H): 247.10527; Found: 

247.10545. Elemental Analysis Theory C, 53.66%; H, 5.32%; F, 23.15%; N, 11.38%;  Found 

C, 53.59%; H, 5.32%; F, 23.02%; N, 11.36%. 

Microsomal Metabolism. Flutamide, Flu-1, or Flu-2 (5 µM to 100 µM) were incubated 

for 1 h at 37°C in an incubation system consisting of 100 mM potassium phosphate buffer (pH 

7.4), 2 mg human liver microsomes, 5 mM GSH, and 1 mM NADPH in a final volume of 1 mL. 

Reactions were terminated by the addition of 6 mL acetonitrile. Samples were mixed on a 

vortex mixer and centrifuged for 5 min. The supernatants were transferred into conical glass 

tubes for evaporation to dryness under N2 at 30°C. The residues were reconstituted in 200 µL 

of 30:70 (v/v) methanol:20 mM ammonium acetate (pH 4) and aliquots (40 µL) were injected 

into an HPLC-MS system. Metabolite profiling was performed on an Agilent 1100 HPLC 

system (Agilent Technologies, Palo Alto, CA) coupled with a Finnigan LCQ-Deca ion-trap 

mass spectrometer (Thermo Fisher Scientific, Waltham, MA). Separation was achieved using 

a kromasil C4 100A column (3.5 µm, 150 x 2.0 mm, Phenomenex, Torrance, CA) at a flow rate 

of 0.2 mL/min.  A gradient of (A) water with 0.1% formic acid and (B) acetonitrile with 0.1% 
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formic acid was as follows: initiated with 1% B for 5 min and then increased in a linear manner 

to 30% at 20 min and to 50% at 25 min, held at 50% until 28 min, changed linearly to 90% at 

40 min, maintained at 90% for up to 43 min and then decreased to 1% at 45 min.  The column 

was allowed to equilibrate at 1% solvent B for 5 min prior to the next injection.  The HPLC 

effluent going to the mass spectrometer was directed to waste through a divert valve for the 

initial 5 min after sample injection. Major operating parameters for the ion-trap ESI-MS method 

were as follows: capillary temperature 270°C; spray voltage 5.0 kV; capillary voltage -14 V; 

sheath gas flow rate 90 and auxillary gas flow rate 30 (arbitrary value). For the detection of 

Flu-6 GSH adducts the major operating parameters for the ion-trap ESI-MS method were set in 

the positive mode: capillary temperature 270°C; spray voltage 4.5 kV; capillary voltage 4.5 V; 

sheath gas flow rate 90 and auxillary gas flow rate 30. The mass spectrometer was operated 

with data-dependent scanning. The ions were monitored over a full mass range of m/z 125-

1000.  For a full scan, the automatic gain control was set at 5.0 x 108, maximum ion time was 

100 ms and the number of microscans was set at 3. For MSn scanning, the automatic gain 

control was set at 1.0 x 108, maximum ion time was 400 ms and the number of microscans 

was set at 2. For data dependent scanning, the default charge-state was 1, default isolation 

width was 3.0, normalized collision energy was 45.0.  

Flutamide metabolites M5 were isolated from human liver microsomal incubation of 

flutamide. Further incubation of M5 in human liver microsmes and HPLC-MS analysis were the 

same as above.  

Incubations with cDNA-Expressed Human P450 Enzymes. Flutamide, Flu-1, Flu-6 

(50 µM) were incubated for 1 h at 37 °C in an incubation system consisting of 100 mM 

potassium phosphate buffer (pH 7.4), recombinant P450 CYP1A2, or CYP3A4, or CYP3A5, or 
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CYP2C8, or CYP2C9, or CYP2C19, or CYP2D6 supersomes (50 pmol), 5 mM GSH, and 1 

mM NADPH in a final volume of 0.5 mL. After 3-min preincubation, incubations were initiated 

by the addition of NADPH. Reactions were terminated by the addition of 1 mL acetonitrile. 

Nilutamide was added as an internal standard. Formation of the glutathionyl adduct was 

quantified using a Shimadzu LC-10AD VP with binary pumps (Shimadzu, Columbia, MD) 

coupled with a Q-Trap 4000 (Applies Biosystems/MSD Sciex, Concord, ON, Canada). The 

adduct was separated by a kromasil C4 100A column (3.5 µm, 150 x 2.0 mm, Phenomenex, 

Torrance, CA) at a flow rate of 0.2 mL/min. A gradient of (A) water with 0.1% formic acid and 

(B) acetonitrile with 0.1% formic acid was as follows: initiated with 0% B for 3 min and then 

increased in a linear manner to 90 % at 15 min and then decreased to 0% at 17 min. The 

column was allowed to equilibrate at 0 % solvent B for 3 min prior to the next injection. The 

HPLC effluent going to the mass spectrometer was directed to waste through a divert valve for 

the initial 3 min after sample injection. The Q-trap 4000 electrospray-MS was operated in the 

negative ionization mode, by applying to the capillary a voltage (IS) of -4.5 kV. Nitrogen was 

used as curtain gas (CUR), as well as nebulizing (GS1) and turbo spray gas (GS2, heated at 

450 °C), with the optimum values set, respectively, at 36, 50, and 40 (arbitrary values). 

Collisionally activated dissociation (CAD) was performed at 6 (arbitrary value) with nitrogen as 

collision gas. Declustering potential (DP) was set at -90 V, whereas entrance potential (EP) 

was set at -10 V; collision energy (CE) was optimized at -34 eV. The multiple reaction 

monitoring (MRM) transitions used were 596→323 for G1, 526→253 for Flu-1-G1, 495→222 

for Flu-1-G2, and 316→205 for internal standard nilutamide respectively. For Flu-6-G1, the 

mass spectrometer was operated in a positive ion mode with a capillary voltage of 4.5 kV. The 

source temperature was set at 450 °C, declustering potential at 65 V, and the entrance 
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potential at 10 V. The collision activated dissociation was performed using a collision energy of 

40 V. Flu-6-G1 and the internal standard buspirone were monitored in MRM using the 

transitions of 552→423 for Flu-6-G1 and 386 → 122 for buspirone.  

Isolation of GSH Adducts and NMR Characterization. The same human liver 

microsomal incubation with flutamide was carried out on a 10 mL scale. G1, 2-

hydroxyflutamide, M5, and M7 were isolated with the following LC conditions. Separation was 

achieved using a COSMOSIL 5PYE column (150 x 4.6 mm, Waters, Milford, MA) at a flow rate 

of 1.0 ml/min with an Agilent 1100 HPLC system (Wilmington, DE). A gradient of (A) water with 

0.1% formic acid and (B) acetonitrile with 0.1% formic acid was as follows: initiated with 100% 

A for 5 min, changed to 80% A from 5 to 10 min, changed to 50% A from 10 to 60 min, 

changed to 10% A from 60 to 70 min, held at 10% A from 70 to 75 min, changed to 100% A 

from 75to 76 min, and held at 100% A from 76 to 80 min for the column to be equilibrated. All 

NMR spectra were acquired on a Bruker-Biospin AV700 spectrometer running TopSpin 1.3 

software and equipped with a Bruker 5-mm TCI z-gradient Cryoprobe (Bruker, Rheinstetten, 

Germany). 1D 1H spectra were acquired with water suppression using a Watergate W5 pulse 

sequence with gradients and a double echo. 2D COSY and HSQC spectra were acquired 

without solvent suppression using gradient pulses for coherence selection. Chemical shifts are 

reported in ppm relative to tetramethylsilane.  

Flu-1-G2 was isolated from the incubation of Flu-1 with rat liver microsomes on a 10 mL 

scale using the method as described above. 1D and 2D NMR spectra were acquired similarly 

as above.  
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Results 

 In order to assess the bioactivation of flutamide metabolites, the major flutamide 

metabolites identified in vivo and in vitro were obtained and incubated with human liver 

microsomes supplemented with NADPH and GSH. 

 Incubation of 2-Hydroxyflutamide with human liver microsomes. When the major 

circulating metabolite 2-hydroxyflutamide was incubated in human liver microsomes 

supplemented with NADPH and GSH, no GSH adducts could be detected.  

 Formation of GSH Adducts from Flu-1.  In the presence of GSH, two GSH adducts 

were detected in the NADPH-supplemented human liver microsomal incubation of Flu-1 or 

flutamide (Figure 1). The first GSH adduct (Flu-1-G1) showed a molecular ion at m/z 526 ([M-

H]-) in the negative ion mode, 305 Da greater than that of M4, a hydroxylated metabolite of Flu-

1 (Scheme 3). Subsequent MS/MS of Flu-1-G1 produced two major fragment ions at m/z of 

253 and 272 (Figure 2). The first ion at m/z of 253 was derived from cleavage of sulfur-carbon 

bond of the glutathionyl moiety and appeared to retain the sulfur atom. The second ion at m/z 

of 272 was part of glutathionyl moiety and was produced from the same sulfur-carbon bond 

cleavage. The neutral loss of 129, corresponding to elimination of the pyroglutamate, was also 

observed in the MS/MS spectrum of Flu-1-G1. The fragmentation pathway suggested that 

GSH was added to the aromatic ring of M4 (Figure 2).  

 The second GSH adduct (Flu-1-G2, Figure 1D) from Flu-1 showed a molecular ion at 

m/z 495 ([M-H]-), an addition of 290 amu to Flu-1 (m/z 205, [M-H]-) which corresponded to the 

addition of a glutathionyl moiety (307 amu) and loss of the amino group (-17 amu) of Flu-1. 

MS/MS (Figure 3A) of Flu-1-G2 generated fragment ions at m/z 222 and 272, the latter ion 
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being part of the glutathionyl moiety resulted from sulfur-carbon bond cleavage. Further 

fragmentation of the ion at m/z 222 resulted in the loss of HF and sulfur atom (Figure 3b). The 

ion at m/z 222 was consistent with substitution of the amino group of Flu-1 by a sulfur atom. 

Furthermore a change from odd ion of Flu-1 at m/z 205 to an even ion at m/z 222 implicated 

loss of the amino group. The loss of pyroglutamate (-129 amu) was also observed in MS/MS of 

Flu-1-G2. 

 For a more definitive characterization of the structure of Flu-1-G2, the adduct was 

isolated from the incubation of Flu-1 with human liver microsomes. 1H NMR spectrum of Flu-1-

G2 showed (Figure 4, Table 1) three aromatic proton signals (3, 5, and 6). The presence of a 

larger J coupling of 9.30 Hz between 5 and 6, a smaller J coupling of 2.36 Hz between 3 and 

5, and an undetectable coupling between 3 and 6 is consistent with the aromatic substitution 

pattern of the proposed structure (Figure 4). This aromatic substitution pattern of Flu-1-G2 was 

identical to that of flutamide, which strongly suggested replacement of the amino group by a 

glutathionyl moiety. The proton signals of glutathionyl group appeared in the region from 1.8 

ppm to 4.5 ppm in the 1H-NMR spectrum. The assignments of all the glutathionyl protons were 

achieved by a 1H-1H COSY experiment (data not shown). 

 Formation of GSH Adduct G1 from M5. M5 is a minor metabolite and only observed 

in human liver microsomal incubations. However a closer examination of the NADPH-

supplemented human liver microsomal incubations of flutamide with GSH revealed that in 

addition to the N-glutathionyl flutamide adduct identified in the previous report (Kang et al, 

2007), another major GSH adduct (G1) was also formed and it was later shown to be derived 

from M5. 
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 G1 displayed a molecular ion of m/z 596 ([M-H]-) in the MS spectrum (Figure 1A, 1B), 

305 Da greater than that of a mono-oxygenated metabolite of flutamide. Further fragmentation 

of G1 molecular ions resulted in a neutral loss of 129, corresponding to elimination of the 

pyroglutamate of GSH. MS/MS spectrum of G1 showed two intense fragment ions at m/z of 

323 and 306 respectively (Figure 5A). The ion at m/z 306 corresponded to the molecular ion of 

GSH ([M-H]-) as fragmentation of this ion produced diagnostic fragment ions of GSH. The ion 

at m/z of 323 was formed via cleavage of sulfur-carbon bond of the glutathionyl moiety and still 

retained the sulfur atom. Further fragmentation of the ion at m/z 323 afforded two ions at m/z 

of 259 and 205 respectively (Figure 5B), which suggested attachment of the glutathionyl 

moiety to the isobutyramide instead of the aromatic group. 

 G1 was isolated from human liver microsomal incubation of flutamide and NMR 

analyses allowed the definitive assignment of the structure. The corresponding chemical shifts 

and coupling constants of G1 are shown in Table 1. The presence of glutathionyl moiety in G1 

was confirmed by the proton signals in the region from 1.8 to 4.5 ppm. Three aromatic proton 

signals appeared from 8.0 to 8.3 ppm. Interestingly double peaks appeared for aromatic proton 

3 and 6 in 1H NMR spectrum of G1 in methanol-d4 (supplemental material), indicating that G1 

was a mixture of diastereomers due to a newly formed chiral center (carbon g in Figure 5). The 

proton signals of the two methyl groups of flutmide (d, 6H, 1.22 ppm, J = 4.85 Hz) disappeared 

and two new peaks appeared at 3.74 ppm (d, 2H, J = 4.85 Hz) and 2.74 ppm (d, 2H, J = 5.32 

Hz) respectively, indicating the modification of both methyl groups in G1. The chemical shifts at 

3.74 ppm and 2.74 ppm are consistent with literature chemical shifts of hydroxymethyl and 

thiol methyl respectively (Dean, 1987). The methine hydrogen of flutamide (m, 1H, 2.66 ppm, J 

= 6.85 Hz) shifted down field to 2.92 ppm in G1 (m, 1H, J = 5.32, 4.85 Hz). Since the three 
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new proton signals of G1 were overlapped with those of glutathionyl moiety, a 1H-1H COSY 

experiment was conducted to distinguish these mixed signals. As shown in the COSY 

spectrum of G1 (Figure 6), the peak at 2.92 ppm was coupled to the two peaks at 3.74 ppm 

and 2.74 ppm respectively whereas the later two peaks were not coupled to each other, thus 

confirmed the assignment of methine hydrogen at 2.92 ppm. The results of NMR experiments 

have indicated the presence of a hydroxymethyl and a glutathionyl methyl in G1 structure.  

 Formation of GSH Adducts from Flu-6. Although Flu-6 was not formed in human liver 

microsomal incubations of flutamide, it was detected in vivo in human plasma and urine 

samples (Katchen and Buxbaum 1975, Takashima et al., 2003). This metabolite was 

synthesized from flutamide by sodium sulfide-mediated reduction of the nitro group. Incubation 

of Flu-6 in NADPH-supplemented human liver microsomes in the presence of GSH generated 

three adducts with the same molecular ion at m/z 552 ([M+H]+) in positive ion mode: Flu-6-G1, 

Flu-6-G2, and Flu-6-G3, corresponding to the attachment of a glutathionyl moiety (305 amu) to 

FLU-6 (Figure 7A). The most abundant of the three was Flu-6-G1. MS/MS of the molecular 

ions at Flu-6-G1 at m/z 552 mainly afforded an ion at m/z 423 from the loss of pyroglutamate (-

129) (Figure 8A). Further fragmentation of this ion yielded fragment ions shown in Figure 8B. A 

fragmentation pathway of the ion at m/z 423 is proposed (Figure 9). The cyclized structure of 

the ions at m/z 320 and 303 suggested that the glutathionyl could be attached to the aromatic 

ring and adjacent to either amino or amide nitrogen. The ion at m/z 277 (30 amu higher than 

FLU-6 molecular ion) should still retain the sulfur atom. Further fragmentation of the ion at m/z 

gave rise to an ion at m/z 207 from cleavage of the amide bond and retention of the sulfur 

atom, consistent with attachment of the glutathionyl group to aromatic ring (Figure 8C). Similar 

MS spectra were observed for the other two adducts, suggesting the three FLU-6-Gs were 
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regio-isomers following attack of GSH on the three unsubstituted positions of the aromatic ring 

of Flu-6 (Scheme 4).  

 Incubation of Flu-6 with N-acetyl cysteine methyl ester generated three cysteine 

conjugates (Flu-6-Cys1, Flu-6-Cys2, and Flu-6-Cys3, Figure 7B) in a similar fashion, all with a 

molecular ion at m/z 408 ([M+H]+), suggesting addition of acetyl cysteine to Flu-6 and 

hydrolysis of the methyl ester (Scheme 6). MS/MS of the ion at m/z 408 (Figure 10A) resulted 

in the same ion at m/z 320 which upon further fragmentation yielded the ion at m/z 303, also 

present in MS/MS of Flu-6-G1 (Figure 10B). The fragmentation pathway of the ion at m/z 423 

of Flu-6-G1 (Figure 9) can be applied to account for the formation of fragment ions of the 

acetyl cysteine adduct of Flu-6. 

 Formation of GSH Adducts from Flu-2. Incubation of Flu-2 in human liver 

microsomes mainly generated Flu-1 via hydrolysis of the amide bond; and Flu-G1 and Flu-G2 

were the two GSH adducts formed following further bioactivation of Flu-1 (data not shown).  

 GSH Adducts Formation by cDNA-Expressed Human P450 Enzymes. The 

formation of G1, Flu-1-G1, Flu-1-G2, and Flu-6-G1 was found to be NADPH dependant. To 

examine the possible involvement of P450 isozymes in the formation of these GSH adducts, 

incubations of flutamide or Flu-1 or Flu-6 in recombinant human P450 isozymes with GSH and 

NADPH were conducted. 

 Highest formation of G1 was observed in recombinant CYP1A2 incubation, followed by 

CYP2C19. G1 was not detectable in CYP3A4, 3A5, 2C8, 2C9, 2D6 incubations (Figure 11A). 

After normalization of relative hepatic abundance of P450 isozymes (Rodrigues AD 1999), 

CYP1A2 turned out to be the major isoform responsible for the formation of G1 (94%). 
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CYP2C19 played a minor role in the bioactivation pathway leading to the observed adduct 

(6%). An inhibition study in human liver microsomes with a mechanism-based CYP1A2 

specific inhibitor furafylline (25 µM) resulted in a 99% inhibition of G1 formation, confirming the 

major role played by CYP1A2. 

 The formation of Flu-1-G1 showed different dependency on P450 isoforms. As shown in 

Figure 11B, recombinant CYP2C19 displayed the highest activity. CYP3A4, 1A2, and 2D6 

exhibited lower activity toward the formation of Flu-1-G2. After normalization of relative hepatic 

abundance of P450 isozymes, CYP3A4 accounts for 48% of Flu-1-G2 formation followed by 

CYP2C19 (28%), and 1A2 (13%). 

 Studies of Flu-1-G2 formation by recombinant P450s showed that the highest activity 

was catalyzed by CYP2C8 (Figure 11C). Lower activities were found in CYP1A2, 2C9, 2C19, 

and 2D6. After normalization of relative hepatic abundance of P450 isozymes, CYP2C8 was 

the major isoform responsible for the formation of Flu-1-G2 (50%). CYP1A2 (13%) and 

CYP2C9 (11%) played a minor role in the formation of Flu-1-G2.  

 Among the recombinant P450 isozymes tested, CYP1A2 was also the most active P450 

isozyme catalyzing the formation of Flu-6-G1 (55% after normalization of relative hepatic 

abundance of P450 isozymes) followed by CYP3A4 (33%).  CYP2C19 and CYP2D6 were 

involved to a lesser extent (Figure 11D). 
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Discussion 

 In a previous study of the bioactivation of flutamide in human liver microsomes, a novel 

N-S glutathionyl adduct was identified. The present study revealed the formation of several 

GSH adducts (G1, Flu-1-G1, Flu-1-G2, Flu-6-G1) derived from the metabolites of flutamide in 

human liver microsomal incubations with of GSH and NADPH. 

 G1 was the most abundant GSH adduct observed in human liver microsomal incubation 

of flutamide (Figure 1A). Based on its structure, G1 was unlikely to be the result of direct 

bioactivation of parent flutamide, instead it can be derived from the hydroxylated 

metabolite/metabolites of flutamide. However, 2-hydroxyflutamide was not the precursor of G1 

as incubation of 2-hydroxyflutamide with human liver microsomes failed to show any 

detectable G1. We explored the origination of G1 from other oxidative metabolites of flutamide. 

Monohydroxylated metabolite M5 and dihydroxylated flutamide M7 were isolated and 

incubation with human liver microsomes was conducted for each isolated metabolite. The 

incubation of M7 failed to yield any detectable G1. M5 generated significant amounts of G1 in 

addition to M7 (data not shown). A proposed mechanism for G1 formation from M5 is shown in 

Scheme 2. Abstraction of the methine hydrogen of M5 by P450 would generate a carbon 

centered radical 1, oxygen rebound to the radical results in the formation of M7 (pathway b). 

Alternatively loss of a hydrogen radical from the methyl group of 1 produces an α, β 

unsaturated hydroxyflutamide 2 (pathway a), a Michael receptor that can be attacked by GSH 

to form G1. An interesting feature of 1H NMR spectrum of G1 in methanol-d4 is the 

appearance of double peaks for proton 3 and 6, indicating two diastereomeric GSH conjugates 

in G1 due to the newly formed chiral center (carbon g), which would be expected when GSH 

attacks the proposed intermediate 2 in Scheme 2. P450-mediated desaturation is well 
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documented in literature (Ortiz de Montellano, 1995). This bioactivation pathway is consistent 

with the recent finding that a mercapturic acid conjugate of a hydroxylated flutamide was 

detected in the urine of prostate cancer patients treated with flutamide (Tevell et al., 2006). 

Although the authors proposed a different structure with a hydroxyl group on the tertiary 

carbon and a mercapturic acid attached to the primary carbon of the isopropyl group, several 

common MS fragment ions such as m/z 323, 289, 259, 205 were present in the spectra of both 

G1 and the mercapturic acid conjugate, suggesting that the mercapturic acid conjugate was a 

processed product of G1 in vivo via hydrolysis and acetylation. A deglutamyl derivative of G1, 

an intermediate to the mercapturic acid conjugate, was also observed in human liver 

microsomal incubation (data not shown). A GSH conjugate of a hydroxylated flutamide has 

also been reported in other two studies (Soglia et al., 2006; Kostrubsky et al., 2007) which is 

most likely G1 based on the fact that only one GSH conjugate of the hydroxylated flutamide is 

generated in human liver microsomal incubations. 

 Flu-1-G1 is proposed to be derived from Flu-3 as a result of aromatic hydroxylation of 

Flu-1 followed by oxidation to a quinone imine which is trapped by GSH (Scheme 3, pathways 

a). Flu-3 is the major metabolite in the urine of prostate cancer patients treated with flutamide; 

however, it is mainly in the form of sulfate and glucuronic acid conjugate. Although current 

study showed Flu-3 was bioactivated in human liver microsomes, the extensive phase II 

conjugation pathways could efficiently remove Flu-3 from the body and limit its bioactivation in 

vivo. On the other hand the conjugates could potentially transport the reactive metabolite to 

other organs and cause toxicity locally. 

 Although the net result of Flu-1-G2 conjugation reaction appeared to be a direct 

aromatic substitution of the amino group of Flu-1 by GSH, Flu-1-G2 was only formed in 
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NADPH-supplemented liver microsomal incubation. A proposed mechanism (Scheme 3, 

pathway b) involves initial oxidation of Flu-1 to N-[4-nitro-3-

(trifluoromethyl)phenyl]hydroxylamine (Flu-1-N-OH) (Goda et al., 2006), which is further 

oxidized to a nitroso derivative of Flu-1 (Flu-1-N=O). Due to electron-withdrawing effect of the 

para nitro group, nucleophilic aromatic substitution of the nitroso group by GSH gives rise to 

Flu-1-G2. The proposed mechanism is supported by a recent report that chemical reaction of 

nitrosonitropyrene with GSH yielded a similar adduct via nucleophilc aromatic substitution of 

the nitroso group (Straube et al, 2005). Nitrosoarenes are reactive intermediates that can react 

with cellular thiols such as GSH and may play an important role in the biological effects of 

these compounds. The reaction generally started with formation of a semimercaptal from 

nucleophilic addition to the nitroso group by GSH. The cleavage of N-O bond generated a 

cationic sulfenamide intermediate which can be stabilized by electron-donating substitutes 

normally found in the nitrosoarenes in these studies (Gallemann et al., 1994, 1998a, 1998b, 

Kazanis et al., 1992). Interestingly, the reaction of the proposed Flu-1-N=O did not undergo 

nucleophilic addition of GSH to the nitroso group since no such GSH adducts were detected, 

instead it underwent a nucleophilic aromatic substitution of the nitroso group by GSH. A 

possible explanation could be the failure to stabilize the cationic sulfenamide intermediate due 

to electron withdrawing effect of the 4-nitro group of Flu-1. The proposed precursor of Flu-1-

N=O, Flu-1-N-OH, was recently observed both in vitro and in vivo in human and has been 

found to be cytotoxic toward rat hepatocytes (Goda et al., 2006). This metabolite was also 

found to be mainly conjugated in vivo. 

 Both Flu-1-G1 and Flu-1-G2 were also found in the incubation of parent flutamide with 

human liver microsomes in the presence of NADPH and GSH. Since flutamide was shown to 
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be hydrolyzed to Flu-1 in liver microsomes, the two GSH adducts were most likely formed from 

subsequent bioactivation of the hydrolyzed metabolite Flu-1. Flu-1-G1 and Flu-1-G2 were also 

observed in human liver microsomal incubations of oxygenation metabolites (2-

hydroxyflutamide, M5, and M7) where the metabolites were hydrolyzed to yield Flu-1(data not 

shown).  

 The proposed mechanism for the formation of Flu-6-G1, Flu-6-G2, and Flu-6-G3 from 

Flu-6 involves initial oxidation of Flu-6 to a diimine intermediate (Scheme 4, pathway a) and 

subsequent nucleophilic attacks by GSH or acetyl cysteine methyl ester (Scheme 4, pathway 

b) at the three unsubstituted positions of the aromatic group. The mechanism is analogous to 

that recently reported in the formation of amino acid conjugates of 2,5-[13C]-dimethyl-p-

benzoquinonediimine (Eilstein et al., 2006). Flu-6 has been detected in human urine and 

plasma, albeit at a lower level than those of 2-hydroxyflurtamide and Flu-1. 

 The formation of the GSH adducts of flutamide metabolites were NADPH dependent, 

indicating the involvement of cytochromes P450. CYP1A and CYP3A have been shown to be 

involved in the covalent binding of flutamide to liver proteins (Berson et al., 1993, Fau et al., 

1994). Phenotyping studies indicated that the P450 isozymes involved in the formation G1 and 

a previously reported N-(glutathio-S-yl) flutamide adduct are mainly CYP1A2 and CYP2C19. 

The major involvement of CYP1A2 in the formation of G1 could be due to the predominant role 

of CYP1A2 in catalyzing the formation of G1 precursor M5. A hydroxyflutamide mercapturic 

acid conjugate was detected in the urine of prostate cancer patients treated with flutamide 

(Tevell et al., 2006). Based on the similarity of MS data, this mercapturic acid conjugate is 

most likely derived from G1. It appears that this CYP1A2 mediated bioactivation pathway 

exists in vivo. However; low CYP1A2 activity has been associated with the onset of flutamide-
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induced hepatic dysfunction and induced CYP1A2 activity has been thought to be risk-lowering 

factor in smokers for developing flutamide hepatotoxicity (Nakagawa et al. 1999, Ozono et al., 

2002). The role of CYP1A2 in flutamide-induced hepatotoxicity remains uncertain. CYP3A is 

the other major P450 isozyme responsible for the bioactivation of flutamide and subsequent 

covalent binding to liver proteins (Berson et. al. 1993). However, there was only a marginal 

involvement of CYP3A4 in the formation of G1 and N-(glutathio-S-yl) flutamide adduct (Kang et 

al, 2007). CYP3A4 must play a major role in the bioactivation of other flutamide metabolites. 

Indeed the present study showed that the formation of Flu-1-G1 was mediated by CYP3A4. It 

has also been reported recently that CYP3A4 is the major P450 isoform catalyzing the 

formation of Flu-3 and Flu-1-N-OH (Goda et al., 2006), the two proposed precursors of Flu-1-

G1 and Flu-1-G2 respectively (Scheme 3), in the liver microsomal incubation of Flu-1. The 

involvement of CYP2C19 in the bioactivation of flutamide and its metabolite has not been 

shown in previous studies. Our results suggest further study may be warranted to assess the 

role of CYP2C19 in catalyzing the bioactivation of flutamide and the associated hepatotoxicity.   

 A summary of the bioactivation pathways of flutamide and its metabolites and the major 

P450 isozymes associated with each pathway is shown in Scheme 5. In addition to the one 

characterized previously for the parent (Kang et al., 2007), we have identified several 

bioactivation pathways of flutamide metabolites in the present study. These results suggest 

that, in addition to the direct bioactivation of parent flutamide, flutamide metabolites could 

contribute to the overall bioactivation of flutamide and potentially cause the flutamide-induced 

hepatotoxicity. 
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Footnotes. 

Part of this work was presented at the 8th International ISSX Meeting, Sendai, Japan, October 

9-12, 2007.  

1. Current affiliation: Genentech, Inc., South San Francisco, California. 
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Legends for Figures 

Figure 1. UV and extracted ion chromatograms (XIC) of Flu-1-G1, Flu-1-G2, and G1 in human 

liver microsomal incubations of flutamide. A) UV chromatogram at 306 nm, B) XIC of G1 at m/z 

596 ([M-H]-), C) XIC of Flu-1-G2 at m/z 495 ([M-H]-), D) XIC of Flu-1-G1 at m/z 526 ([M-H]-). 

Figure 2. MS/MS spectrum of Flu-1-G1 at m/z 526 ([M-H]-). 

Figure 3. (A) MS/MS spectrum of Flu-1-G2 at m/z 495 ([M-H]-).  B) MS3 mass spectrum of Flu-

1-G2 (the fragment ion at m/z 222) in data-dependent scanning mode on an ion trap mass 

spectrometer. 

Figure 4. 1H NMR spectrum of Flu-1-G2, the spectrum was acquired on the isolated Flu-1-G2 

dissolved in methanol-d4 with water suppression using a Watergate W5 pulse sequence with 

gradients and a double echo. The signal of b is not observable due to water suppression. 

Figure 5. (A) MS/MS spectrum of flutamide G1, at m/z 596 ([M-H]-).  B) MS3 mass spectrum of 

G1 (the fragment ion at m/z 323) in data-dependent scanning mode on an ion trap mass 

spectrometer.  

Figure 6. Expanded region of the chemical shifts exhibiting the glutathionyl and isopropyl 

groups in the 1H-1H COSY spectrum of G1 in D2O. 

Figure 7. Extracted ion chromatograms (XIC) of Flu-6-Gs at m/z 552 ([M+H]+) (A) and Flu-6 

acetyl cysteine adducts at m/z 408 ([M+H]+) (B) in human liver microsomal incubations. 

Figure 8. A) MS/MS spectrum of Flu-6-G1 at m/z 552 ([M+H]+), B) MS3 mass spectrum of Flu-

6-G1 (the fragment ion at m/z 423), C) MS4 mass spectrum of the fragment ion of Flu-6-G1 at 

m/z 277. 
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Figure 9. Proposed fragmentation pathway of Flu-6-G1 fragment at m/z 423. 

Figure 10. A) MS/MS spectrum of Flu-6-Cys1 at m/z 408 ([M+H]+), B) MS3 mass spectrum of 

the fragment ion at m/z 320.  

Figure 11. (A) The relative formation of the glutathione conjugate G1 from flutamide mediated 

by heterologously expressed P450 isoforms. The amounts of G1 produced by CYPs were 

represented by the ratio of peak areas of G1 to that of internal standard, nilutamide. The CYP-

mediated formation of G1 was normalized to CYP1A2. (B) The relative formation of Flu-1-G1 

from Flu-1 mediated by heterologously expressed P450 isoforms. The amounts of Flu-1-G1 

produced by CYPs were represented by the ratio of peak areas of Flu-1-G1 to that of internal 

standard, nilutamide. The CYP-mediated formation of Flu-1-G1 was normalized to CYP2C19. 

(C) The relative formation of Flu-1-G2 from Flu-2 mediated by heterologously expressed P450 

isoforms. The amounts of Flu-1-G2 produced by CYPs were represented by the ratio of peak 

areas of Flu-1-G2 to that of internal standard, nilutamide. The CYP-mediated formation of Flu-

1-G2 was normalized to CYP2C8. (D) The relative formation of Flu-6-G1 from Flu-6 mediated 

by heterologously expressed P450 isoforms. The amounts of Flu-6-G1 produced by CYPs 

were represented by the ratio of peak areas of Flu-6-G1 to that of internal standard, nilutamide. 

The CYP-mediated formation of Flu-6-G1 was normalized to CYP1A2. 
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Table 1. 1H NMR data for flutamide, G1 and Flu-1-G2 in methanol-d4 

N
H

O2N
O

CF3

6
5

3

g

h

i

 

S

O

O

O
O

NH
NH2

OH

N
H

OH

N
H

O
O2N

CF3

OH
H

g

h

i
3

5
6

 

S
OO

O
O

N
H NH2

OHN
H

OH

O2N

CF3

3

5
6

 

 Proton chemical 
shift (ppm) 

J coupling 
constant (Hz) 

Proton chemical 
shift (ppm) 

J coupling 
constant (Hz) 

Proton chemical 
shift (ppm) 

J coupling 
constant (Hz) 

3 8.25 - 8.34 2.30 8.36 2.36 

5 8.03 - 8.08 8.93, 2.30 8.33 9.30, 2.36 

6 8.03 - 8.04 8.93 7.86 9.30 

g 2.66 6.85 2.92 5.32, 4.85   

h 1.22 6.85 2.74 5.32   

i 1.22 6.85 3.74 4.85   
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