SHORT COMMUNICATION

Human Liver Expression of CYP2C8: gender, age and genotype effects

Suresh Babu Naraharisetti, Yvonne S. Lin, Mark Rieder, Kristin Marcianie, Bruce M. Psaty,
Kenneth E. Thummel and Rheem A. Totah.

Departments of Medicinal Chemistry (S.B.N., R.A.T.); Pharmaceutics (Y.S.L., K.E.T.); Genome
Sciences (M.R.); Medicine (K.M., B.M.P.); Epidemiology (B.M.P) University of Washington,
Seattle, WA 98195. Group Health Research Institute, Group Health Cooperative Seattle, WA
(B.M.P); Current address: Center for Drug Evaluation and Research, US Food and Drug
Administration, Silver Spring, MD, USA (S.B.N.).
Running title: Human liver CYP2C8 expression

Corresponding author:
Rheem A. Totah
Department of Medicinal Chemistry, School of Pharmacy, Box 357610
University of Washington, Seattle WA 98195-7610
Phone: (206) 543-9481 Fax: (206) 685-3252
Email: rtotah@u.washington.edu

Number of Figures: 4
Number of Tables: 2
Number of References: 32
Number of words in the Abstract: 251
Number of words in the Introduction: 421
Number of words in the Results and Discussion: 1,169

Non-standard abbreviations:
P450, cytochrome P450; SNPs, single nucleotide polymorphisms; IRDye, infrared dye; PAGE, polyacrylamide gel electrophoresis; PVDF, polyvinylidene flouride; HLM, human liver microsomes; PCR, polymerase chain reaction; PXR, pregnane X receptor; CAR, constitutive androstane receptor; GR, glucocorticoid receptor.
Abstract

Research investigating cytochrome P450 2C8 (CYP2C8) as a drug metabolizing enzyme has gained momentum over the past few years. CYP2C8 is estimated to oxidatively metabolize about 5% of therapeutically prescribed drugs. It is polymorphically expressed and several single nucleotide polymorphisms (SNPs) have been identified with varying effects on the clearance of CYP2C8 substrates. However, the human liver expression of CYP2C8 and effects of genetic variation, age and gender on mRNA and protein levels have not been fully explored. In this report, interindividual variation in CYP2C8 mRNA and protein expression in 60 Caucasian human livers was examined. The livers were genotyped for *3 and *4 polymorphisms. The effects of genotype, age, and gender on hepatic CYP2C8 expression and the correlation of CYP2C8 mRNA expression with CYP3A4 and other CYP2C members were evaluated. The mean ± SD protein levels in *1/*1 livers was 30.8 ± 17.5 pmol/mg protein (n= 33) and a trend for decreased protein levels was observed for *1/*4 livers (15.8 ± 9.7 pmol/mg, p=0.07). The mean expression levels of CYP2C8 was comparable in males and females (p=0.18). The mRNA expression of CYP2C8, CYP2C9, CYP2C19 and CYP3A4, but not CYP2C18 were highly correlated (p<0.0001). Moreover, the hepatic CYP2C8 and CYP3A4 protein levels were strongly correlated (r = 0.76, p<0.0001). This correlation is most likely due to common regulation factors for both genes. CYP2C8 mRNA or protein expression levels were not significantly affected by *3 or *4 genotype, gender or age and variation observed clinically in CYP2C8 activity warrants further investigation.
Introduction

The involvement of cytochrome P450 2C8 (CYP2C8) in the metabolic clearance of drugs, drug interactions and its pharmacogenetics has been increasingly more recognized in the last several years (Totah and Rettie, 2005, Niemi et al., 2003; 2005; Kirchheiner et al., 2006; Tornio et al., 2008). CYP2C8 accounts for 7% of total microsomal CYP content of the liver (Shimada et al., 1994; Rendic and Di Carlo, 1997) and is estimated to be involved in the oxidative metabolism of at least 5% of therapeutically prescribed drugs such as: amodiaquine, amiodarone, cerivastatin, paclitaxel, repaglinide, pioglitazone, rosiglitazone, and verapamil. CYP2C8 is also involved in the endogenous metabolism of arachidonic acid and all-trans-retinoic acid to epoxyeicosatrienoic acids and 4-hydroxy-all-trans-retinoic acid, respectively (Zeldin et al., 1995 and McSorley and Daly, 2000). CYP2C8 shares more common substrates with CYP3A4 than it does with CYP2C9 despite having 70% sequence homology and 80% sequence similarity to CYP2C9 (Totah and Rettie, 2005). In addition, similar transcription factors including PXR, CAR and GR are involved in the induction of CYP2C8 and CYP3A4 isozymes (Bahadur et al., 2002 Raucy et al., 2002; Ferguson et al., 2005).

There is conflicting data in the literature with regards to in vitro and in vivo metabolic effects of CYP2C8 single nucleotide polymorphisms (SNPs). For example, individuals with the CYP2C8*1/*3 or CYP2C8*3/*3 genotypes have increased clearance of CYP2C8 substrates like repaglinide, rosiglitazone and pioglitazone than the individuals with the CYP2C8*1/*1 genotype (Niemi et al., 2005; Kirchheiner et al., 2006; Tornio et al., 2008). In contrast, in vitro experiments and some in vivo pharmacokinetic studies involving the CYP2C8*3 allele showed contradictory results (Dai et al., 2001; Bahadur et al., 2002; Parikh et al., 2007, Daily and Aquilante, 2009). Niemi et al. (Niemi et al., 2003) reported that the CYP2C8*4 allele did not influence the pharmacokinetics of repaglinide. Accordingly, the metabolic activity of CYP2C8 alleles is somewhat controversial though ostensibly these CYP2C8 variants may have altered protein expression and/or function.
There is limited characterization of hepatic CYP2C8 protein expression in individuals with different CYP2C8 genotypes. This information would be valuable for studies scaling metabolism from human liver microsomes to whole liver, to determine the relationship between genotype-phenotype and explain the interindividual variability in pharmacokinetics of various CYP2C8 substrates. In addition, data pertaining to CYP2C8 ontogeny or gender differences are lacking. To address some of these issues, we genotyped for *CYP2C8*^{*3*} and *CYP2C8*^{*4*} (the most common SNPs in Caucasians), evaluated CYP2C8 mRNA and protein expression and examined the effect of age and gender on CYP2C8 expression in 60 Caucasian human liver samples.
Materials and Methods

The CYP2C8 primary antibody (rabbit antibody to human CYP2C8) was purchased from GeneTex, Inc. (San Antonio, TX). Secondary antibodies (IRDye 680 goat-anti-rabbit and IRDye 800CW goat-anti-mouse) and Odyssey blocking reagent was obtained from LI-COR Biosciences (Lincoln, NE). Western blotting reagents and NuPAGE® Novex® Bis-Tris mini gels were purchased from Invitrogen (Carlsbad, CA). Immobilon-FL-PVDF transfer membrane was obtained from Millipore (Billerica, MA). Recombinant CYP enzymes, cDNA-expressed human P450 reductase and human cytochrome b5 (Supersomes®) were from BD Gentest (Woburn, MA).

Human Liver Samples. Samples of human liver (n=60) from Caucasian donors were obtained from the University of Washington School of Pharmacy Human Liver Tissue Bank (Seattle, WA). Human liver microsomes were prepared according to previously published protocols (Paine et al., 1997). Protein concentrations were determined by the method of Lowry et al. (1951). The expression levels of CYP3A4 were determined previously (Lin et al., 2002). For the 60 livers, genotyping results were available for 57 livers, CYP2C8 mRNA and protein expression were determined for 55 and 53 livers, respectively.

Genotyping for CYP2C8*3 and CYP2C8*4. All genotyping assays were performed at the DNA Sequencing and Gene Expression Center, Department of Pharmaceutics, University of Washington. The CYP2C8*3 (416G > A and 1196A>G; R139K; K399R) and CYP2C8*4 (792C>G; I264M) single nucleotide polymorphisms (SNPs) were genotyped using validated TaqMan® assays from Applied Biosystems (Foster City, CA). The cycling conditions for PCR amplification were one cycle at 95°C for 10 minutes followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min in a reaction volume of 10 µL containing 1 µL of genomic DNA (~25-100 ng) and 1X final concentrations of TaqMan® universal PCR master mix and SNP assay primers and probes. The allelic discrimination was determined in a post-PCR analysis on an Applied Biosystems 7900 HT instrument. Internal controls of sequence-verified genotypes were included for each assay.
Quantitation of CYP2C8 mRNA. Total mRNA from human liver (n=55) was extracted and normalized to ~200 ng/uL. Using 750 ng total RNA, whole genome expression measurement was carried out using the Illumina HumanRef-8 v.2 Expression BeadChips according to the manufacturer’s protocol. All liver samples were measured in duplicate, with each sample and replicate randomized between processed batches of 24 arrays done on different days. Raw signal intensity measurements from each sample were processed using the Illumina BeadStudio software v.2.3.41 using the ‘average’ normalization function and replicate data from each liver was averaged to obtain a final value.

Protein Quantitation. Immunoquantitation of CYP2C8 in human liver samples (n=53) was performed by Western blot analysis as described by Lin et al. (2002), with minor modifications. Briefly, 20 µg of liver microsomal protein was resolved on NuPAGE® Novex® Bis-Tris mini gels by electrophoresis and transferred simultaneously onto PVDF membranes. The membrane was blocked overnight with Odyssey blocking reagent, incubated with the primary anti-CYP2C8 antibody (1:10000 dilution) followed by the secondary antibody (1:15000 dilution). The imaging of the membrane was performed on the Odyssey Infrared Imaging Systems (Li-COR Biosciences).

Recombinant human CYP2C8 was used as the standard for the protein-calibration curve (0.312-1.25 pmol of CYP2C8). Standards and liver samples were run in duplicate. A selected liver sample (HL-105) served as a quality control sample and was added to each gel to control for the inter-day variation. CYP2C8 protein levels in liver samples were quantified by comparing the unknown band image intensity to the appropriate standard curve using Odyssey version 2.1.12. The cross reactivity of the CYP2C8 antibody was examined with other CYPs (CYP2C9, CYP2C19, CYP3A4, CYP3A5, CYP2B6 and CYP2J2).

Statistical and Data Analysis. Values for protein content are expressed as pmol CYP2C8/mg microsomal protein whereas arbitrary absolute values for mRNA are reported. Statistical significance was tested using a student t-test where p<0.05 was considered statistically significant. For association tests, we determined the Spearman’s rank correlation using Stata/SE (version 10, College Station, TX). An r
value of <0.5, 0.51 to 0.7, and 0.71 to 1.0 were designated as weak, modest, and strong correlation, respectively. Mean ± standard deviations are reported where appropriate.
Results and Discussion

Liver samples from 60 Caucasian individuals were included in this study. The median age was 46 years (range: 7 to 70 years) with nearly equal distribution of male and female donors (29 and 31, respectively). The observed allelic frequencies for CYP2C8*1, CYP2C8*3 and CYP2C8*4 were 0.82, 0.14 and 0.04, respectively. The CYP2C8*3 allele frequency determined in this study was comparable to the frequency of 0.15 reported in White British and White Spanish Caucasians (Bahadur et al., 2002). The CYP2C8 genotype frequencies are summarized in Table 1.

To identify the influence of different CYP2C8 SNPs on CYP2C8 transcript, mRNA levels were quantified in the liver samples. CYP2C8 mRNA was abundant in all the livers. The mean absolute value for CYP2C8 mRNA for each genotype is presented in Figure 1A. Compared to livers with a CYP2C8*1/*1 genotype, mean mRNA levels of livers with CYP2C8*1/*3 or CYP2C8*1/*4 genotypes were comparable (Figure 1A and Table 1). The interindividual variation for CYP2C8 mRNA levels was 44-fold in the liver samples. For the CYP2C8*3/*3 livers, the mean mRNA levels were 48% lower compared to the CYP2C8*1/*1 livers. However, the statistical significance of this reduction cannot be estimated due to small sample size (n = 2).

CYP2C8 in the microsomal fractions of liver samples was detected as an immunoreactive band at 55 kDa using a commercially available CYP2C8-specific polyclonal antibody (Figure 2). The antibody used was specific to CYP2C8 and did not cross-react with any of the other recombinant CYP proteins tested (data not shown). The inter-day variation for the control liver sample (HL-105) was 17.2%. CYP2C8 mRNA levels were poorly correlated to CYP2C8 protein levels (r = 0.48, p=0.0005), although Rodriguez et al. (Rodriguez et al., 2008) reported a stronger correlation in their liver samples (r = 0.62).

CYP2C8 protein was detected in all liver samples and CYP2C8 protein expression as a function of CYP2C8 genotypes is presented in the Table 1 and Figure 1B. A 33-fold interindividual variation in protein expression is observed. CYP2C8 protein is comparable in livers with the CYP2C8*1/*3 or CYP2C8*1/*1 genotypes. As there were only two livers with the CYP2C8*3/*3 genotype no conclusions...
as to the effect of the CYP2C8*3 allele on protein expression can be made. Garcia-Martin et al. (Garcia-Martin et al., 2004) reported decreased clearance of the R-ibuprofen in CYP2C8*3/*3 individuals, whereas Kirchheiner et al., (2006) reported significantly increased metabolic activity for CYP2C8*3/*3 individuals when administering rosiglitazone. A larger number of livers with the CYP2C8*3/*3 genotype are needed to clarify the functional consequences of the CYP2C8*3 allele on CYP2C8 protein expression and catalytic activity.

In livers with the CYP2C8*1/*4 genotype, CYP2C8 protein was significantly lower by 51.4% (15.8 ± 9.7 pmol/mg of microsomal protein, n= 5, p=0.07) as compared to CYP2C8*1/*1 livers. No livers with the CYP2C8*4/*4 genotype were found among the liver samples. Despite the findings of decreased protein expression in livers with the CYP2C8*1/*4 genotype, Niemi et al. (Niemi et al., 2003) failed to see a difference in ibuprofen clearance in CYP2C8*1/*4 subjects (n=3) compared to CYP2C8*1/*1 subjects (n=19). However, this null result may be due to the fact that CYP2C8 may only play a minor role in the metabolism of ibuprofen as determined by more recent in vitro studies (Chang et al., 2008).

The effects of age and gender on the CYP2C8 protein expression are shown in Figures 3A and 3B, respectively. The ages of the donors ranged from 7 to 70 years and had no observable effect on the expression of CYP2C8. Rodriguez et al. (Rodriguez et al., 2008) also reported similar findings that age did not alter CYP2C8 expression. With regard to the gender, the mean expression levels of CYP2C8 protein was comparable in females (34.3 ± 17.7, n=28) and males (27.7 ± 17.4, n=25, p=0.18) (Figure 3B). However, it seems that females have slightly higher (22%) expression than males. At the mRNA transcript levels, there was no difference between females (19965 ± 10463, n=28) and males (19680 ± 12186, n=27). In these same set of livers, CYP3A4 expression in females is higher by 57% as compared to the males although there is high variability in overall expression between two groups. The mean ± SD CYP3A4 expression levels in females was 101.3 ± 82.2 (n=31) as compared to 57.5 ± 63.9
(n=29) in males (Lin et al., 2002). Similar findings of 2-fold increased levels of CYP3A4 expression was reported in 44 female livers as compared to the 48 male livers (Wolbold et al., 2003).

As shown in Table 2, CYP2C8 mRNA expression was highly correlated with the mRNA levels of CYP2C9 (r = 0.88), CYP2C19 (r = 0.68) and CYP3A4 (r = 0.71), but not CYP2C18 (r = 0.11). Similar transcription factors (PXR, CAR and GR) are involved in the induction and possibly basal regulation of various CYP2C family members and CYP3A4 (Bahadur et al., 2002; Raucy et al., 2002; Ferguson et al., 2005). Liver samples from individuals exposed to inducers (such as dexamethasone, phenytoin or phenobarbital) prior to organ procurement had 45% higher levels of CYP2C8 mRNA (p=0.034), though CYP2C8 protein levels were not significantly different (p=0.48) than those not exposed. Similar to the mRNA expression data, CYP2C8 protein correlated strongly with CYP3A4 protein expression (r = 0.74, p<0.0001). Interestingly, from the entire set of human livers, 17% (n= 9) of the livers show higher CYP2C8 protein levels than CYP3A4. This could complicate studies on drug-drug interactions where compounds of interest are both CYP2C8 and CYP3A4 substrates and under conditions where CYP3A4 is inhibited.

From the recent CYP identification studies, there is a large degree of overlapping substrate specificity between CYP2C8 and CYP3A4. These substrates are structurally diverse from various therapeutic classes. Substrates that are predominantly metabolized by CYP2C8 for which CYP3A4 contributes partially to their clearance are: paclitaxel (Sonnichsen et al., 1995), cerivastatin (Boberg et al., 1997, Muck, 2000), repaglinide (Bidstrup et al., 2003) and rosiglitazone (manuscript in preparation). CYP3A4 substrates for which CYP2C8 contributes in part to their metabolism include carbamazapine (Kerr et al., 1994), verapamil (Tracy et al., 1999), zopiclone (Becquemont et al., 1999) and buprenorphine (Chang et al., 2006). Not surprisingly, the general features of the active site in the CYP2C8 model are similar to those found in the CYP3A4 crystal structure (Tanaka et al., 2004) allowing for similar substrate specificity. Furthermore, some substrates such as amiodarone, amitriptyline, quinine and triazolam, which are metabolized completely or in part by CYP3A, caused >50% inhibition of CYP2C8 activity at
concentrations corresponding to their CYP3A K_m values suggesting similar affinities for both enzymes (Ong et al., 2000).

In conclusion, livers with the $CYP2C8^{*1/*3}$ or $CYP2C8^{*1/*4}$ genotypes did not differ in mRNA or protein expression levels from livers with $CYP2C8^{*1*/1}$ genotype. However there was a trend in livers expressing the $CYP2C8^{*1/*4}$ genotype to have decreased CYP2C8 content. The hepatic protein expression of CYP2C8 did not differ between females and males. Furthermore, age had no apparent effect on CYP2C8 protein expression. Further work needs to be done to characterize and reconcile *in vitro* and *in vivo* differences in the metabolic activity of CYP2C8 variants.
References

Footnotes

This work was supported in part by the National Institutes of Health National Heart Lung and Blood Institute grant # 078888 and National Institute of General Medical Sciences P01 32165. YSL is supported in part by 1KL2RR025015 from the National Center for Research Resources (NCRR).
Legends for Figures:

Figure 1A. CYP2C8 mRNA levels (absolute values) for liver samples with different genotypes (n=55). The mRNA levels were determined as described under Materials and Methods.

Figure 1B. CYP2C8 protein contents of liver samples with different genotypes (n=53). Genotype and microsomal CYP2C8 content were determined as described under Materials and Methods. Data points for individual liver samples are the average result of at least two western blots.

Figure 2. Representative Western blot of human liver microsomes for HL119 and HL120 (20 µg of microsomal protein loaded per lane). S1 (0.312 pmol), S2 (0.625 pmol) and S3 (1.25 pmol) are the recombinant human CYP2C8 standards. CYP2C8 was observed at 55 KDa. HL-105 was included on each gel as a quality control sample for interday variation. The quantified levels of HL119 and HL120 using the standard curve was 43.2 pmol/mg and 22.4 pmol/mg, respectively.

Figure 3A. Relation of age on CYP2C8 protein expression in Caucasian livers samples. Microsomal CYP2C8 content was determined as described under Materials and Methods. Data points for individual liver samples are the average result of at least two western blots.

Figure 3B. Relation of gender on CYP2C8 protein expression (Female n=28, Male n=25). Microsomal CYP2C8 content were determined as described under Materials and Methods. Data points for individual liver samples are the average result of at least two western blots.

Figure 4. CYP2C8 and CYP3A4 protein content is highly correlated in human liver samples. The samples were previously characterized for CYP3A4 protein content (Lin et al., 2002). The Spearman rank order coefficient was significant. From the entire set of human livers, 9 out of 53 (17%) show higher CYP2C8 expression levels than CYP3A4 expression.
Table 1. Genotype frequency, mRNA and protein expression by CYP2C8 genotypes for the Caucasians Livers in the University of Washington Human Liver Bank.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>CYP2C8*1/*1</th>
<th>CYP2C8*1/*3</th>
<th>CYP2C8*1/*4</th>
<th>CYP2C8*3/*3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of subjects (observed/total)</td>
<td>38/57</td>
<td>12/57</td>
<td>5/57</td>
<td>2/57</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.67</td>
<td>0.21</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>mRNA Expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of subjects</td>
<td>33</td>
<td>12</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Relative value</td>
<td>18181 ± 9912</td>
<td>22482 ± 13294</td>
<td>18587 ± 10884</td>
<td>10279</td>
</tr>
<tr>
<td>Protein Expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of subjects</td>
<td>33</td>
<td>11</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Amount (pmol/mg protein)</td>
<td>30.8 ± 17.5</td>
<td>37.3 ± 15.2</td>
<td>15.8 ± 9.7</td>
<td>21.3</td>
</tr>
</tbody>
</table>

Mean ± standard deviation reported where appropriate
Table 2. Correlations among CYP2C family and CYP3A4 mRNA expression

<table>
<thead>
<tr>
<th></th>
<th>CYP2C8</th>
<th>CYP2C9</th>
<th>CYP2C18</th>
<th>CYP2C19</th>
<th>CYP3A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C8</td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.68*</td>
<td>0.71*</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>1.0</td>
<td>0.14</td>
<td></td>
<td>0.67*</td>
<td>0.70*</td>
</tr>
<tr>
<td>CYP2C18</td>
<td>1.0</td>
<td>-0.03</td>
<td></td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>CYP2C19</td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.70*</td>
<td></td>
</tr>
<tr>
<td>CYP3A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

* Significant at p < 0.0001 by Spearman’s rank test
Figure 2
Figure 3A

Figure 3B
Figure 4

r = 0.76
P < 0.0001
n = 53