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Abstract 

The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D3 and 

mediates regulation of calcium homeostasis. Bile acids, such as lithocholic acid, have 

been identified as additional endogenous VDR ligands. The in vivo role of VDR in bile 

acid metabolism has not been elucidated. We investigated potential effects of in vivo 

VDR activation on bile acid metabolism by feeding mice bile acid-supplemented chow 

and then treating with 1α-hydroxyvitamin D3 [1α(OH)D3]. We administered 1α(OH)D3 

via gavage to mice fed chow supplemented with 0.4% cholic acid (CA), 

chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), or lithocholic acid (LCA) and 

examined liver and plasma bile acid composition with gas chromatography-mass 

spectrometry analysis. 1α(OH)D3 treatment reduced hepatic bile acids in mice fed 

CDCA- and DCA-supplemented chow, but was less effective in mice fed chow 

supplemented with LCA or CA. 1α(OH)D3 administration also decreased plasma bile 

acids in mice fed bile acids, such as DCA. The effect of 1α(OH)D3 administration in 

decreasing liver bile acid composition was observed in mice under fasting conditions and 

was associated with increased urinary excretion and increased expression of bile acid 
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transporters, such as renal multidrug resistance-associated protein 4. These findings 

indicate that pharmacological activation of VDR enhances metabolism of bile acids, 

especially urinary excretion. The results confirm that VDR acts a regulator of bile acid 

metabolism in vivo. 
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Introduction 

Bile acids are essential detergents required for the digestion and intestinal 

absorption of hydrophobic nutrients, such as fatty acids, cholesterol and lipid-soluble 

vitamins, including vitamin D (Hofmann, 1999). Bile acids are the major products of 

cholesterol metabolism and play an important role in the elimination of cholesterol by 

inducing biliary lipid secretion and the solubilization of cholesterol in bile. Primary bile 

acids, such as cholic acid (CA) and chenodeoxycholic acid (CDCA), are generated from 

cholesterol by the sequential actions of liver enzymes, and are secreted in bile as glycine 

or taurine conjugates (Russell, 2003). After assisting in lipid digestion and absorption, 

most bile acids are reabsorbed in the intestine and recirculate to the liver through a 

mechanism called the enterohepatic circulation. Bile acids that escape reabsorption are 

converted to secondary bile acids, such as deoxycholic acid (DCA) and lithocholic acid 

(LCA), by the intestinal microflora (Ridlon et al., 2006). Bile acids are cytotoxic at 

elevated concentrations, and secondary bile acids are considered to be involved in the 

pathogenesis of gallstone disease and colon cancer. 

Bile acid metabolism is regulated at several levels, including gene transcription, 
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RNA translation and protein stability (Russell, 2003). Bile acids act as steroid 

hormone-like regulatory signals for nuclear receptors, which regulate the expression of 

genes involved in bile acid synthesis and transport (Makishima, 2005). The farnesoid X 

receptor (FXR; NR1H4) binds to primary and secondary bile acids, represses bile acid 

synthesis and hepatocellular import, stimulates bile acid export from cells, and protects 

hepatocytes from bile acid toxicity. The pregnane X receptor (PXR; NR1I2) senses toxic 

secondary bile acids and induces their elimination through a xenobiotic metabolism 

pathway. The vitamin D receptor (VDR; NR1I1), a receptor for 1α,25-dihydroxyvitamin 

D3 [1,25(OH)2D3, calcitriol], also acts as a bile acid receptor with specificity for the 

secondary bile acid LCA and its derivatives (Makishima et al., 2002). While the roles of 

VDR in calcium and bone homeostasis have been investigated for decades, an 

understanding of the biology of VDR regulation of bile acid metabolism is only now 

emerging. VDR induces the intestinal expression of mouse cytochrome P450 3a11 

(Cyp3a11) and human CYP3A4 (Thummel et al., 2001; Matsubara et al., 2008). CYP3A 

enzymes are predominantly expressed in the liver and intestinal mucosa and catalyze the 

metabolic conversion of a wide diversity of xenobiotics and endogenous substrates, 
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including bile acids, to more polar derivatives (Xie and Evans, 2001). 

Dehydroepiandrosterone sulfotransferase 2A1, apical sodium-dependent bile acid 

transporter (Asbt) and multidrug resistance-associated protein 3 (MRP3) have been 

demonstrated to be VDR target genes in mouse and human cells (Echchgadda et al., 2004; 

McCarthy et al., 2005; Chen et al., 2006). Although these proteins are involved in bile 

acid metabolism, the in vivo role of VDR in bile acid metabolism has not been elucidated. 

In this study, we examined the effects of 1α-hydroxyvitamin D3 [1α(OH)D3, alfacalcidol] 

on bile acid composition in mice fed bile acid-supplemented chow and found that VDR 

activation stimulates metabolism of bile acids such as CDCA. 
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Materials and Methods 

 Compounds. 1α(OH)D3 was kindly provided by Dr. Yoji Tachibana (Nisshin 

Flour Milling Co., Saitama, Japan). CA, DCA, CDCA, LCA, hyodeoxycholic acid 

(HDCA) and ursodeoxycholic acid (UDCA) were purchased from Sigma-Aldrich (St. 

Louis, MO), and α-muricholic acid (α-MCA), β-MCA and ω-MCA were from Steraloids, 

Inc. (Newport, RI). [1-14C]-Glycocholic acid (50 mCi/mmol) was purchased from GE 

Healthcare (Chalfont St. Giles, United Kingdom). 

 

 Animals and Treatment. C57BL/6J male mice (5-6 weeks of age; Tokyo 

Laboratory Animals Science Co., Tokyo, Japan) were housed under controlled 

temperature (23 ± 1°C), humidity (45-65%), and standard 12-hour light/12-hour dark 

cycle. Prior to feeding of chow supplemented with bile acid, mice were fed standard 

rodent chow (Lab. Animal Diet MF; Oriental Yeast Co., Tokyo, Japan). For bile acid 

supplementation, standard chow was finely powdered and mixed thoroughly with CA, 

CDCA, DCA, or LCA at 0.4% (w/w) composition. In initial experiments, mice were fed 

powdered standard or 0.4% bile acid-supplemented chow for 8 days (Fig. 1A). On days 6, 
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7 and 8, mice were orally administered 1α(OH)D3 dissolved in corn oil (0.2 mL) at a dose 

of 2.5 nmol/mouse per day (n=5-8). At day 9, mice were anesthetized with ether and 

blood was collected by cardiac puncture with a heparinized syringe. Tissue samples were 

collected, frozen on dry ice immediately after removal and weighing, and then stored at 

-80°C. In the second experiment, mice were fed chow or 0.4% CDCA-supplemented 

chow from day 1 until day 5, fasted from day 6, and administered 2.5 nmol/mouse 

1α(OH)D3 via gavage on days 6 and 7 (Fig. 1B). Forty-eight-hour urine samples (on days 

7-8) were collected in glass metabolic bowls. The experimental protocol adhered to the 

Guidelines for Animal Experiments of the Nihon University School of Medicine and was 

approved by the Ethics Review Committee for Animal Experimentation of Nihon 

University School of Medicine. 

 

 Extraction and Derivatization of Bile Acids. For extraction of bile acids, 

liver samples (about 0.4 g) were homogenized in 6 mL of 80% (v/v) ethanol with a 

Polytron homogenizer (Kinematica AG, Littau-Lucerne, Switzerland) on ice and 

centrifuged at 9,400 × g for 10 min. Precipitates were re-homogenized with 6 mL of 80% 
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(v/v) ethanol with a Sonifier (Branson, Danbury, CT) and then centrifuged. Extraction 

with ethanol was repeated three times and combined supernatant from liver homogenate 

was evaporated to dryness. [1-14C]-Glycocholic acid was added to a liver sample and the 

extraction yield was measured by liquid scintillation counting. The recovery yield of 

[1-14C]-glycocholic acid was 94% (mean from triplicate assay). Plasma bile acids were 

extracted by solid phase extraction using a C18 Bond Elute column (Varian, Inc., Palo 

Alto, CA) as reported previously (Setchell and Worthington, 1982). Plasma samples (0.4 

mL) were mixed with 1 mL of 0.5 mol/L triethylammonium sulfate, pH 7.5, and heated at 

65°C for 15 min to liberate the protein-bound bile acids. After chilling, the mixture was 

applied to a C18 column, rinsed briefly, eluted with 4 mL of ethanol, and evaporated to 

dryness. Using a C18 Bond Elute column, quantitative yield is successful attained for 

both non-polar, such as lithocholic acid, and polar bile acids, including conjugated bile 

acids (Setchell and Worthington, 1982). We estimated the recovery yield of plasma bile 

acids from a C18 Bond Elute column using [1-14C]-glycocholic acid. Over 98% of 

[1-14C]-glycocholic acid was obtained in the ethanol solution by liquid scintillation 

counting. 
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 Extracted liver and plasma bile acids were subjected to gas 

chromatography-mass spectrometry (GC-MS) after derivatization. After the addition of 

an internal standard, bile acids were treated with 0.6 mL of acetone/methanol/6M HCl 

(36:4:0.4 by volume) at 37°C for 14 hours to remove the conjugated sulfonyl group 

(Parmentier and Eyssen, 1975), and then with 15% (w/v) NaOH at 120°C for 2 hours in 

an autoclave to deconjugate the taurine or glycine moiety (Keller and Jahreis, 2004). 

Samples were then extracted with 2 mL of hexane twice to remove cholesterol, and then 

acidified to approximately pH 1 with 2M HCl. Deconjugated bile acids were extracted 

with 2 mL of diethyl ether three times and converted to methyl esters with 

trimethylsilyldiazomethane (GL Sciences, Inc. Japan, Tokyo, Japan) and to trimethylsilyl 

derivatives with N,O-bis(trimethylsilyl)trifluoroacetamide plus trimethylchlorosilane 

(Thermo Fisher Scientific Inc., Rockford, IL).  

 

 GC-MS Analysis of Bile Acids. We utilized a GC-MS analyzer, Shimadzu 

GC-MS QP5050A, equipped with an autoinjector AOC-20i and a data system, GCMS 

Solution (Shimadzu Corporation, Kyoto, Japan). Gas-chromatographic separation was 
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carried out with a separation column of HP-5 (cross linked 5% Ph-Me silicon, 0.32 mm 

internal diameter, 0.15 μm film thickness and 25 m in length; Agilent Technologies, Inc., 

Santa Clara CA). The injection temperature was 150°C and the column temperature was 

programmed at 150°C for 5 minutes, 10°C /minute to 260°C and held for 30 minutes. An 

ionizing energy was set at 70 eV, an ionizing trap current at 60 μA, and an ion detector 

gain at 1.1 kV. Highly purified helium gas was used as carrier gas at a flow rate of 1.0 

ml/minute. Split ratio was 1:10, and sampling rate was 0.5 seconds. The bile acids were 

analyzed as methylester-trimethylsilyl derivatives (Setchell et al., 1983). An appropriate 

fragment ion in the high mass region was selected for mass fragmentography. Their 

fragment ions (m/z) and relative intensities (%) were as follows: LCA (target ion, m/z 

372,100%; reference ions, 215, 149% and 257, 51%), DCA (target ion, 255,100%; 

reference ions, 208, 20% and 370, 13%), CDCA (target ion, 370,100%; reference ions, 

255, 31% and 355, 25%), CA (target ion, 253,100%; reference ions, 368, 60% and 458, 

35%), HDCA (target ion, 370,100%; reference ions, 255, 72% and 355, 32%), UDCA 

(target ion, 460,100%; reference ions, 370, 42% and 255, 41%), α-MCA (target ion, 

458,100%; reference ions, 443, 25% and 195, 28%), β-MCA (target ion, 195,100%; 
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reference ions, 285, 68% and 458, 9%), and ω-MCA (target ion, 195,100%; reference 

ions, 285, 58% and 369, 29%). Total bile acid concentrations were calculated from 

summation of individual bile acid concentrations. 

 

 Concentrations of Plasma Calcium, Aminotransferases, and Urinary Total 

Bile Acid. Plasma total calcium levels, alanine and aspartate aminotransferases, urinary 

total bile acid concentrations, and urinary and plasma creatinine concentrations were 

measured using Calcium C-Testwako, Transaminase CII-Testwako, Total bile 

acid-Testwako, and Creatinine Testwako (Wako Pure Chemical Industries, Osaka, Japan), 

respectively. Urinary bile acid concentrations were normalized with creatinine levels. 

 

 Immunoblotting. Kidney membrane preparation was performed as reported 

previously (Zollner et al., 2006b). Proteins in the membrane fraction were resolved by 

7.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to 

nitrocellulose membrane (Bio-Rad Laboratories, Inc., Hercules, CA) and probed with a 

monoclonal antibody against Mrp4 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), or 
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an anti-lamin B antibody (Santa Cruz Biotechnology) to confirm the equal protein 

amount in the lanes. Although Mrp4 has a predicted molecular weight of 150 kDa, it has a 

number of potential transmembrane regions, glycosylation and phosphorylation sites, 

which may affect the migration of the protein (Zollner et al., 2006b). Homogenized 

protein was quantified with a BCA protein assay kit (Thermo Fisher Scientific Inc., 

Rockford, IL).  

 

 Real-Time Quantitative Reverse-Transcription Polymerase Chain 

Reaction. Total RNAs from samples were prepared by the acid guanidine 

thiocyanate-phenol/chloroform method and cDNAs were synthesized using the 

ImProm-II Reverse Transcription system (Promega Corporation, Madison, WI) (Ogura et 

al., 2009). Real-time polymerase chain reaction was performed on the ABI PRISM 7000 

Sequence Detection System (Applied Biosystems, Foster City, CA) using SYBR Green 

PCR Master Mix (Applied Biosystems). Primers for Mrp3 (GenBank accession number 

NM_029600) were 5'-GCC AAC TTC CTC CGA AAC TA-3' and 5'-CTT GCG GAC 

CTC GTA GAT GG-3', and others have been reported previously (Ishizawa et al., 2008; 
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Ogura et al., 2009). Relative mRNA levels were calculated by the comparative threshold 

cycle method using glyceraldehyde-3-phosphate dehydrogenase as the internal control 

(Choi et al., 2006). 

 

 Statistical Analysis. Data are presented as means ± SD, and statistical 

differences were determined by ANOVA. 
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Results 

 Modulation of Bile Acid Compositions in Liver and Plasma of Mice fed 

Bile Acid-Supplemented Chow by 1α(OH)D3. We fed mice with chow supplemented 

with 0.4% bile acid for 6 days and examined the effects of bile acid supplements on food 

intake and liver toxicity in mice. Feeding with CA, DCA and LCA slightly decreased the 

food intake, but did not induce a significant increase in plasma aminotransferase levels 

(Table 1). CDCA feeding did not change food intake or plasma aminotransferase levels. 

Thus, 0.4% bile acid supplements have no or only modest toxic effects in mice. To 

examine the effects of VDR activation on bile acid metabolism, we fed mice with control 

chow or chow supplemented with 0.4% bile acid and then administered 1α(OH)D3 via 

gavage as shown in Fig.1A. 1α(OH)D3 is rapidly converted to 1,25(OH)2D3 after 

injection and is more effective than 1,25(OH)2D3 in prolonging survival time of mice 

inoculated with leukemia cells (Honma et al., 1983). Treatment of mice with 1α(OH)D3 

for 3 days increased plasma calcium levels to 18.5 mg/dL from 10.3 mg/dL of control 

mice, consistent with effective VDR activation (Table 2). We examined plasma and liver 

bile acid composition with GC-MS after deconjugation. In mice fed control chow diet, 
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CA (22%) and ω-MCA (56%) were the major hepatic bile acids (Fig. 2A). CA and 

β-MCA have been reported to be the major hepatic bile acids in mice (Stedman et al., 

2004; Zollner et al., 2006b). Since ω-MCA is a secondary bile acid converted from 

β-MCA by intestinal bacteria (Eyssen et al., 1983), microflora may influence the 

concentration of ω-MCA in the bile acid pool. 1α(OH)D3 treatment decreased the minor 

bile acid components (LCA, DCA, HDCA, UDCA, CDCA), but did not change total bile 

acid, CA, or ω-MCA concentrations. CA, HDCA, UDCA and DCA were detected in 

plasma, and 1α(OH)D3 decreased plasma total bile acid and DCA concentrations (Fig. 

2B).  

 We examined the effects of 1α(OH)D3 on bile acid metabolism by feeding mice 

0.4% bile acid-supplemented chow as shown in Fig. 1A. First, we fed mice chow 

supplemented with primary bile acids. CDCA feeding increased the total bile acid 

concentrations in liver and plasma 2.8-fold and 2.4-fold, respectively, compared with 

those in mice fed control chow (Figs. 2 and 3). The major bile acid components in the 

liver of CDCA-fed mice were α-MCA (35%), UDCA (21%), ω-MCA (17%), and CDCA 

(17%) (Fig. 3A). CDCA is converted to α-MCA and β-MCA in the liver and to UDCA by 
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microflora (Botham and Boyd, 1983; Fromm et al., 1983). 1α(OH)D3 treatment 

decreased total bile acid concentration, LCA, DCA, HDCA, UDCA, CDCA, β-MCA, 

and ω-MCA in the liver. CDCA feeding increased plasma CDCA and α-MCA (Fig. 3B). 

Due to high variation for other bile acids, only the 1α(OH)D3-dependent decrease in DCA 

was statistically significant. CA feeding increased liver total bile acids 2.2-fold compared 

with mice fed control chow and 89% of the liver bile acids were CA (Fig. 4A). Plasma 

total bile acids were increased in mice fed CA 11-fold compared with mice fed control 

chow (Figs. 2 and 4), and CA and DCA were the major pool components (Fig. 4B). 

1α(OH)D3 treatment decreased plasma total bile acids and CA, but did not reduce hepatic 

bile acids.  

 Next, we examined the effects of 1α(OH)D3 on mice fed chow supplemented 

with secondary bile acids. DCA feeding increased total liver bile acids 4.3-fold compared 

with mice fed control chow (Figs. 2 and 5). The liver of these mice contained CA (72%) 

and DCA (27%), and 1α(OH)D3 treatment effectively decreased hepatic total bile acids, 

DCA and CA (Fig. 5A). Total plasma bile acids were increased 18-fold compared with 

mice fed control chow, and 1α(OH)D3 treatment decreased plasma total bile acids (Fig. 
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5B). Although the effect of 1α(OH)D3 on plasma DCA was not significant (p = 0.06), the 

1α(OH)D3-induced decrease in the total bile acid concentration in mice fed DCA could 

be due to enhanced metabolism or elimination of DCA. LCA feeding did not increase the 

total bile acid concentration of liver or plasma (Figs. 2 and 6). In the liver of mice fed 

LCA the major bile acids were HDCA (24%) and α-MCA (32%) (Fig. 6A). LCA is 

metabolized to HDCA by CYP3A enzymes, which are induced by LCA-responsive 

nuclear receptors, such as PXR and VDR (Xie et al., 2001; Makishima et al., 2002). 

1α(OH)D3 treatment decreased LCA and DCA, but had no effect on total bile acids, 

HDCA and α-MCA in the liver of LCA-fed mice. 1α(OH)D3 did not alter plasma bile 

acid levels (Fig. 6B). Therefore, 1α(OH)D3 administration enhances the metabolism of 

bile acids, such as CDCA and DCA. 

 

 Bile Acid Metabolism is Enhanced by 1α(OH)D3 Treatment in Fasted 

Mice Pre-Fed CDCA-Supplemented Chow. 1α(OH)D3 treatment induces 

hypercalcemia and weight loss in mice (Ishizawa et al., 2008). To rule out the possibility 

that hypercalcemia-associated decreased food intake affects liver and plasma bile acid 
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concentrations, we fed mice chow supplemented with or without CDCA for 5 days and 

then administered 1α(OH)D3 under fasting condition (Fig. 1B). Body weight did not 

differ between vehicle-treated mice and 1α(OH)D3-treated mice (Table 3). In mice fed 

normal chow, 2-day fasting decreased liver bile acid concentrations (Figs. 2 and 7). The 

major bile acids were CA and ω-MCA, similar to the pool composition in mice fed 

control chow ad lib. Interestingly, the total bile acid concentration in the liver of mice 

pre-fed CDCA-supplemented chow decreased to control levels after 2 days of fasting, and 

1α(OH)D3 administration further decreased the total hepatic bile acids (Fig. 7A and B). 

CDCA pre-feeding decreased CA and ω-MCA and increased UDCA, CDCA and α-MCA 

in the liver, and 1α(OH)D3 administration decreased bile acids, such as CA and UDCA 

(Fig. 7B). Although not statistically significant due to high variation, 1α(OH)D3 likely 

decreased CDCA and α-MCA. This indicates that the finding of decreased hepatic bile 

acids by 1α(OH)D3 is not due to a secondary effect of decreased food intake. 1α(OH)D3 

treatment also likely decreased plasma DCA, CA and UDCA in mice pre-fed CDCA, 

although these effects were not statistically significant (Fig. 7C). We examined total bile 

acid concentration in urine and found that 1α(OH)D3 administration increased urinary 
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excretion of bile acids, especially in mice pre-fed CDCA-supplemented chow (Fig. 7D). 

These findings suggest that VDR activation stimulates the excretion of bile acids via 

urine.  

 

 1α(OH)D3 Treatment Induces Expression of Bile Acid Transporters. We 

examined mRNA expression of genes involved in bile acid metabolism in mice treated 

with 1α(OH)D3. In the liver, bile acids are synthesized from cholesterol by enzymes, such 

as cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1), and are 

catabolized by detoxifying enzymes, such as CYP3A (Xie and Evans, 2001; Russell, 

2003). Sodium taurocholate-cotransporting polypeptide (Ntcp) and organic anion 

transporting polypeptides (Oatps) are involved in bile acid uptake at the basolateral 

membrane of hepatocytes, and bile acids are excreted by the canalicular bile salt export 

pump (Bsep) and Mrp2 (Zollner et al., 2006a). At hepatocyte basolateral membrane, 

Mrp3, Mrp4, and the organic solute transporter α/β (Ostα/β) play a role in alternative 

expression of bile acids into the system circulation. 1α(OH)D3 treatment increased liver 

mRNA expression of Cyp7a1 and Ostα, although it was not effective on expression of 
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Cyp24a1, a VDR target gene involved in vitamin D inactivation (Fig. 8A). Expression of 

enzymes (Cyp8b1 and Cyp3a11) and transporters (Ntcp, Oapt1a1, Oatp1a4, Oatp1b2, 

Bsep, Mrp2, Mrp3, Mrp4, and Ostβ) was not significantly changed (data not shown). 

Since VDR does not induce transcription of a target gene in hepatocytes because of low 

expression of VDR (Gascon-Barre et al., 2003), the effect of 1α(OH)D3 treatment on 

Cyp7a1 and Ostα expression may be through indirect mechanisms. As reported 

previously (Ishizawa et al., 2008; Ogura et al., 2009), 1α(OH)D3 induced mRNA 

expression of Cyp24a1 in the kidney and small intestine (Fig. 8B and C), indicating that 

1α(OH)D3 treatment effectively activates VDR in these tissues. The bile acid transporters 

Mrp2, Mrp4, and Ostα/β are expressed in renal tubular cells and are thought to be 

involved in urinary bile acid excretion (Zollner et al., 2006a). 1α(OH)D3 increased renal 

mRNA expression of Mrp2, Mrp3, and Mrp4 (Fig. 8B), but not Ostα or Ostβ (data not 

shown). Asbt, Mrp3, and Ostα/β are suggested to be involved in bile acid transport in 

enterocytes (Zollner et al., 2006a). Treatment of mice with 1α(OH)D3 increased intestinal 

mRNA expression of Asbt and Mrp4 (Fig. 8C), but not Mrp2, Mrp3, Ostα, or Ostβ (data 

not shown). 
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 Since 1α(OH)D3 administration increased urinary excretion of bile acids (Fig. 

7D) and renal mRNA expression of bile acid transporters (Fig. 8B), we examined protein 

expression of renal bile acid transporters. Immunoblotting analysis showed increased 

renal expression of Mrp4 protein in mice treated with 1α(OH)D3 (Fig. 8D). These 

findings indicate that VDR activation stimulates bile acid excretion through increased 

bile acid transporter expression in kidney. 
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Discussion 

 In this study, we report that 1α(OH)D3 treatment enhances bile acid 

metabolism in vivo. A bile acid-supplemented diet increased liver bile acid concentrations, 

indicating that bile acids absorbed from the intestine accumulate in the liver. In the liver 

of mice fed CDCA, DCA, and LCA, the major bile acids detected in the liver were 

α-MCA (Fig. 3A), CA (Fig. 5A), and α-MCA (Fig. 6A), respectively. Alternatively, CA 

was the major bile acid in the liver of mice fed CA (Fig. 4A). These findings indicate that 

supplemented CDCA, DCA and LCA are metabolized effectively but CA is resistant to 

metabolism. CA and β-MCA have been reported be major hepatic bile acids in mice 

(Stedman et al., 2004; Zollner et al., 2006b), and α-MCA is thought to be a precursor of 

β-MCA (Cherayil et al., 1963) (Fig. 9). Hepatic bile acids from the enterohepatic 

circulation may be subjected to conversion to primary bile acids, CA and α-MCA, 

although a detailed mechanism of bile acid metabolism in rodents remains to be 

elucidated. 1α(OH)D3 treatment decreased several bile acid components in the liver of 

mice fed normal chow (Fig. 2A), and this effect was observed more clearly in mice fed 

CDCA (Fig. 3A). Similar effects of 1α(OH)D3 on hepatic bile acid compositions were 
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observed in mice administered 1α(OH)D3 under fasting condition (Fig. 7B). Compared to 

the decrease in hepatic bile acids, such as CDCA, UDCA and ω-MCA, in 

1α(OH)D3-treated mice, we did not detect increased bile acid components. These 

findings suggest that 1α(OH)D3 treatment stimulates bile acid metabolism, particularly 

enhancing transport for excretion. Bile acids are excreted from hepatocytes into bile ducts 

by Bsep and Mrp2 (Zollner et al., 2006a) (Fig. 9). At the hepatocyte basolateral 

membrane, Mrp3, Mrp4, and Ostα/β play a role in the alternative excretion of bile acids 

into the systemic circulation. 1α(OH)D3 treatment increased mRNA expression of 

Cyp7a1 and Ostα in the liver (Fig. 8A). Cyp7a1 catalyzes the rate-limiting step of the 

classical bile acid synthesis pathway and is negatively regulated by the bile acid receptor 

FXR (Makishima, 2005). The induction of Cyp7a1 may be due to a decrease in 

FXR-activating bile acids by excretion from hepatocytes. The bile acid transporters Mrp2, 

Mrp4, and Ostα/β are thought to be involved in urinary bile acid excretion (Zollner et al., 

2006a; Alrefai and Gill, 2007). Although the role of Mrp3 in the renal bile acid transport 

has not been elucidated, Mrp3 is a direct target gene of VDR (McCarthy et al., 2005). 

1α(OH)D3 treatment increased mRNA expression of kidney Mrp2, Mrp3, and Mrp4 (Fig. 
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8B). We also observed increased protein expression of kidney Mrp4 (Fig. 8D) and 

increased urinary excretion of bile acids in mice treated with 1α(OH)D3 (Fig. 7D). These 

findings suggest that 1α(OH)D3 treatment decreases hepatic bile acids by inducing bile 

acid transporters for urinary excretion (Fig. 9).  

In DCA-fed mice, 1α(OH)D3 treatment decreased hepatic DCA effectively but 

was less effective in altering CA concentration (Fig. 5A). 1α(OH)D3 treatment was not 

effective in reducing accumulated CA in the liver of mice fed CA (Fig. 4A). 

VDR-induced mechanisms may be ineffective in elimination of accumulated CA in the 

liver. In contrast to hepatic CA, the plasma CA concentration was decreased after 

1α(OH)D3 treatment in mice fed CA (Fig. 4B). Plasma bile acid levels were also 

increased in mice fed DCA (Fig. 5B), but not in mice fed CDCA (Fig. 3B) or LCA (Fig. 

6B). Increased plasma CA and DCA may be regulated by VDR-induced excretion into 

urine. Although LCA is an endogenous ligand for VDR (Makishima et al., 2002), 

1α(OH)D3 administration was not effective in decreasing bile acid concentrations in mice 

fed LCA (Fig. 6A). Although hepatic LCA and DCA were decreased by 1α(OH)D3 

treatment, accumulated HDCA and α-MCA were not affected. HDCA and α-MCA may 
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be products of LCA metabolism by LCA-activated VDR and VDR-induced mechanisms 

may not be effective in the further elimination of HDCA and α-MCA. 

 Bile acids are essential detergents that are required for the ingestion and 

intestinal absorption of hydrophobic nutrients, including vitamin D (Hofmann, 1999). 

VDR has dual functions as an endocrine receptor for 1,25(OH)2D3 and as a metabolic 

sensor for secondary bile acids, such as lithocholic acid (Makishima et al., 2002). 

Although several genes involved in bile acid metabolism, such as CYP3A4 and MRP3, 

have been reported to be VDR target genes (McCarthy et al., 2005; Matsubara et al., 

2008), the in vivo role of VDR as a bile acid sensor may be limited. While administration 

of high concentrations of LCA restored serum calcium levels to the normal range in 

vitamin D-deficient rats by increasing VDR target gene expression and bone calcium 

mobilization, it was not effective in rats with normal vitamin D levels (Nehring et al., 

2007). These findings indicate that LCA can substitute for vitamin D in calcium 

homeostasis only in vitamin D-deficient rats. We demonstrated in this study that 

pharmacological doses of vitamin D enhance bile acid metabolism. 1,25(OH)2D3 

increases plasma bile clearance of vitamin D3 and 1,25(OH)2D3 (Gascon-Barre and 
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Gamache, 1991). While hepatocytes express low levels of VDR, biliary epithelial cells 

express functional VDR (Gascon-Barre et al., 2003). VDR activation in biliary epithelial 

cells may influence biliary excretion of bile acids as well as vitamin D compounds. In 

addition, the extracellular calcium-sensing receptor is expressed in hepatocytes and its 

activation enhances bile flow (Canaff et al., 2001). Increased blood calcium by vitamin D 

administration may also influence bile acid elimination. 1α(OH)D3 administration is not 

effective in altering bile acids accumulated in bile duct-ligated mice (Ogura et al., 2009). 

This may be due to artificial obstruction of bile flow. About 20 enzymes have been shown 

to be involved in bile acid synthesis in the liver (Russell, 2003). The mechanisms of 

catabolism and transport of bile acids in the liver and kidney remain to be elucidated. The 

investigation of vitamin D-regulated bile acid metabolism will be helpful for 

understanding bile acid metabolism, especially elimination, and in the prevention and 

treatment of bile acid-associated diseases. 
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Figure legends 

Fig. 1. Experimental procedure for bile acid feeding and 1α(OH)D3 treatment in mice. 

(A) Mice were fed standard or 0.4% bile acid-supplemented chow for 8 days. Mice were 

administrated 1α(OH)D3 via gavage at days 6, 7, and 8, and sacrificed at day 9. (B) Mice 

were fed standard or 0.4% CDCA-supplemented chow for the first 5 days and were then 

fasted from day 6. 1α(OH)D3 was administered to fasted mice on day 6 and 7. Mice were 

sacrificed for sample collection at day 8. 

 

Fig. 2. Bile acid compositions in liver (A) and plasma (B) in mice fed standard chow. 

Mice were fed standard chow and administered 1α(OH)D3 as shown in Fig.1A. *, p < 

0.05 compared with vehicle control to 1α(OH)D3 administration. ND, not detected. 

 

Fig. 3. Bile acid compositions in liver (A) and plasma (B) in mice fed 

CDCA-supplemented chow. Mice were fed 0.4% CDCA-supplemented chow and 

administered 1α(OH)D3 as shown in Fig.1A. *, p < 0.05; **, p < 0.01; ***, p < 0.001 

compared with vehicle control to 1α(OH)D3 administration. 
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Fig. 4. Bile acid compositions in liver (A) and plasma (B) in mice fed CA-supplemented 

chow. Mice were fed 0.4% CA-supplemented chow and administered 1α(OH)D3 as 

shown in Fig.1A. *, p < 0.05; **, p < 0.01 compared with vehicle control to 1α(OH)D3 

administration. ND, not detected. 

 

Fig. 5. Bile acid compositions in liver (A) and plasma (B) in mice fed DCA-supplemented 

chow. Mice were fed 0.4% DCA-supplemented chow and administered 1α(OH)D3 as 

shown in Fig.1A. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with vehicle control 

to 1α(OH)D3 administration. ND, not detected. 

 

Fig. 6. Bile acid compositions in liver (A) and plasma (B) in mice fed LCA-supplemented 

chow. Mice were fed 0.4% LCA-supplemented chow and administered 1α(OH)D3 as 

shown in Fig.1A. *, p < 0.05 compared with vehicle control to 1α(OH)D3 administration. 

ND, not detected. 
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Fig.7. Effects of 1α(OH)D3 on bile acid composition in mice pre-fed 

CDCA-supplemented chow. Bile acid compositions in the liver of mice fed standard 

chow (A) and 0.4% CDCA-supplemented chow (B). (C) Bile acid compositions in 

plasma in mice fed 0.4 % CDCA-supplemented chow. (D) Total bile acid concentrations 

in urine. Mice were fasted after feeding and administered 1α(OH)D3 as shown in Fig. 1B. 

*, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with vehicle control to 1α(OH)D3 

administration. ND, not detected. 

 

Fig. 8. Effects of 1α(OH)D3 on mRNA expression of genes involved in bile acid 

metabolism in liver (A), kidney (B), and intestine (C), and on renal Mrp4 protein 

expression (D). Total RNA was prepared from the liver, kidney, and small intestine of 

mice fed standard chow with or without 1α(OH)D3 treatment as shown in Fig. 1A 

(n=6/each), and expression of the indicated genes was measured with real-time 

quantitative polymerase chain reaction using glyceraldehyde-3-phosphate dehydrogenase 

as the internal control. Values for normalized mRNA expression are relative to those of 

vehicle control-treated mice. The values represent the means ± SD. n.s., not significant; *, 
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p < 0.05; **, p < 0.01; ***, p < 0.001. Proteins from the kidney were subjected to 

immunoblotting. Each lane was loaded with 41 μg of membrane proteins. Experiments 

were repeated with different mouse samples with similar results. 

 

Fig. 9. Model of effects of VDR ligand on bile acid metabolism. Primary bile acids, CA 

and CDCA, are generated from cholesterol by liver enzymes, including Cyp7a1 and 

Cyp8b1, and are secreted in bile as glycine or taurine conjugates. CDCA is metabolized to 

α-MCA and β-MCA in the rodent liver. Bsep and Mrp2 are localized in the canalicular 

membrane of hepatocytes and transport bile acids into bile. Most bile acids are 

reabsorbed in the intestine and recirculate to the liver through the portal vein in a 

mechanism called the enterohepatic circulation. Bile acids that escape reabsorption are 

converted to the secondary bile acids DCA, LCA, UDCA, and ω-MCA by intestinal 

microflora. Portions of the secondary bile acids enter the enterohepatic circulation from 

the colon. The transporters Asbt, Mrp3, Ostα/β are involved in bile acid absorption in the 

intestine. At the basolateral membrane of hepatocytes, Ntcp and Oatps uptake bile acids 

from the portal circulation. The basolateral transporters Mrp3, Mrp4, and Ostα/β play a 
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role in the alternative excretion of bile acids from hepatocytes into the systemic 

circulation. Renal Mrp2, Mrp4, Ostα/β are thought to be involved in urinary bile acid 

excretion. VDR activation induces expression of bile acid transporters, such as liver Ostα, 

kidney Mrp2, and Mrp4, and stimulates urinary excretion of bile acids. Expression of 

liver Cyp7a1, intestinal Asbt, Mrp4, and renal Mrp3 are also induced by VDR activation. 

Thus, VDR, which responds to both 1,25(OH)2D3 and LCA, plays a role in regulation of 

bile acid metabolism. 
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TABLE 1 

Cumulative food intake and plasma transaminase levels in mice fed bile acid-supplemented chow 

Mice were fed 0.4% bile acid-supplemented chow for 6 days (n=5 for each condition). Values represent mean ± SD. 

__________________________________________________________________________________________________________ 

Bile acid in diet Cumulative food intake (g)  Plasma ALT (IU/l)  Plasma AST (IU/l) 

__________________________________________________________________________________________________________ 

Control   16.7 ± 0.5  10.8 ± 12.3   42.5 ± 14.7 

 

CDCA   16.0 ± 0.5  18.0  ± 13.6   79.9 ± 31.9 

 

CA   12.2 ± 0.9  23.1 ±  5.2  101.5 ± 14.8 

   ｐ < 0.001a 

DCA   13.3 ± 0.9  26.3 ±  9.4  115.7 ± 50.8 

   ｐ < 0.001a 

LCA   14.5 ± 1.4  11.5 ±  2.0   84.6 ± 16.7 

   ｐ < 0.001a 

__________________________________________________________________________________________________________ 
aComparison with control chow. 

ALT, alanine aminotransferase; AST, aspartate aminotransferase. 
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TABLE 2 

Body weight and plasma calcium levels in mice fed bile acid-supplemented chow and treated with 1α(OH)D3 

Mice were fed 0.4% bile acid-supplemented chow and treated with vehicle (- 1α(OH)D3) or 1α(OH)D3 (+ 1α(OH)D3) as shown in 

Fig.1A. Values for body weight and plasma calcium levels represent mean ± SD. 

__________________________________________________________________________________________________________ 

Bile acid in diet Body weight (g)   Plasma calcium (mg/dL)  Number of mice 

  __________________________ __________________________ __________________________ 

  - 1α(OH)D3 + 1α(OH)D3 - 1α(OH)D3 + 1α(OH)D3 - 1α(OH)D3  + 1α(OH)D3 

__________________________________________________________________________________________________________ 

Control  20.1 ± 1.6 15.2 ± 1.3 10.3 ± 1.7 18.5 ± 2.1 5  7 

    ｐ < 0.001a   
ｐ < 0.001a 

CDCA  22.1 ± 2.4 20.0  ± 1.8 11.9 ± 0.7 15.0 ± 1.6 8  8 

        ｐ < 0.001a 

CA  22.1 ± 1.7 19.2 ± 1.4 6.6 ± 1.1  11.6 ± 1.2 8  8 

    ｐ < 0.01a   
ｐ < 0.001a 

DCA  20.1 ± 0.7 14.9 ± 1.1 9.4 ± 2.8  12.8 ± 1.7 8  8 

    ｐ < 0.001a   
ｐ < 0.05a 

LCA  22.4 ± 1.3 19.5 ± 0.8 9.7 ± 1.3  15.2 ± 4.4 8  7 

    ｐ < 0.001a   
ｐ < 0.001a 

__________________________________________________________________________________________________________ 
aComparison with vehicle control without 1α(OH)D3 treatment. 
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TABLE 3 

Body weight and plasma calcium levels in mice pre-fed bile acid-supplemented chow and treated with 1α(OH)D3 under fasting 

Mice were pre-fed 0.4% CDCA-supplemented chow and treated with vehicle (- 1α(OH)D3) or 1α(OH)D3 (+ 1α(OH)D3) under fasting 

conditions as shown in Fig.1B. Values for body weight and plasma calcium levels represent mean ± SD. 

__________________________________________________________________________________________________________ 

Bile acid in diet Body weight (g)   Plasma calcium (mg/dL)  Number of mice 

  __________________________ __________________________ __________________________ 

  - 1α(OH)D3 + 1α(OH)D3 - 1α(OH)D3 + 1α(OH)D3 - 1α(OH)D3  + 1α(OH)D3 

__________________________________________________________________________________________________________ 

Control  20.5 ± 0.5 20.2 ± 1.3 6.0 ± 0.4  6.8 ± 0.6  5  7 

        
ｐ < 0.05a 

CDCA  20.7 ± 1.5 20.5  ± 0.8 7.1 ± 0.7  7.6 ± 1.5  6  6 

 

__________________________________________________________________________________________________________ 
aComparison with vehicle control without 1α(OH)D3 treatment. 
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