Expression and Functional Analysis of CYP2D6.24, CYP2D6.26, CYP2D6.27 and CYP2D7 Isozymes

Wei-Yan Zhang, You-Bin Tu, Robert L. Haining and Ai-Ming Yu

Department of Basic Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506 (W.-Y. Z., Y.-B. T., R.L. H.).

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY 14260 (W.-Y. Z., A.-M. Y.).
DMD #23663

Running Title: Function of CYP2D6 allelic isozymes and CYP2D7

Corresponding Author: Dr. Robert L. Haining, Department of Basic Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, USA; Phone: 304-293-1450; Fax: 304-293-2576; E-mail: rob@mirrorsimage.com.

Manuscript Details:

Text Pages: 11
Table: 1
Figure: 1
References: 26
Words in:

Abstract: 208
Introduction: 533
Results and Discussion: 826

Abbreviations: CYP2D6, Cytochrome P450 2D6; DXM, dextromethorphan; NADPH, reduced nicotinamide adenine dinucleotide phosphate; PMSF, phenylmethysulfonyl fluoride; SNP, single nucleotide polymorphism; CO, carbon monoxide; HPLC, high-performance liquid chromatography.
The objectives of this study were to compare the drug-metabolizing activity of human CYP2D6.24 (I297L), CYP2D6.26 (I369T), CYP2D6.27 (E410K) allelic isoforms with wild-type CYP2D6.1, and to express the CYP2D7 protein derived from an indel polymorphism (CYP2D7 138delT) and investigate its possible codeine O-demethylase activity. Successful creation of individual cDNAs corresponding to CYP2D6*24 (2853 A>C), CYP2D6*26 (3277 T>C), CYP2D6*27 (3853 G>A) allelic variants and CYP2D7 was achieved via molecular cloning. The corresponding proteins, CYP2D6.24, CYP2D6.26, CYP2D6.27 and CYP2D7, were expressed in insect cells using a baculovirus-mediated expression system. All CYP2D proteins showed the empirical carbon monoxide difference spectra. Surprisingly, CYP2D7 protein was detected mainly in mitochondrial fraction, whereas all CYP2D6 allelic isoforms were present in microsomal fraction. Furthermore, CYP2D7 did not produce any morphine from codeine. In contrast, CYP2D6.24, CYP2D6.26 and CYP2D6.27 allelic isoforms all showed active drug-metabolizing activities towards both codeine and dextromethorphan O-demethylation. While CYP2D6.24 exhibited the highest intrinsic clearance in dextromethorphan O-demethylation (~6-fold higher than that by CYP2D6.1), it had the lowest enzyme efficiency in codeine O-demethylation (~50% lower than that by CYP2D6.1). Overall, the enzymatic consequences of CYP2D6 allelic isozymes are substrate dependent. These data would help preclinical and clinical assessment of the metabolic elimination of drugs that are mediated by human CYP2D enzyme.
Introduction

Cytochrome P450 2D6 (CYP2D6) is an important polymorphic phase I drug-metabolizing enzyme that is involved in the oxidation of 20-30% of clinically used drugs (Yu et al., 2004; Zanger et al., 2004; Gonzalez and Yu, 2006) and many endogenous neuroregulators or neurotoxins (Yu et al., 2003a; Yu et al., 2003b; Yu et al., 2004). Humans deficient in CYP2D6 activity that is observed among up to 10% of Caucasians may have altered capacity in processing these agents (Zanger et al., 2004; Gonzalez and Yu, 2006). CYP2D6 deficiency is basically attributed to the complete defect of CYP2D6 gene (Gonzalez et al., 1988) that has a broad range of DNA sequence variations (Zanger et al., 2004). CYP2D6 null alleles such as CYP2D6*3, CYP2D6*4 and CYP2D6*5 could result in a CYP2D6 protein that is unable to bind the substrate, a truncated apoprotein unable to bind heme, or simply no CYP2D6 protein among CYP2D6 poor metabolizers. In contrast, some CYP2D6 alleles including CYP2D6*10 and CYP2D6*17 do produce functional CYP2D6 enzymes, whereas the CYP2D6 allelic isoforms have reduced protein stability and/or drug-metabolizing capacity (Johansson et al., 1994; Yu et al., 2002; Shen et al., 2007). While the enzyme functions of many CYP2D6 allelic variants including CYP2D6*36, CYP2D6*56, CYP2D6*59 and CYP2D6*62 (Gaedigk et al., 2006; Li et al., 2006; Toscano et al., 2006; Klein et al., 2007) have been determined, the drug-metabolizing capacity of proteins corresponding to other nonsynonymous alleles such as CYP2D6*24 (2853A>C; I297L), CYP2D6*26 (3277T>C; I369T) and CYP2D6*27 (3853G>A; E410K) (Supplemental Table) that were found in 0.1-0.3 % of Caucasians (Marez et al., 1997) remain unknown. Understanding the function of individual CYP2D6 alleles will facilitate the translation of genotype information into drug metabolism phenotype (Gaedigk et al., 2008).
Furthermore, human CYP2D locus consists of two other genes, \textit{CYP2D7P} and \textit{CYP2D8P}, which have been known as pseudogenes (Kimura et al., 1989; Lovlie et al., 2001). A recent report (Pai et al., 2004) described that a brain-specific variant of \textit{CYP2D7P}, 138delT single nucleotide polymorphism (SNP), resulted in an open reading frame and functional CYP2D7 protein. Compared to CYP2D6, this \textit{CYP2D7} variant not only contains multiple nonsynonymous mutations that lead to over 30 different amino acid residues (Supplemental Table), but also has an extra 57 bp DNA fragment from the retention of intron 6 that encodes additional 19 amino acids (GRRVSPGCSPIVGTHVCPV). That report (Pai et al., 2004) also stated that CYP2D7 expressed in Neuro2a cells produced morphine from codeine exclusively. Despite this functional \textit{CYP2D7} variant was described to occur in 50% of Indians (Pai et al., 2004), it was not observed by two independent studies (Gaedigk et al., 2005; Bhathena et al., 2007) using gene-specific assays and larger, ethnically diverse sample populations including Indians. Nevertheless, the claimed function of CYP2D7 in producing morphine from codeine remains unclear.

This study, therefore, aimed to delineate the drug-metabolizing capacity of CYP2D6.24, CYP2D6.26 and CYP2D6.27 allelic isoforms and to evaluate potential codeine \textit{O}-demethylase activity of CYP2D7. \textit{CYP2D6*24}, \textit{CYP2D6*26}, \textit{CYP2D6*27} and \textit{CYP2D7} cDNAs were successfully created from the wild-type \textit{CYP2D6*1} via molecular cloning. All CYP2D isoforms were expressed in insect cells with Bac-to-Bac approach and assayed with the carbon monoxide (CO) difference spectrometry analysis. Dextromethorphan (DXM) and codeine \textit{O}-demethylations were determined to assess their drug-metabolizing capacities.
Materials and Methods

Chemicals. Dextromethorphan hydrobromide and dextrorphan-D-tartrate were purchased from ICN Biomedicals (Aurora, OH). Codeine, norcodeine, morphine, 3-hydroxymorphinan hydrobromide, 3-methoxymorphinan hydrochloride, reduced nicotinamide adenine dinucleotide phosphate (NADPH), phenylmethylsulfonyl fluoride (PMSF), trifluoroacetic acid and 60% of perchloric acid were purchased from Sigma (St. Louis, MO). All other chemicals and solvents used were of the highest chemical grade available.

Site-Directed Mutagenesis. The plasmid pFB2D6*1 (Yu et al., 2002) containing wild-type CYP2D6.1 cDNA was used as a template to create other CYP2D6 allelic variants by using the QuickChange Multi Site-Directed Mutagenesis Kit (Stratagene), following the manufacturer’s recommendations. The oligonucleotides for creation of CYP2D6*24, CYP2D6*26 and CYP2D6*27 and an extensive CYP2D6 mutant (CYP2D6m) were shown in Supplemental Table. After confirmed by direct DNA sequencing analysis, correct constructs were named pFB2D6*24, pFB2D6*26, pFB2D6*27 and pFB2D6m, respectively.

Construction of Complete CYP2D7 cDNA by Inserting the 57 bp Fragment. To introduce the extra 57 bp fragment, two restriction sites (Aat II and Nru I) were first created on pFB2D6m plasmid by site-directed mutagenesis with a primer (5’-CACTTGGACGTCCAGCGCCGTCGCGAACAGGAG-3’). An oligonucleotide containing the 57 bp fragment and Aat II/Nru I cutting sites was synthesized artificially and subcloned into the mutated pFB2D6m. The artificial Aat II/Nru I sites were then removed by reverse mutation with two primers (5’-CACTTGGATGTGCAGCGAGGAAGG-3’ and 5’-
CCAGTCCGTGTCCAACAGGAGATC-3'). Correct plasmid containing complete \textit{CYP2D7} cDNA was confirmed by direct DNA sequencing and named as pFB2D7.

Baculovirus-Mediated Protein Expression. Expression of \textit{CYP2D6} and \textit{CYP2D7} isozymes in \textit{T. ni} suspension cultures was carried out as described previously (Haining et al., 1996; Yu et al., 2001; Yu et al., 2002). To prepare cellular fractions, cell pellets were resuspended in homogenization buffer (320 mM sucrose, 10 mM potassium phosphate, 1 mM EDTA, 1 mM PMSF, pH = 7.4) and lysed using French press. Microsomal and mitochondrial fractions were isolated by differential centrifugations and saved in freezing buffer (100 mM potassium phosphate, 20% (v/v) glycerol, 1 mM EDTA, 1 mM PMSF, pH 7.4). P450 activity was determined according to the CO difference spectroscopy analysis (Omura and Sato, 1964).

Immunoblot Analysis. Cell lysates, microsomal and mitochondrial proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 10% resolving gel, and proteins were transferred onto PVDF membranes (BioRad, Hercules, CA). Membranes were probed with a monoclonal antibody against \textit{CYP2D6} (MAB-2D6, BD Discovery Labware, Inc., Woburn, MA), then incubated with peroxidase-conjugated goat anti-mouse IgG (Sigma, St. Louis, MO) and processed with Amersham enhanced chemiluminescence detection system.

Enzyme Kinetics. Incubations were carried out in 100 mM potassium phosphate buffer, pH 7.4, containing individual microsomal \textit{CYP2D6} or mitochondrial \textit{CYP2D7} isozymes (0.1 \textmu M), P450 reductase (0.2 \textmu M), NADPH (1 mM), and substrate in a final volume of 200 \textmu L, as described (Yu et al., 2002; Yu and Haining, 2006). Reactions were initiated by the addition of NADPH.
DXM concentrations ranged from 0 to 30 μM, and incubations were carried out at 37°C for 5 min. Codeine concentrations ranged from 0 to 4000 μM, and incubations were carried out at 37°C for 30 min. The incubation periods were selected so that the rates of metabolite production were within the linear ranges. After terminated by the addition of 10 μL of 60% perchloric acid, the mixtures were subject to centrifugation at 14,000g for 5 min. All reactions were performed in triplicate, and the supernatants were directly injected for HPLC analyses.

Quantification of Metabolites. HPLC analyses were carried out on a Waters Alliance system (Milford, MA) consisting of the 2690 separation module, the 2487 dual λ absorbance detector, and the 474 scanning fluorescence detector. The Alliance HPLC system was controlled with Millennium 32 software. A 4.6 x 250 mm, 5 mm zorbax phenyl column (Agilent Technologies, Palo Alto, CA) was used to separate the substrates and the metabolites, similar as previously described (Yu et al., 2002; Yu and Haining, 2006). DXM, dextrorphan and 3-methoxymorphinan were eluted at 22.0, 10.6 and 17.3 min, respectively. Codeine, nor-codeine and morphine were eluted at 16.9, 12.5 and 7.70 min, respectively. The calibration curves were linear from 5 to 200 pmol for each analyte. Intra-day and inter-day coefficients of variation were less than 15%.

Data Analysis. All values were expressed as the mean ± SEM. Data were compared with unpaired Student’s t-test. Difference was considered significant if the probability (P value) was less than 5%. Michaelis-Menten kinetic parameters, K_m and V_max, were estimated by nonlinear regression (GraphPad Prizm™ 3.02, San Diego, CA). Intrinsic clearance (CL_int) was calculated by dividing V_max by K_m.
Results and Discussion

Similar to the expression of other functional CYP2D6 allelic isoforms (Yu et al., 2002), we utilized the Bac-to-Bac approach in expressing CYP2D6.24, CYP2D6.26, CYP2D6.27 and CYP2D7 isozymes. Immunoblot analyses with CYP2D6-selective antibody (Fig. 1A and 1B) indicated the successful expression of each CYP2D protein. As CYP2D7 consists of additional 19 amino acids, the molecular weight of CYP2D7 (~ 57 kD) is greater than that (~ 55 kD) of CYP2D6.1, which is obvious from the immunoblot (Fig. 1B). CYP2D holoproteins were monitored and assessed by measuring CO difference spectra. In contrast to the wild-type cells that did not exhibit CO difference spectrum, CYP2D cDNA-infected cells or cellular fractions all gave a Soret absorbance around 450 nm (Fig 1C). The other peaks around 420 nm indicated the presence of CYP2D apoproteins in these samples. Surprisingly, P450 activity that was indicated by CO difference spectrum was mainly present in mitochondrial fraction of cells infected with CYP2D7 virus, whereas it was virtually absent in microsomal fraction. This is also in contrast to the presence of all CYP2D6 allelic isoforms in microsomes. Localization of CYP2D7 in mitochondria was also confirmed by immunoblot analysis (Fig 1B). Indeed, human brain mitochondrial fractions were shown to exhibit CYP2D6-type activity (Snider et al., 2008).

DXM and codeine O-demethylations were employed to compare the drug-metabolizing capacity of these cDNA-expressed CYP2D6 allelic isoforms. CYP2D6.1, CYP2D6.24, CYP2D6.26 and CYP2D6.27 enzymes all exhibited saturation Michaelis-Menten kinetics (Supplemental Figure). Apparently, CYP2D6.24 has similar \(K_m \) value as CYP2D6.1 in catalyzing DXM O-demethylation, whereas it has significantly higher \(V_{\text{max}} \) value (~6-fold) than CYP2D6.1, which leads to a higher intrinsic clearance value (\(V_{\text{max}}/K_m \)) for CYP2D6.24 (Table 1). However,
CYP2D6.24 shows lower codeine O-demethylation capacity when compared to CYP2D6.1 (0.033 vs. 0.061 μL/pmol P450/min), which is presumably due to its significantly higher K_m value than CYP2D6.1 (37.3 ± 7.83 vs. 13.0 ± 4.36 μM). By contrast, CYP2D6.26 and CYP2D6.27 have significantly ($P < 0.05$) higher K_m values than CYP2D6.1 in catalyzing DXM O-demethylation, resulting in relatively lower intrinsic clearance values. However, there is no difference in intrinsic clearance in codeine O-demethylation by CYP2D6.26, CYP2D6.27 and CYP2D6.1 (0.087, 0.089 and 0.061 μL/pmol P450/min, respectively). Overall, CYP2D6.24 exhibited the highest intrinsic clearance in DXM O-demethylation whereas the lowest intrinsic clearance in codeine O-demethylation. The results agree with our previous finding (Yu et al., 2002) and a recent study (Shen et al., 2007) that enzymatic efficiency of CYP2D6 allelic isoforms can vary considerably and be substrate dependent. This raises complexity in the prediction of the metabolism of new xenobiotic agent in people carrying such CYP2D6 alleles because their enzyme efficiencies determined with a known CYP2D6 substrate drug may not forecast the capacity for other agents. Additionally, the inhibition potency of CYP2D6 inhibitors (Shen et al., 2007) and the metabolic capacity after induction (Felmlee et al., 2008) have been shown to be variable for different allelic isoforms and/or biotransformations. Therefore, experimental tests of allele-specific drug metabolism and drug-drug interactions are necessary for individual biotransformations and inhibitors.

The reported functional CYP2D7 transcript (Pai et al., 2004) consists of two major SNPs, 138delT within exon 1 and g.14408G>C within intron 6, which the latter results in the additional 57 bp fragment. However, neither mutations were observed in a variety of samples by Gaedigk et al. (2005) using a gene-specific assay. Although Bhathena et al. (2007) found the presence of
138delT SNP in 1.0% of East Asians and 0.74% of Hispanic Latinos, they did not observe the 138delT SNP in any Indians. Neither did they find the association of g.14408G>C SNP with the 138delT variants. To investigate possible activity of the claimed CYP2D7, we constructed the intact CYP2D7 cDNA via molecular cloning and successfully expressed functional CYP2D7 protein that was supported by CO difference spectrum and immunoblot analysis. However, codeine O-demethylase activity was not observed for the mitochondrial CYP2D7 protein expressed in T. ni cells. This finding is in contrast to the high efficiency of morphine production from codeine by CYP2D7 described in that report (Pai et al., 2004), which however does not clarify if CYP2D7 was present in microsomal or mitochondrial fraction of transfected Neuro2a cells. In addition, the lack of codeine O-demethylase activity by CYP2D7 contrasts to the active codeine O-demethylase activities that were consistently showed by all other membrane CYP2D6 allelic isoforms expressed with the same system (current study) (Yu et al., 2002). Together, our enzymological data agrees with the genotyping and sequencing findings (Gaedigk et al., 2005; Bhathena et al., 2007), suggesting that CYP2D7 unlikely has significant implication in drug metabolism and disposition.

In summary, CYP2D6.24, CYP2D6.26 and CYP2D6.27 allelic isoforms and CYP2D7 protein have been successfully expressed using baculovirus-mediated system. In contrast to the deficient activity of CYP2D7, all CYP2D6 allelic isoforms are active in catalyzing codeine O-demethylation. Distinct enzyme efficiencies of CYP2D6 allelic isoforms toward DXM and codeine O-demethylations suggest that their drug-metabolizing capacities are substrate dependent. These findings shall provide helpful insights into assessing the fate of xenobiotics that are metabolized by CYP2D enzyme.
References

Lovlie R, Daly AK, Matre GE, Molven A and Steen VM (2001) Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics 11:45-55.

Footnotes

This work was supported in part by grant from NIEHS (R01ES09894).

Address correspondence to:

Robert L. Haining, Ph.D.

Department of Basic Pharmaceutical Science, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA. Phone: (304) 293-1479; Fax: (304) 293-2576; E-mail: rob@mirrorsimage.com.
Figure Legend

Fig. 1. Immunoblotting analyses of CYP2D6 allelic isoforms (A) and CYP2D7 isozyme (B), and CO difference spectra of CYP2D enzymes (C). *T. ni* insect cells were infected with baculovirus carrying corresponding *CYP2D* cDNA plasmid, and cellular fractions were used for the analyses. Proteins were separated by SDS-PAGE, transferred onto a PVDF membrane and probed with an anti-CYP2D6 monoclonal antibody. Controls were wild-type insect cells.
Table 1. Apparent Michaelis-Menten kinetic parameters for dextromethorphan and codeine O-demethylation catalyzed by CYP2D6 allelic isoforms. Values are mean ± SEM of triplicate incubations at 37°C for 5 min (DXM) or 30 min (codeine). DXM and codeine concentrations ranged from 0 to 30 μM and from 0 to 4000 μM, respectively. Metabolites were quantified by HPLC with fluorescence detection. Kinetic parameters, K_m and V_{max}, were estimated by nonlinear regression.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Allelic isoform</th>
<th>K_m (μM)</th>
<th>V_{max} (pmol/pmol P450/min)</th>
<th>CL_{int} (μL/pmol P450/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYP2D6.1</td>
<td>0.60 ± 0.17</td>
<td>0.73 ± 0.04</td>
<td>1.22</td>
</tr>
<tr>
<td>DXM</td>
<td>CYP2D6.24</td>
<td>0.68 ± 0.07</td>
<td>4.78 ± 0.09*</td>
<td>7.03</td>
</tr>
<tr>
<td>O-demethylation</td>
<td>CYP2D6.26</td>
<td>3.93 ± 0.24*</td>
<td>2.98 ± 0.06*</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>CYP2D6.27</td>
<td>1.45 ± 0.33*</td>
<td>0.63 ± 0.03</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>CYP2D6.1</td>
<td>13.0 ± 4.4</td>
<td>0.79 ± 0.04</td>
<td>0.061</td>
</tr>
<tr>
<td>Codeine</td>
<td>CYP2D6.24</td>
<td>37.3 ± 7.8*</td>
<td>1.24 ± 0.06</td>
<td>0.033</td>
</tr>
<tr>
<td>O-demethylation</td>
<td>CYP2D6.26</td>
<td>26.7 ± 11.4</td>
<td>2.37 ± 0.21*</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>CYP2D6.27</td>
<td>10.9 ± 2.3</td>
<td>0.95 ± 0.03</td>
<td>0.089</td>
</tr>
</tbody>
</table>

* Significantly different from the corresponding value for CYP2D6.1.
Fig. 1

(A) Control, CYP2D6.1, CYP2D6.24, CYP2D6.26, CYP2D6.27

(B) Control, CYP2D6.1, CYP2D7 cell lysate, CYP2D7 microsomes, CYP2D7 mitochondria

(C) Abs

-0.214 to 0.1458

-0.300 to 0.0600

400.0 to 500.0 Wavelength (nm)