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Abstract 

Cytochrome P450 2C9 (CYP2C9) is a polymorphic enzyme which metabolizes a 

number of clinically important drugs. In this study, catalytic activities of seven alleles 

found in Japanese individuals, CYP2C9*3 (Ile359Leu), *13 (Leu90Pro), *26 

(Thr130Arg), *28 (Gln214Leu), *30 (Ala477Thr), *33 (Arg132Gln) and *34 

(Arg335Gln), were assessed using three substrates, diclofenac, losartan and glimepiride. 

When expressed in a baculovirus-insect cell system, the holo- and total (apo- and holo-) 

CYP2C9 protein expression levels were similar among the wild-type (CYP2C9.1) and 6 

variants except for CYP2C9.13. A large part of CYP2C9.13 was present in the 

apo-form P420. As compared with CYP2C9.1, all variants except for CYP2C9.34 

exhibited substrate-dependent changes in Km, Vmax and intrinsic clearance (Vmax/Km). For 

diclofenac 4’-hydroxylation, the intrinsic clearance was decreased markedly (by >80%) 

in CYP2C9.13, CYP2C9.30 and CYP2C9.33 and variably (63 – 76%) in CYP2C9.3, 

CYP2C9.26 and CYP2C9.28 due to increased Km and/or decreased Vmax values. As for 

losartan oxidation, CYP2C9.13 and CYP2C9.28 showed 2.5- and 1.8-fold higher Km 

values, respectively, and all variants except for CYP2C9.34 showed >77% lower Vmax 

and intrinsic clearance values. For glimepiride hydroxylation, Km of CYP2C9.13 was 

increased 7-fold, and the Vmax values of all variants significantly decreased, resulting in 
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reductions in the intrinsic clearance by >80% in CYP2C9.3, CYP2C9.13, CYP2C9.26 

and CYP2C9.33 and by 56 - 75% in CYP2C9.28 and CYP2C9.30. These findings 

suggest the necessity for careful administration of losartan and glimepiride to patients 

bearing these 6 alleles. 
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Introduction 

 Cytochrome P450 2C9 (CYP2C9) is a polymorphic enzyme responsible for the 

oxidative metabolism of up to 15% of the drugs that undergo phase I metabolism 

(Miners and Birkett, 1998). This enzyme hydroxylates weakly acidic or neutral drugs of 

diverse therapeutic categories, including the hypoglycemic agents tolbutamide and 

glimepiride, the nonsteroidal anti-inflammatory drugs flurbiprofen and diclofenac, the 

antihypertensive losartan, the diuretic torsemide, the anticonvulsant phenytoin, and the 

anticoagulant warfarin (Rettie and Jones, 2005). To date, 34 CYP2C9 alleles located in 

the coding region have been reported (http://www.cypalleles.ki.se/cyp2c9.htm). Some 

of these alleles, particularly CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu), have 

been well studied in their associations with reduced catalytic activities towards several 

substrates such as warfarin, tolbutamide, and losartan, both in vitro and in vivo (Lee et 

al., 2002; Kirchheiner and Brockmoller 2005). 

 

The frequencies of low-activity CYP2C9 alleles differ considerably among different 

ethnic populations. In Caucasians, the frequencies of *2 and *3 are 0.08-0.14 and 

0.04-0.16, respectively (Schwarz, 2003). In contrast, in East Asian populations, *2 is 

hardly found, and *3 is present only at 0.01-0.04. Recently, a series of novel 
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non-synonymous variations were identified in several Asian populations (Si et al., 2004; 

Zhao et al., 2004; Maekawa et al., 2006; Yin et al., 2008). *13 (Leu90Pro), an allele 

originally identified in a Chinese poor metabolizer (PM) toward lornoxicam, has been 

found in Chinese, Korean and Japanese individuals at allele frequencies of 0.002-0.01 

(Si et al., 2004; Maekawa et al., 2006; Bae et al. 2005; Yin et al., 2008). CYP2C9.13 

was reported to show decreased enzymatic activity toward lornoxicam, tolbutamide and 

diclofenac in vivo and/or in vitro (Guo et al., 2005a; Guo et al., 2005b). We reported 7 

non-synonymous SNPs from 263 Japanese subjects, of which *25 (Lys118ArgfsX9) 

was a null allele, and *26 (Thr130Arg), *28 (Gln214Leu) and *30 (Ala477Thr) were 

functionally defective toward diclofenac when expressed in COS-1 cells (Maekawa et 

al., 2006). Additionally, two novel variations, *33 (Arg132Gln) and *34 (Arg335Gln), 

were detected by large-scale direct re-sequencing of the samples from 724 Japanese 

individuals. Here, CYP2C9.33 showed a five-fold lower intrinsic clearance toward 

diclofenac in vitro (Yin et al., 2008). These results point out that not only *2 and *3 but 

many other less-frequent defective alleles could contribute to highly variable 

inter-individual and ethnic differences in the pharmacokinetics and pharmacodynamics 

of CYP2C9 substrate drugs. 
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The defective CYP2C9 alleles, *3, *5 and *13 are known to exhibit substrate-dependent 

changes in their kinetic parameters (Takanashi et al., 2000; Dickmann et al., 2001; Guo 

et al., 2005a). In our previous study, losartan showed no antihypertensive effects in two 

*30 heterozygotes (Yin et al., 2008). This finding suggested that *30 might be inactive 

for the conversion of losartan to its active metabolite, E3174. For low-frequency alleles, 

elucidation of the substrate-dependencies of their recombinant enzymes is valuable 

because their functional assessments in vivo are difficult due to scarcity of patients with 

these alleles. In the present study, we focused on the low-activity alleles found in 

Japanese populations, *3, *13, *26, *28, *30, *33 and *34 and characterized their 

functional alterations using three CYP2C9 substrates, diclofenac, losartan and 

glimepiride. 
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Materials and Methods 

Chemicals and Materials 

Diclofenac, δ-Aminolevulinic acid and ferric citrate were purchased from 

Sigma-Aldrich Co. (St. Louis, MO). Losartan and its metabolite, E-3174, were kindly 

provided by Merck & Co., Inc. (Whitehouse Station, NJ). Glimepiride was gifts from 

Sanofi-Aventis K.K. (Tokyo, Japan). Glibenclamide was obtained from Wako Pure 

Chemical Ind. (Osaka, Japan). Spodoptera frugiperda (Sf) 21 insect cells, supplemented 

Grace’s Insect medium, gentamycin, Pluronic F68, and Bac-to-Bac Baculovirus 

Expression system were purchased from Invitrogen (Carlsbad, CA), while fetal bovine 

serum (FBS) was from SAFC Biosciences (Manchester, UK). Goat anti-CYP2C6 

antiserum, which can cross-react with human CYP2C9, and anti-rat NADPH P450 

reductase (OR) antibodies were purchased from Daiichi Pure Chemicals (Tokyo, 

Japan); horseradish peroxidase-conjugated rabbit anti-goat IgG from Jackson 

ImmunoResearch Laboratories (West Grove, PA); and Western Lightning 

Chemiluminescence Reagent Plus from PerkinElmer Life Sciences (Boston, MA). 

4’-hydroxydiclofenac, Baculosomes co-expressing CYP2C9 and OR (Lot63793), 

Supersomes coexpressing either CYP3A4 (Lot49734) or CYP2C8 (Lot4) with OR and 

cytochrome b5, pooled human liver microsomes (Lot32556, 570 pmol P450/mg protein), 
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and an NADPH generation system (1.3 mM NADP+, 3.3 mM glucose 6-phosphate, 3.3 

mM MgCl2, and 0.4 unit/ml glucose-6-phosphate dehydrogenase) were obtained from 

BD Gentest (Woburn, MA). Purified human cytochrome b5 was purchased from Oxford 

Biomedical Research (Oxford, UK), and Protein Assay Kit was purchased from 

Bio-Rad Laboratories (Hercules, CA). All other chemicals and solvents used were of 

the highest grade or analytical grade commercially available. 

Expression of recombinant wild-type and variant CYP2C9 proteins 

A full-length human OR cDNA was isolated as described previously (pcDNA3.1D/OR) 

(Yin T et al., 2008). The plasmids containing the 1.5 kb-full length CYP2C9 wild-type 

(pcDNA3.1D/CYP2C9/wild-type) and 5 variants (pcDNA3.1D/CYP2C9/Thr130Arg, 

pcDNA3.1D/CYP2C9/Gln214Leu, pcDNA3.1D/CYP2C9/Ala477Thr, 

pcDNA3.1D/CYP2C9/Arg132Gln and pcDNA3.1D/CYP2C9/Arg335Gln) CYP2C9 

cDNAs were constructed as described previously (Maekawa et al., 2006; Yin T et al., 

2008). Additionally, two substitutions, 1075A>C (Ile359Leu, CYP2C9.3) and 269T>C 

(Leu90Pro, CYP2C9.13), were introduced into the wild-type plasmid 

(pcDNA3.1D/CYP2C9/wild-type) using a QuickChange Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA). The primer sequences used for the construction of variant 

plasmids were as follows (the position of the altered nucleotide is underlined in 
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boldface): 5’- CACGAGGTCCAGAGATACCTTGACCTTCTCCCC -3’ (sense) and 

5’- GGGGAGAAGGTCAAGGTATCTCTGGACCTCGTG -3’ (antisense) for 

pcDNA3.1D/CYP2C9/Ile359Leu.  

5’- GGAAGCCCTGATTGATCCTGGAGAGGAGTTTTC -3’ (sense) and 5’- 

GAAAACTCCTCTCCAGGATCAATCAGGGCTTCC -3’ (antisense) for 

pcDNA3.1D/CYP2C9/Leu90Pro.  

 

To ensure that no errors had been introduced during amplification, the entire cDNA 

regions were confirmed by sequencing the plasmid constructs. Then, both OR and 

CYP2C9 wild-type or variant cDNAs were inserted into the baculovirus transfer vector, 

pFastBac Dual (Invitrogen), at the downstream cloning sites of the P10 promoter and 

the polyhedron promoter, respectively (pFastBac Dual/P10.OR/polh.CYP2C9).   

Recombinant baculoviruses carrying both CYP2C9 and OR cDNAs were produced 

according to the protocol recommended for the Bac-to-Bac Baculovirus Expression 

system. The recombinant proteins were expressed in Sf21 insect cells, and microsomal 

fractions were prepared as described previously (Yin et al., 2008).    

 

Determination of protein expression levels 
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The cytochrome P450 content in insect cell microsomes was measured by reduced 

CO-spectrum using the method of Omura and Sato (1964). The microsomal OR activity 

was measured using cytochrome c as a substrate as described by Phillips and Langdon 

(1962). The molar amount of OR was calculated based on an assumed specific activity 

of 3.0 µmol cytochrome c reduced/min/nmol purified human OR (Yamazaki et al. 1999). 

Western blotting of CYP2C9 and OR was performed using 2 µg of the microsomal 

proteins from insect cells as described previously (Yin et al, 2008). 

Assays for CYP2C9 enzymatic activity 

To compare alterations in kinetic parameters among substrates, the same enzyme 

preparations of the wild-type and 7 variants were consistently used for all kinetic 

studies.  

Diclofenac 4’-hydroxylation activities of the wild type (CYP2C9.1) and seven variant 

proteins were assessed as described previously (Yin et al, 2008). In brief, the mixture 

(0.5 ml) containing diclofenac (1.0-100 µM), 2-5 pmol of P450 from insect cell 

microsomes (2 pmol P450 for CYP2C9.1 and 5 pmol P450 for other variants), 4-10 

pmol of purified cytochrome b5 (P450: b5 = 1:2) and an NADPH regenerating system 

were incubated at 37 °C for 10 min. For pooled human liver microsomes, 25 pmol P450 

per reaction was used. HPLC conditions are the same as described previously, and the 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on June 18, 2009 as DOI: 10.1124/dmd.109.027003

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD 27003 

13 

 

retention times of 4’-hydroxydiclofenac, 5-hydroxydiclofenac, and diclofenac were 14.2, 

14.7 and 19.6 min, respectively. For experiments on regioselectivity of diclofenac 

hydroxylation, the concentrations of 5-hydroxy diclofenac were estimated using a 

calibration curve for 4’-hydroxydiclofenac under the assumption that both have similar 

extinction coefficients. 

 

Kinetic analysis for losartan oxidation was performed as described previously (Yasar et 

al., 2001) with minor modifications. Insect cell microsomes and purified cytochrome b5 

(P450: b5 = 1:2) were incubated with eight different concentrations of losartan (0.1 – 20 

µM) in the presence of an NADPH regenerating system at 37 °C for 10 min in 100 mM 

Tris-HCl buffer (pH 7.5) in a final volume of 500 µl. The amount of P450 used per 

incubation varied depending on the variants (10 pmol P450 for CYP2C9.1 and 

CYP2C9.34, 20 pmol for CYP2C9.3, CYP2C9.13, and CYP2C9.28, 50 pmol for 

CYP2C9.26, and 100 pmol for CYP2C9.30 and CYP2C9.33) because of the large 

differences in activities among the wild-type and variants. We confirmed that 

differences in microsomal protein concentrations between the wild-type and variants did 

not affect the measurements of kinetic parameters by adjusting the protein 

concentrations with control (uninfected) microsomes. All reactions were within linear 
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ranges of the metabolite formation with respect to P450 concentrations and incubation 

time. For pooled human liver microsomes, 100 pmol of P450 was incubated with 

various concentrations of losartan at 37 °C for 20 min. Reactions were terminated by the 

addition of 50 µl of 5 M ortho-phosphoric acid, followed by centrifugation at 3,000 g 

for 10 min at 4 °C. The supernatants were filtered through polytetra-fluoroethylene 

membrane filters of 0.2 µm pore size (Millipore, Bedford, MA), and the aliquots (50 µl) 

were injected into a Shimadzu Prominence HPLC system (Shimadzu, Kyoto, Japan) 

coupled with fluorescence detection (Ritter et al., 1997). Separation was conducted on a 

Shim-pack CLC-ODS (M) (250 x 4.6 mm i.d., Shimadzu) according to the conditions 

described by Kobayashi et al (2008). Elution was performed isocratically with 10 mM 

phosphate buffer (pH 2.3) / acetonitrile (60:40, v/v) at a flow rate of 1.0 ml/min. The 

retention times of losartan and E-3174 were 9.0 and 15.6 min, respectively. The lower 

limit of E-3174 quantification was 5 nM and inter- and intra-day assay variations were 

less than 6%. 

Hydroxylated glimepiride (M-1) was measured by a liquid chromatography-mass 

spectrometry (LC-MS) according to a previously reported method (Suzuki et al., 2006). 

Reactions mixtures contained 10-50 pmol of P450, 20-100 pmol of purified cytochrome 

b5 (P450: b5 = 1:2), 0.05 – 10 µM of glimepiride, and NADPH regenerating system in a 
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final volume of 2.5 ml in 100 mM Tris-HCl buffer (pH 7.5). Glimepiride was dissolved 

in methanol/dimethyl sulfoxide (50:50, v/v). The final concentration of organic solvent 

(methanol and dimethyl sulfoxide) in the incubation mixture was 0.5%. The reactions 

were allowed to proceed for 10 min and terminated by addition of 1.0 ml of 0.05 M KCl 

(adjusted with HCl to pH=1.0) and 25 µl of 5.0 µg/ml glybenclamide as an internal 

standard (IS). Reaction samples were extracted with 5.0 ml of diethylether and the 

organic layer was then evaporated to dryness. The residue was reconstituted in 200 µl of 

acetonitrile. For pooled human liver microsomes, a sample containing 100 pmol of 

P450 was incubated with various concentrations of glimepiride at 37 °C for 20 min and 

then processed in the same manner as the recombinant enzyme samples. LC-MS 

analysis was performed using Shimadzu LCMS-2010 Evolution systems. Aliquots of 

samples (2 µl) were applied onto a Shim-pack FC-ODS column (3.0 µm; 2.0 x 75 mm, 

Shimadzu) kept at 40 °C. The initial mobile phase was 80% of 10 mM ammonium 

acetate and 20% of acetonitrile, and the proportion of acetonitrile was linearly increased 

to 45% up to 7 min and then increased to 70% for the next 6 min with the flow rate of 

0.25 ml/min. The quadrupole mass spectrometer was operated in the positive API-ES 

(atmospheric pressure ionization- electrospray ionization) mode under selected ion 

monitoring conditions as described previously (Suzuki et al., 2006): temperature of 
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CDL, 230 °C; gas flow rate, 1.5 L/min; and heat block temperature, 200 °C. Under 

these conditions, M-1, glybenclamide (IS) and glimepiride were eluted at 5.8 min, 10.4 

min, and 11.0 min, respectively. The control microsomes were used to prepare the 

samples for generation of a standard curve in the same manner as that of the incubation 

samples. The lower limit of detection for M-1 was 0.5 pmol/assay. Intra- and inter-day 

variation coefficients did not exceed 10% in any assay. 

 

The kinetic parameters such as Km, Vmax, and intrinsic clearance (Vmax/Km) were 

estimated using a computer program designed for non-linear regression analysis of a 

hyperbolic Michaelis-Menten equation (Prism v.3.0a, GraphPad Software, San Diego, 

CA, USA). Because the substrate consumption at the two lowest substrate 

concentrations (1 and 2.5 μM) was greater than 20% in diclofenac 4’-hydroxylation 

by the in-house CYP2C9.1, these two points were omitted from the kinetic 

parameter estimation. Data are presented as mean ± S.D. for three to four microsomal 

preparations derived from separate infections for in-house wild-type and variant 

CYP2C9s. Statistical significance was determined by one-way analysis of variance 

(ANOVA) with post-hoc Dunnett multiple comparisons test. 
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Results 

Expression of wild-type and seven variant CYP2C9s in insect cell microsomes 

Immunoblot analysis was performed using the insect cell microsomes coexpressing 

CYP2C9 and OR, and representative data are shown in Fig. 1. Neither CYP2C9 nor OR 

protein expression levels were significantly different among the wild-type and seven 

variants (p= 0.138 for CYP2C9, p= 0.222 for OR by one-way ANOVA) tested. 

Holo-enzyme contents in the wild-type and variant CYP2C9 microsomes were 

measured by CO-difference spectra. Typical spectra with a maximum absorbance at 450 

nm were observed for both wild-type and variant proteins except for CYP2C9.13, which 

exhibited a large peak at 420 nm, indicating the presence of the apo-form cytochrome 

P420 (Fig. 2). As shown in Table 1, except for CYP2C9.13, the mean P450 contents in 

the wild-type and the six variants were in the range of 158 to 201 pmol P450 / mg 

microsomal protein. On the other hand, CYP2C9.13 was expressed at 22 ± 5 pmol P450 

/mg microsomal protein, which was about 12% of the mean P450 content of the 

wild-type. OR activities varied among the preparations but were not significantly 

different between the wild-type and all variants (p= 0.201 by one-way ANOVA, Table 

1).  
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Functional activities of wild-type and seven variant CYP2C9s 

Catalytic activities of the wild-type and seven variants were compared using diclofenac, 

losartan and glimepiride as substrates. Michaelis-Menten and Eadie-Hofstee plots for 

each substrate are shown in Figs. 3 to 5. The kinetic parameters are summarized in 

Tables 2-4 for the wild-type, 7 variant enzymes, Gentest CYP2C9.1 (commercially 

available baculosomes coexpressing CYP2C9.1 and OR) and the pooled human liver 

microsomes. The ratios (%) of intrinsic clearance of the variants to that of the wild-type 

for each substrate are depicted in Fig. 6. 

 

When compared with the pooled human liver microsomes, the recombinant wild-type 

enzymes produced by the baculovirus-insect cells systems, either in-house or Gentest 

preparations, exhibited 1.5- to 4-fold lower Km values and 6- to 17- fold higher Vmax 

values, regardless of the substrates tested (Tables 2-4). Kinetic parameters of diclofenac 

4’-hydroxylation are summarized in Table 2. In an earlier study, we already compared 

the diclofenac 4’-hydroxylation activities of CYP2C9.33 and CYP2C9.34 with that of 

CYP2C9.1 (Yin et al., 2008), and the previous data are also shown in Table 2. In this 

study, kinetic parameters were analyzed for CYP2C9.1 and 5 variants (CYP2C9.3, 

CYP2C9.13, CYP2C9.26, CYP2C9.28 and CYP2C9.30). All 5 variants exhibited 1.7- 
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to 4.3-fold higher Km values than the wild-type CYP2C9.1. The Vmax values of 

CY2C9.13 and CYP2C9.26 were significantly decreased by 81% and 58%, respectively, 

while those of CYP2C9.3, CYP2C9.28 and CYP2C9.30 were not significantly different 

from that of CYP2C9.1. As a result, intrinsic clearance (Vmax/Km) of 5 variants was 

significantly reduced compared to CYP2C9.1 in the following order: CYP2C9.13 (95%), 

CYP2C9.30 (81%), CYP2C9.26 (76%), CYP2C9.28 (73%) and CYP2C9.3 (63%). In 

addition, as reported previously, CYP2C9.33 showed 82% lower intrinsic clearance 

than CYP2C9.1.  

 

Of the 7 variants, only CYP2C9.28 exhibited a slight change in regioselectivity for 

diclofenac hydroxylation, namely in 5-hydroxy diclofenac formation. In the presence of 

100 µM substrate, diclofenac 5-hydroxylation activity was 1.02 ± 0.31 pmol/min/pmol 

P450. The formation ratio of 5-hydroxy diclofenac to 4’-hydroxy diclofenac by 

CYP2C9.28 was estimated to be 0.013 ± 0.005, while that by commercially available 

CYP2C8 and CYP3A4 was 3.9 and 22.7, respectively (data not shown). 

 

The kinetic parameters of losartan oxidation are summarized in Table 3. Km values of 

two variants, CYP2C9.13 and CYP2C9.28, were 2.5- and 1.8-fold higher than that of 
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CYP2C9.1, respectively. On the other hand, all 7 variants showed significantly 

decreased Vmax and intrinsic clearance values. The reductions in intrinsic clearance 

values were more than 96% in CYP2C9.13, CYP2C9.26, CYP2C9.30 and CYP2C9.33, 

87% in CYP2C9.28, 77% in CYP2C9.3, and 25% in CYP2C9.34. It should be noted 

that CYP2C9.30 had a very low activity for losartan oxidation (1% of the wild-type), 

which is in contrast to its moderate activity (19% of the wild-type) for diclofenac 

hydroxylation (Fig. 6). Such substrate-dependent differences between diclofenac and 

losartan were also observed in CYP2C9.26 (the ratios of intrinsic clearance of the 

variants to that of the wild-type was 24% for diclofenac vs. 4% for losartan), 

CYP2C9.28 (27% vs. 13%) and CYP2C9.33 (18% vs. 1%) (Fig. 6). 

 

As for the hydroxylation of glimepiride (Table 4), CYP2C9.13 exhibited a 7-fold higher 

Km value and a 10-fold lower Vmax value compared to the wild-type, resulting in a 99% 

decrease in intrinsic clearance. A similar decrease in activity (99%) was observed for 

CYP2C9.33, which is mainly due to the remarkable decrease in Vmax value compared to 

the wild-type. The Vmax values of the other variants were also significantly decreased, 

resulting in reduced intrinsic clearance values (10% of the wild-type in CYP2C9.26, 

20% in CYP2C9.3, 25% in CYP2C9.30, 44% in CYP2C9.28 and 72% in CYP2C9.34).  
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As shown in Fig. 6, the percent reductions in intrinsic clearances were comparable 

between glimepiride and diclofenac for CYP2C9.3 (37% for diclofenac vs. 20% for 

glimepiride), CYP2C9.28 (27% for diclofenac vs. 44% for glimepiride) and 

CYP2C9.30 (19% for diclofenac vs. 25% for glimepiride) although CYP2C9.30 

exhibited substantial decrease in activity of losartan oxidation. In contrast, CYP2C9.26 

and CYP2C9.33 showed large difference in the intrinsic clearance ratio between 

diclofenac and glimepiride, as between diclofenac and losartan: CYP2C9.26 (24% for 

diclofenac vs. 10% for glimepiride) and CYP2C9.33 (18% vs. 1%). 
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Discussion 

In the present study, we focused on the 7 alleles found in Japanese subjects, *3, *13, 

*26, *28, *30, *33 and *34, and performed a functional characterization of these alleles 

using diclofenac, losartan and glimepiride as substrates. 

 

The commonly found defective allele, *3, exhibited the substrate-dependent changes in 

kinetic parameters for the three substrates, leading to lower intrinsic clearance values 

for diclofenac hydroxylation (63%), losartan oxidation (77%) and glimepiride 

hydroxylation (80%) than the wild-type. The reduction in intrinsic clearance was a 

result of the increase in Km without significant changes in Vmax for diclofenac 

hydroxylation and the decreases in Vmax without significant changes in Km for both 

losartan oxidation and glimepiride hydroxylation. Our results are in good agreement 

with a previous study using both the yeast expression system and the human liver 

microsomes, where a 7-fold lower intrinsic clearance of losartan by CYP2C9.3 

compared to CYP2C9.1 was resulted from a 5-fold lower Vmax without large differences 

in Km (Yasar et al., 2001). As for glimepiride hydroxylation, our results were consistent 

with that reported by Suzuki et al (2006) using insect cells microsomes from Gentest. 

The authors showed that CYP2C9.3 had unchanged Km values and 3.3-fold lower Vmax 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on June 18, 2009 as DOI: 10.1124/dmd.109.027003

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD 27003 

23 

 

values than CYP2C9.1. Similar changes in CYP2C9.3 with unaltered Km and lowered 

Vmax were reported for piroxicam 5’-hydroxylation (Takanashi et al., 2000; Tracy et al., 

2002). However, for many other substrates such as diclofenac, S-warfarin and 

tolbutamide, CYP2C9.3 shows altered Km with or without changes in Vmax (Takanashi et 

al., 2000; Lee et al., 2002). 

 

The substrate-specific effects of CYP2C9*3 on pharmacokinetics were also reported. 

Plasma losartan/E-3174 ratios in subjects with *1/*3 were reported to be 2-fold higher 

than those with *1/*1 (Yasar et al., 2002; Sekino et al, 2003). On the contrary, there was 

no significant differences in any diclofenac pharmacokinetic parameters between *1/*1 

and *1/*3 genotype groups (Shimamoto et al, 2000). Also the *3 heterozygotes showed 

a 1.3- to 2.5-fold higher mean glimepiride area under the plasma concentration-time 

curve (AUC) than the wild-type (Niemi et al., 2002; Wang et al., 2005; Suzuki et al, 

2006), and *3-bearing patients might be at an increased risk of sulphonylurea-associated 

severe hypoglycemia (Holstein et al, 2005). 

 

*13 was first identified in a Chinese individual who showed a poor metabolizer 

phenotype for both lornoxicam and tolbutamide (Si et al., 2004). Thereafter, this allele 
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was also found in Koreans (allele frequency = 0.006) (Bae et al., 2005) and Japanese 

(0.0014 – 0.002) (Maekawa et al., 2006, Yin et al., 2008), indicating that it is a 

relatively common allele among East Asians. In our baculovirus-insect cell system, total 

(apo- and holo-) CYP2C9 expression levels determined by Western blotting were not 

significantly different between CYP2C9.1 and CYP2C9.13 (Fig.1). On the other hand, 

CO different spectra demonstrated that the CYP2C9.13 preparations contained a small 

amount of holo-form P450 (12% of the wild-type) and a large amount of inactive 

apo-form P420 (Fig.2 and Table 1), suggesting that Leu90Pro substitution resulted in 

improper heme incorporation. Guo et al. (2005a) reported that the protein expression 

level of CYP2C9.13 was 39% of that of CYP2C9.1 in the COS-1 expression system by 

Western blotting. The discrepancy in total protein levels between their study and ours 

might be due to different rates of degradation of improperly folded proteins between the 

two expression systems, as observed for CYP2C9.24 between yeast and mammalian 

systems (Herman et al., 2007). The mammalian cell system seems to be more relevant 

to assess the potential effects of CYP2C9*13 on its protein expression in vivo although 

accurate estimation of its holoprotein levels might be difficult in this system because of 

the low expression levels. 
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In the in vitro kinetic characterization, Guo et al. (2005a and 2005b) reported that 

CYP2C9.13 was less active in catalyzing diclofenac, lornoxicam and tolbutamide with 

increased Km and decreased or unaltered Vmax depending on the substrates. In their study, 

reductions in intrinsic clearance were by 88.2% for lornoxicam, 97.5% for diclofenac 

and 90.8% for tolbutamide. In our experiments, CYP2C9.13 influenced both Km and 

Vmax values for three substrates, resulting in decreases in intrinsic clearance by 95.2% 

for diclofenac, 97.5% for losartan and 98.6% for glimepiride. Using the 

three-dimensional structure models, Zhou et al. (2006) proposed a long-range effect of 

the Leu90Pro substitution on the residues Ala106 - Arg108, a part of substrate entrance 

constitution. Further pharmacodynamic studies are necessary to confirm whether *13 is 

associated with altered responses to and increased risks of toxicities of CYP2C9 

substrate drugs. 

 

*26, *28 and *30, detected recently in a Japanese population, were functionally 

defective alleles toward diclofenac when expressed in COS-1 cells (Maekawa et al, 

2006). In the present study, we used a baculovirus-insect cell system as a recombinant 

enzyme source because high expression levels enabled the precise measurements of 

holoenzyme contents and catalytic activities using several substrates.   Between our 
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mammalian and baculovirus-insect cell systems, consistent results were obtained 

showing that the total CYP2C9 levels of these variants (through Western blot analysis) 

were not significantly different from that of the wild-type. This suggests that these 

enzymes are stably expressed. The reductions in intrinsic clearance of diclofenac 

4’-hydroxylation activity were comparable between the COS-1-produced enzymes and 

the insect cells-produced enzymes for all three variants: that is, 84% (COS-1 cells) vs. 

76% (insect cells) for CYP2C9.26, 77% vs. 73% for CYP2C9.28, and 81% vs. 81% for 

CYP2C9.30. 

 

CYP2C9.26 (Thr130Arg), CYP2C9.28 (Gln214Leu), CYP2C9.30 (Ala477Thr) and 

CYP2C9.33 (Arg132Gln) showed a substrate-dependent reduction in activity and 

changes in the kinetic parameters, whereas CYP2C9.34 (Arg335Gln) held catalytic 

activities almost similar to the wild-type for all three substrates. Thr130 and Arg132, 

highly conserved residues in the CYP2C family, are not within the substrate recognition 

sites (SRSs), but are on the surface of the protein, in the C-helix and a loop region 

between the C- and D-helices, respectively. As suggested in CYP2C9.2 (Arg144Cys) 

(Crespi et al., 1997; Wei et al., 2007), alternations in OR binding, electron transfer, or 

the P450 catalytic cycle (coupling and uncoupling) might be responsible for reduced 
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function of CYP2C9.26 and CYP2C9.33. It should be noted that the substitution 

Arg132Gln also occurs in CYP2C19*6 (395G>A), and that this allele has negligible 

catalytic activity toward tolbutamide in vitro (Ibeanu et al,. 1998). Gln214, which is also 

conserved in the CYP2C family, is located between the F- and G-helices and only 5 

amino acids downstream of SRS-2. In the P450 structure, the regions from F- to 

G-helices are conformationally flexible, indicative of an adaptive fit to the various 

substrates with different sizes, polarity, and stereochemical features. Therefore, this 

substitution (Gln214Leu) could affect substrate access and binding in a 

substrate-dependent manner.   In addition, it is noteworthy that a slight change in 

regioselectivity in diclofenac metabolism (from 4’-hydroxylation to 5-hydroxylation) 

was observed in CYP2C9.28.   

 

Arg335 is located on the exterior of the protein and in a loop region between the J- and 

J’-helices. Its location may support our findings showing that CYP2C9.34 had no 

substantial effect on the metabolism of diclofenac, losartan and glimepiride. However, 

in contrast to CYP2C9.34, a substitution in the same position, CYP2C9.11 (Arg335Trp), 

was reported to exhibit decreased catalytic activity for tolbutamide when expressed in a 

bacterial cDNA expression system (Blaisdell et al., 2004). In addition, catalytically 
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active CYP2C9.11 holo protein was expressed at a very low level due to its decreased 

stability in insect cells (Tai et al., 2005). Therefore, the substituted residues (Trp versus 

Gln) at this position might quite differently influence the stability of protein as well as 

the catalytic activity. 

 

Ala477 is within SRS-6 and forms the β4-2 sheet. In a previous study, the systolic blood 

pressure in two patients with CYP2C9*1/*30 was not lowered after 3 months of losartan 

treatment (Yin et al., 2008). The functional data obtained here are consistent with the in 

vivo study and clearly demonstrate the important role of *30 in the metabolism of 

losartan, and also to some extent, diclofenac and glimepiride. Substitution of the small 

Ala477 residue with the more bulky and nucleophilic Thr residue might lead to changes 

in protein conformation, substrate access, or affinity (the pi-pi interaction between 

substrates and Phe476 adjacent to Ala477) (Melet et al., 2003). Diminished activity of 

CYP2C9.30 for losartan oxidation suggests that increased dosage of losartan or 

alternative treatments should be considered for hypertensive patients with *30. 

 

In summary, catalytic activities of CYP2C9.3, CYP2C9.13, CYP2C9.26, CYP2C9.28, 

CYP2C9.30, CYP2C9.33 and CYP2C9.34 were assessed for diclofenac, losartan and 
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glimepiride as substrates. The variants except for CYP2C9.34 exhibited 

substrate-dependent changes in their activities for the three substrates examined. 

CYP2C9.13 was mainly present in the inactive form, P420, suggesting that *13 is an 

inactive allele toward a broad spectrum of CYP2C9 substrate drugs. The intrinsic 

clearance (Vmax/Km) for losartan oxidation was markedly decreased (> 77%) in all 

variations except for CYP2C9.34. On the other hand, reductions in the intrinsic 

clearance of glimepiride hydroxylation were rather variable: more than 80% in 

CYP2C9.3, CYP2C9.13, CYP2C9.26 and CYP2C9.33; 56 -75% in CYP2C9.28 and 

CYP2C9.30. Therefore, for the patients bearing these variant alleles, careful 

administrations of these drugs would be needed. 
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Figure legends 

Fig. 1.   Expression of wild-type and 7 variant CYP2C9s and ORs in insect cell 

microsomes. Representative Western blots for CYP2C9 (a) and OR (b) proteins (upper 

panel) are shown. Lane 1-8, co-expressed microsomes containing wild-type (lane 1), 

CYP2C9.3 (lane 2), CYP2C9.13 (lane 3), CYP2C9.26 (lane 4), CYP2C9.28 (lane 5), 

CYP2C9.30 (lane 6), CYP2C9.33 (lane 7) CYP2C9.34 (lane 8); lane 9, microsomes 

containing solely OR, lane 10, commercially available co-expressed baculosome 

containing CYP2C9.1 and OR (BD Gentest). Relative intensities of immunoreactive 

CYP2C9 (a) and OR (b) protein are shown in the lower panels. Each bar represents the 

mean ± S.D. of three separate experiments. 

 

Fig.2.   Representative CO difference spectra of CYP2C9.1 and 7 variants. Insect cell 

microsomes containing 2 mg/ml of total protein were used to measure CYP2C9 

contents as described in Materials and Methods. 

 

Fig. 3. Kinetic profiles of diclofenac 4’-hydroxylation by in-house wild-type and 7 

variants. (a) Michaelis-Menten plots, in which each point represents the mean ± S.D. of 

3 to 4 independent preparations derived from different infections. (b) Eadie-Hofstee 
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plots of representative preparations. In the lower panels, the areas near the coordinate 

origin in the upper panels are expanded. 

 

Fig. 4. Kinetic profiles of losartan oxidation by in-house wild-type and 7 variants. (a) 

Michaelis-Menten plots, in which each point represents the mean ± S.D. of 3 to 4 

independent preparations derived from different infections. (b) Eadie-Hofstee plots of 

representative preparations. In the lower panels, the areas near the coordinate origin in 

the upper panels are expanded 

 

Fig. 5. Kinetic profiles of glimepiride hydroxylation by in-house wild-type and 7 

variants. (a) Michaelis-Menten plots, in which each point represents the mean ± S.D. of 

3 to 4 independent preparations derived from different infections. (b) Eadie-Hofstee 

plots of representative preparations. In the lower panels, the areas near the coordinate 

origin in the upper panels are expanded 

 

Fig. 6.  The ratios (%) of intrinsic clearance of the variants to that of the wild-type are 

depicted for each substrate. DIC, diclofenac; LOS, losartan; GLM, glimepiride. 

Diclofenac 4’-hydoxylation by CYP2C9.33 and CYP2C9.34 was performed previously 
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(Yin et al., 2005). 
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Table 1 Characterization of insect cell microsomes coexpressing CYP2C9 and 

NADPH-cytochrome P450 oxidoreductase 

 

Recombinant enzymes 

(Amino acid alteration) 

P450 amount 

(pmol P450/mg 

protein) 

OR activity 

(nmol cytochrome c 

reduced /min/mg 

protein) 

Molar ratio 

(OR/P450) 

CYP2C9.1 (Wild-type) 191 ± 19 686 ± 47 1.21 ± 0.14 

CYP2C9.3 (Ile359Leu) 190 ± 26 586 ± 77 1.06 ± 0.26 

CYP2C9.13 (Leu90Pro)   22 ± 5 *** 608 ± 7 9.63 ± 2.43 

CYP2C9.26 (Thr130Arg) 158 ± 27 614 ± 205 1.31 ± 0.47 

CYP2C9.28 (Gln214Leu) 165 ± 31 674 ± 32 1.40 ± 0.27 

CYP2C9.30 (Ala477Thr) 201 ± 34 675 ± 86 1.16 ± 0.30 

CYP2C9.33 (Arg132Gln)a 192 ± 15 758 ± 43 1.32 ± 0.03 

CYP2C9.34 (Arg335Gln)a 159 ± 5 748 ± 29 1.56 ± 0.03 

 

Data is represented by mean ± S.D. of 3-4 different expression experiments. 

aData on CYP2C9.33 and CYP2C9.34 was reported previously (Yin et al., 2008). 

**p<0.01, ***p<0.001 vs. wild type. One-way ANOVA with post-hoc Dunnett multiple 

comparisons test. 
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Table 2 Kinetic parameters for diclofenac hydroxylation Activities of wild-type 

and variant CYP2C9s 

Recombinant enzymes 

(Amino acid alteration) 

Km 

(μM) 

Vmax 

(pmol/min/pmol P450) 

Clearance (Vmax/Km) 

(μl/min/pmol P450)  

CYP2C9.1 (Wild-type) a 1.8 ± 0.2 76.2 ± 6.5 43.6 ± 7.2 

CYP2C9.3 (Ile359Leu) 5.3 ± 0.5 *** 84.9 ± 12.8 16.1 ± 2.3 *** 

CYP2C9.13 (Leu90Pro) 7.0 ± 0.8 *** 14.3 ± 3.2 *** 2.1 ± 0.6 *** 

CYP2C9.26 (Thr130Arg) 3.1 ± 0.2 ** 32.0 ± 4.9 *** 10.5 ± 2.2 *** 

CYP2C9.28 (Gln214Leu) 7.3 ± 0.5 *** 84.6 ± 10.3 11.6 ± 1.6 *** 

CYP2C9.30 (Ala477Thr) 7.7 ± 0.3 *** 63.7 ± 9.1 8.3 ± 1.3 *** 

CYP2C9.1 (Wild-type) b 3.4 ± 0.2 79.8 ± 6.6 23.4 ± 0.8 

CYP2C9.33 (Arg132Gln) b 1.8 ± 0.1 7.8 ± 0.4 4.2 ± 0.3 

CYP2C9.34 (Arg335Gln) b 3.0 ± 0.1 65.4 ± 2.1 22.0 ± 0.1 

Gentest CYP2C9.1 2.7 30.6 11.5 

Gentest human liver 

microsome 
5.3 5.4 1.0 

 

Data is represented by mean ± S.D. of 3-4 different expression experiments. 

a Because the substrate consumption at the two lowest substrate concentrations (1 

and 2.5 μM) was greater than 20%, these two points were omitted from the kinetic 

parameter estimation.   However, this had no effect on the estimate of Vmax and a 

very minor effect on the derived Km (1.7 vs. 1.8 μM). 
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b The previous data on CYP2C9.1, CYP2C9.33 and CYP2C9.34 (Yin et al., 2008) were 

cited. 

**p<0.01, ***p<0.001 vs. wild type. One-way ANOVA with post-hoc Dunnett multiple 

comparisons test among CYP2C9.1 and 5 variants tested in the present study.
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Table 3 Kinetic parameters for losartan oxidation activities of wild-type and 

variant CYP2C9s 

Recombinant enzymes 

(Amino acid alteration) 

Km 

(μM) 

Vmax 

(pmol/min/nmol P450) 

Clearance 

(Vmax/Km) 

(μl/min/nmol P450) 

CYP2C9.1 (Wild-type) 1.12 ± 0.13 780 ± 82 704 ± 77 

CYP2C9.3 (Ile359Leu) 0.99 ± 0.10 157 ± 30 *** 161 ± 42 *** 

CYP2C9.13 (Leu90Pro) 2.76 ± 0.64 *** 47.0 ± 2.3 *** 17.6 ± 3.6 *** 

CYP2C9.26 (Thr130Arg) 1.50 ± 0.13 40.3 ± 6.2 *** 26.8 ± 2.0 *** 

CYP2C9.28 (Gln214Leu) 2.03 ± 0.42 *** 180 ± 18*** 90.2 ± 11.7 *** 

CYP2C9.30 (Ala477Thr) 0.77 ± 0.12 4.7 ± 0.4 *** 6.3 ± 1.3 *** 

CYP2C9.33 (Arg132Gln) 1.03 ± 0.21 7.3 ± 0.3 *** 7.3 ± 1.4 *** 

CYP2C9.34 (Arg335Gln) 1.06 ± 0.11 550 ± 27*** 526 ± 75 *** 

Gentest CYP2C9.1 1.34 630 470 

Gentest human liver 

microsome 
2.85  48.2  16.9  

 

Data is represented by mean ± S.D. of 3-4 different expression experiments. 

**p<0.01, ***p<0.001 vs. wild type. One-way ANOVA with post-hoc Dunnett multiple 

comparisons test. 
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Table 4 Kinetic parameters for glimepiride hydroxylation activities of wild-type 

and variant CYP2C9s 

Recombinant enzymes 

(Amino acid alteration) 

Km 

(μM) 

Vmax 

(pmol/min/pmol P450) 

Clearance (Vmax/Km) 

(μl/min/pmol P450)  

CYP2C9.1 (Wild-type) 0.18 ± 0.03 1.65 ± 0.11 9.22 ± 1.85 

CYP2C9.3 (Ile359Leu) 0.13 ± 0.03 0.22 ± 0.06 *** 1.86 ± 0.94 *** 

CYP2C9.13 (Leu90Pro) 1.29 ± 0.37 *** 0.16 ± 0.03 *** 0.13 ± 0.03 *** 

CYP2C9.26 (Thr130Arg) 0.16 ± 0.05 0.14 ± 0.03 *** 0.94 ± 0.42 *** 

CYP2C9.28 (Gln214Leu) 0.25 ± 0.04 0.98± 0.11 *** 4.04 ± 0.91 *** 

CYP2C9.30 (Ala477Thr) 0.14 ± 0.03 0.28 ± 0.04 *** 2.32 ± 0.10 *** 

CYP2C9.33 (Arg132Gln) 0.20 ± 0.04 0.013 ± 0.001 *** 0.07 ± 0.01 *** 

CYP2C9.34 (Arg335Gln) 0.16 ± 0.03 1.05 ± 0.09 *** 6.62 ± 0.55 ** 

Gentest CYP2C9.1 0.14  0.88 6.40 

Gentest human liver 

microsome 
0.56  0.10 0.19 

 

Data is represented by mean ± S.D. of 3-4 different expression experiments. 

**p<0.01, ***p<0.001 vs. wild type. One-way ANOVA with post-hoc Dunnett multiple 

comparisons test. 
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